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Abstract. The aim of this article is to apply the idea of pentapartitioned neutrosophic structures to UP-

algebras. Fuzziness algebraic substructures, namely UP-subalgebras, near UP-filters, UP-filters, UP-ideals and

strong UP-ideals of UP-algebras are modified and extended to introduce the notions of pentapartitioned neutro-

sophic UP-subalgebras, pentapartitioned neutrosophic near UP-filters, pentapartitioned neutrosophic UP-filters,

pentapartitioned neutrosophic UP-ideals and pentapartitioned neutrosophic strong UP-ideals in UP-algebras

and prove their generalizations. Furthermore, the relationship between pentapartitioned neutrosophic UP-

subalgebras (resp., pentapartitioned neutrosophic near UP-filters, pentapartitioned neutrosophic UP-filters,

pentapartitioned neutrosophic UP-ideals and pentapartitioned neutrosophic strong UP-ideals) in UP-algebras

is discussed. After that, the conditions under which pentapartitioned neutrosophic UP-subalgebra can be penta-

partitioned neutrosophic near UP-filter, and the condition under which pentapartitioned neutrosophic UP-filter

can be pentapartitioned neutrosophic UP-ideal in UP-algebra are discovered. At last, some characterizations

theorems of pentapartitioned neutrosophic structures in connection with UP-subalgebraic structures are pre-

sented and proved.
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—————————————————————————————————————————-

1. Introduction

In several domains of mathematics, there are several types of algebraic structures, such

as BCK-algebras [1], BCI-algebras [1], KU-algebras [2], SU-algebras [3] and others. A UP-

algebra is one of algebraic structures discovered by Iampan [4] and it is known that the class

of KU-algebras is a proper subclass of the class of UP-algebras. He presented the concepts of

UP-subalgebra and UP-ideals. In [5], Iampan proved that the concept of UP-subalgebras is
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an extension of near UP-filters, near UP-filters is an extension of UP-filters, UP-filters is an

extension of UP-ideals, and UP-ideals is an extension of strong UP-ideals. The study of UP-

algebras offers a rich and fascinating area of inquiry for mathematicians and scientists alike,

providing a powerful framework for understanding the underlying structures and behaviour of

a wide range of mathematical systems.

In the field of fuzziness mathematics, Zadeh [6] implemented the notion of fuzziness struc-

tures as a generalization of classical (crisp) sets. This concept was merged with a crisp UP-

algebra by Songsaeng et al. [7] to deal with uncertainty and fuzziness more accurately. In

other words, the theory of fuzziness sets can be used within the framework of UP-algebras to

explore fuzziness and imprecision in algebraic structures in UP-algebras. Atanassov [8] pre-

sented intuitionistic fuzzy sets which include the uncertainty degree called uncertainty margin.

The uncertainty margin is defined as one minus the sum of membership and non-membership.

Therefore, the intuitionistic fuzzy set is characterized by a membership function and non-

membership function with a range [0, 1]. An intuitionistic fuzzy set is the extension of both

classical (crisp) and fuzzy sets. This concept applied in several fields, such as medical diagno-

sis [9], modeling theories [10], pattern recognition [11] and decision making [12].

Smarandache [13] presented neutrosophic set theory that studies the origin, nature, and

scope of neutralities and engagements with distinct ideational spectra. A neutrosophic set

involves truth, indeterminacy and falsity based on three valued logics. Neutrosophic set is a

powerful mathematical framework which extensions the perception of classical sets and (intu-

itionistic) fuzzy sets. Neutrosophic sets deal with the unspecified and inconsistent information

that exists commonly in our daily life and these sets are important in algebras, see [14–16]. As a

modification of neutrosophic sets, Wang et al. [17] defined single valued neutrosophic set as an

instance of neutrosophic set which can be used in real scientific and engineering applications.

Chatterjee et al. [18] defined the concept of quadripartitioned single valued neutrosophic struc-

ture as an extension of single valued neutrosophic structure and this concept involves truth,

falsity, unknown and contradiction based on four valued logics. Mallick and Pramanik [19]

implemented the investigation of pentapartioned neutrosophic structures as an extension of a

single valued neutrosophic set [17] and quadripartitioned single valued neutrosophic set [18].

Here, indeterminacy is split into three parts as contradiction, ignorance and unknown member-

ship function. Also, they introduced the concept of pentapartitioned neutrosophic Pythagorean

set and establish a number of its properties. The concepts of pentapartitioned neutrosophic

semi-open sets, pentapartitioned neutrosophic semi-closed sets, pentapartitioned neutrosophic

semi-interior and pentapartitioned neutrosophic semi-closure in pentapartitioned neutrosophic

topological spaces were introduced by Radha and Stanis Arul Mary [20].
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Later, fuzzy UP-ideals, fuzzy UP-subalgebras and fuzzy UP-filters of UP-algebras considered

by Somjanta et al. [7] and fuzzy translations of a fuzzy set in UP-algebras studied by Guntasow

et al. [21]. Also, Kaijae et al. [22] studied and investigated anti-fuzzy UP-subalgebras and anti-

fuzzy UP-ideals in UP-algebras. Kesorn et al. [23] connected intuitionistic fuzzy set theory

with UP-algebras. In the context of neutrosophic UP-algebras, Songsaeng and Iampan [24]

presented the concepts of neutrosophic UP-subalgebras, neutrosophic near UP-filters, neutro-

sophic UP-filters, neutrosophic UP ideals, and neutrosophic strongly UP-ideals of UP-algebras,

and investigated many properties.

In this paper, we introduce the notions of pentapartitioned neutrosophic UP-subalgebras,

pentapartitioned neutrosophic near UP-filters, pentapartitioned neutrosophic UP-filters, pen-

tapartitioned neutrosophic UP-ideals and pentapartitioned neutrosophic strong UP-ideals in

UP-algebras and prove their generalizations. Furthermore, the relationship between penta-

partitioned neutrosophic UP-subalgebras (resp., pentapartitioned neutrosophic near UP-filters,

pentapartitioned neutrosophic UP-filters, pentapartitioned neutrosophic UP-ideals and pen-

tapartitioned neutrosophic strong UP-ideals) in UP-algebras is discussed. After that, the

conditions under which pentapartitioned neutrosophic UP-subalgebra can be pentapartitioned

neutrosophic near UP-filter, and the condition under which pentapartitioned neutrosophic UP-

filter can be pentapartitioned neutrosophic UP-ideal in UP-algebra are established. At last,

some characterizations results of pentapartitioned neutrosophic structures in connection with

UP-subalgebraic structures are proposed and proved.

2. Preliminaries

In this section, a brief summary of some basic definitions and preliminary results related

to this research, such as UP-algebras, subalgebras, ideals and filters in UP-algebras are pre-

sented. Thereafter, the main notions related to fuzzy sets, fuzzy subalgebras in UP-algebras,

intuitionistic fuzzy sets and neutrosophic fuzzy sets, with some results and properties that will

be of value for our later pursuits are mentioned. Throughout this article, Π (universe set)

denotes a UP-algebra, unless otherwise specified.

2.1. UP-Algebras and Some UP-Algebraic Substructures

Definition 2.1. [4] An algebra Π = (Π, �, 0) is said to be a UP-algebra, where “Π” is a

nonempty set, “ � ” is a binary operation on Π, and “0” is a fixed element of Π if it satisfies

the following postulates (∀h, j, k ∈ Π):

(1) (j � k) � ((h � j) � (h � k)) = 0,

(2) 0 � h = h,

(3) h � 0 = 0,
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(4) h � j = j � h = 0⇒ h = j.

Proposition 2.2. [4, 25] Let Π be a UP-algebra. Then, the following assertions are valid

(∀h, j, k, c ∈ Π) :

(1) h � h = 0,

(2) h � j = 0 and j � k = 0⇒ h � k = 0,

(3) h � j = 0⇒ (k � h) � (k � j) = 0,

(4) h � j = 0⇒ (j � k) � (h � k) = 0,

(5) h � (j � h) = 0,

(6) (j � h) � h = 0⇔ h = j � h,

(7) h � (j � j) = 0,

(8) (h � (j � k)) � (h � ((c � j) � (c � k))) = 0,

(9) (((c � h) � (c � j)) � k) � ((h � j) � k) = 0,

(10) ((h � j) � k) � (j � k) = 0,

(11) h � j = 0⇒ h � (k � j) = 0,

(12) ((h � j) � k) � (h � (j � k)) = 0,

(13) ((h � j) � k) � (j � (c � k)) = 0.

Example 2.3. [4] Let Π = {0, v, b, n} be a set with a binary operation ”�” defined by the

following Cayley table:

Table 1. A UP-algebra Π = {0, v, b, n} of Example 2.3

� 0 v b n

0 0 v b n

v 0 0 0 0

b 0 v 0 n

n 0 v b 0

Then, (Π, �, 0) is a UP-algebra.

In a UP-algebra Π, five types of special subsets are defined as follows.

Definition 2.4. [4, 7] A nonempty subset S of a UP-algebra Π (∀h, j, k ∈ Π) is called:

(1) a UP-subalgebra of Π if h � j ∈ S ∀h, j ∈ S;

(2) a near UP-filter of Π if

(i) 0 ∈ S,
(ii) j ∈ S ⇒ h � j ∈ S;

(3) a UP-filter of � if

(i) 0 ∈ S,
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(ii) h � j ∈ S, h ∈ S ⇒ j ∈ S;

(4) a UP-ideal of Π if

(i) 0 ∈ S,

(ii) h � (j � k) ∈ S, j ∈ S ⇒ h � k ∈ S;

(5) a strong UP-ideal of Π if

(i) 0 ∈ S,
(ii) (k � j) � (k � h) ∈ S, j ∈ S ⇒ h ∈ S.

In UP-algebras, Guntasow et al. [21] and Iampan [5] proved that the concept of UP-

subalgebras is a generalization of near UP-filters, near UP-filters is a generalization of UP-

filters, UP-filters is a generalization of UP-ideals and UP-ideals is a generalization of strong

UP-ideals.

2.2. Fuzziness and Intuitionistic Fuzziness Structures

In 1965, the concept of a fuzzy structure was first considered by Zadeh [6] as the following

definition.

Definition 2.5. A fuzzy structure Q in Π 6= φ (universe set) is a structure of the form:

Q = {〈h, µQ(h)〉 : h ∈ Π} ,

where µQ : Π→ [0, 1] is the degree of membership function of the element h ∈ Π.

Definition 2.6. [8] An intuitionistic fuzzy structure B in Π 6= φ (universe set) is a structure

of the form:

B = {〈h, µB(h), ξB(h)〉 | h ∈ Π},

where the functions

µB : Π→ [0, 1] and ξB : Π→ [0, 1]

are the degree of membership and the degree of non-membership of the element h ∈ Π,

respectively, and (∀h ∈ Π) :

0 ≤ µB(h) + ξB(h) ≤ 1.

2.3. Neutrosophic Algebraic Substructures in UP-Algebras

The notion of a neutrosophic structure introduced by Smarandache [13] as the following

definition.

Definition 2.7. A neutrosophic structure Λ in Π 6= φ (universe set) is a structure of the form:

Λ = {〈h, λT (h), λI(h), λF (h)〉 | h ∈ Π} ,
A. Al-Masarwah and H. Al-Zghoul, Ideals and Filters of UP-Algebras in the Frame of
Pentapartitioned Neutrosophic Structures

Neutrosophic Sets and Systems, Vol. 87, 2025                                                                                90



where λT : Π → [0, 1] is a truth, λI : Π → [0, 1] is an indeterminate and λF (h) : Π → [0, 1] is

a false membership functions, and (∀h ∈ Π) :

0 ≤ λT (h) + λI(h) + λF (h) ≤ 3.

All next definitions and examples, in this section, related to the connection between neu-

trosophic structure and some UP-algebraic substructures are mentioned in [24].

Definition 2.8. Let Λ be a neutrosophic structure of Π. Then, Λ is called a neutrosophic

UP-subalgebra of Π if the following postulates are satisfied (∀h, j ∈ Π):

(1) λT (h � j) ≥ min {λT (h), λT (j)} ,
(2) λI(h � j) ≤ max {λI(h), λI(j)} ,
(3) λF (h � j) ≥ min {λF (h), λF (j)} .

Example 2.9. Let Π = {0, v, b, n, l} be a set with a binary operation “ � ” defined by the

following Cayley table:

Table 2. A UP-algebra Π = {0, v, b, n, l} of Example 2.9

� 0 v b n l

0 0 v b n l

v 0 0 b b l

b 0 0 0 b l

n 0 0 0 0 l

l 0 v b n 0

Define a neutrosophic structure Λ in Π as follows:

Λ =


Π 0 v b n l

λT 0.9 0.7 0.5 0.3 0.3

λI 0 0.8 0.4 0.2 0.4

λF 1 0.6 0.8 0.3 0.2

 .

Then, for b, l ∈ Π we have

λT (b � l) = λT (l) = 0.3

≥ min {λT (b), λT (l)}

= min {0.5, 0.3}

= 0.3,
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λI(b � l) = λI(l) = 0.4

≤ max {λI(b), λT (l)}

= max {0.4, 0.4}

= 0.4,

λF (b � l) = λF (l) = 0.2

≥ min {λF (b), λT (l)}

= min {0.8, 0.2}

= 0.2.

The remaining elements of Π can be verified similarly. Hence, Λ is a neutrosophic UP-

subalgebra of Π.

Definition 2.10. Let Λ be a neutrosophic set of Π. Then, Λ is called a neutrosophic near

UP-filter of Π if the condition (K), where

(K) (∀h ∈ Π)

 λT (0) ≥ λT (h),

λI(0) ≤ λI(h),

λF (0) ≥ λF (h)

 ,

and following postulates are valid (∀h, j ∈ Π):

(1) λT (h � j) ≥ λT (j),

(2) λI(h � j) ≤ λI(j),

(3) λF (h � j) ≥ λF (j).

Example 2.11. Let Π = {0, v, b, n, l} be a set with a binary operation “ � ” defined by the

following Cayley table:

Table 3. A UP-algebra Π = {0, v, b, n, l} of Example 2.11

� 0 v b n l

0 0 v b n l

v 0 0 v b l

b 0 0 0 v l

n 0 0 0 0 l

l 0 v b n 0

Define a neutrosophic structure Λ in Π as follows:
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Λ =


λ 0 v b n l

λT 1 0.7 0.5 0.4 0.8

λI 0.1 0.2 0.3 0.7 0.6

λF 0.9 0.8 0.4 0.3 0.5

 .

Then,

λT (0) ≥ λT (h), λI(0) ≤ λI(h), λF (0) ≥ λF (h)∀h ∈ Π.

Also, for v, n ∈ Π we have,

λT (v � n) = λT (b) = 0.5 ≥ λT (n) = 0.4,

λI(v � n) = λI(b) = 0.3 ≤ λI(n) = 0.7,

λF (v � n) = λF (b) = 0.4 ≥ λF (n) = 0.3.

The remaining elements of Π can be verified similarly. Hence, Λ is a neutrosophic near UP-filter

of Π.

Definition 2.12. Let Λ be a neutrosophic structure in Π. Then, Λ is called a neutrosophic

UP-filter of Π if the condition (K) of Definition 2.10 and the following postulates are valid

(∀h, j ∈ Π):

(1) λT (j) ≥ min {λT (h � j), λT (h)},
(2) λI(j) ≤ max {λI(h � j), λI(h)},
(3) λF (j) ≥ min {λF (h � j), λF (h)}.

Example 2.13. Let Π = {0, v, b, n, l} be a set with a binary operation “ � ” defined by the

following Cayley table:

Table 4. A UP-algebra Π = {0, v, b, n, l} of Example 2.13

� 0 v b n l

0 0 v b n l

v 0 0 b n l

b 0 0 0 n n

n 0 v b 0 n

l 0 v b 0 0

Define a neutrosophic structure Λ in Π as follows:

Λ =


λ 0 v b n l

λT 0.9 0.4 0.3 0.1 0.1

λI 0.2 0.3 0.7 0.8 0.8

λF 0.8 0.7 0.4 0.3 0.3

 .

Then,
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λT (0) ≥ λT (h), λI(0) ≤ λI(h), λF (0) ≥ λF (h)∀h ∈ Π.

Also, for b, v ∈ Π we have

λT (v) = 0.4 ≥ min {λT (b � v), λT (b)}

= min {λT (0), λT (b)}

= min {0.9, 0.3} = 0.3,

λI(v) = 0.3 ≤ max {λI(b � v), λI(b)}

= max {λI(0), λI(b)}

= max {0.2, 0.7} = 0.7,

λF (v) = 0.7 ≥ min {λF (b � v), λF (b)}

= min {λF (0), λF (b)}

= min {0.8, 0.4} = 0.4.

The remaining elements of Π can be verified similarly. Hence, Λ is a neutrosophic UP-filter of

Π.

Definition 2.14. Let Λ be a neutrosophic structure in Π. Then, Λ is called a neutrosophic

UP-ideal of Π if the condition (K) of Definition 2.10 and the following postulates are valid

(∀h, j, k ∈ Π):

(1) λT (h � k) ≥ min {λT (h � (j � k)), λT (j)},
(2) λI(h � k) ≤ max {λI(h � (j � k)), λI(j)},
(3) λF (h � k) ≥ min {λF (h � (j � k)), λF (j)}.

Example 2.15. Let Π = {0, v, b, n, l} be a UP-algebra with a binary operation “ � ” defined

by the following Cayley table:

Table 5. A UP-algebra Π = {0, v, b, n, l} of Example 2.15

� 0 v b n l

0 0 v b n l

v 0 0 b n l

b 0 0 0 b l

n 0 0 0 0 l

l 0 v b n 0

Define a neutrosophic structure Λ in Π as follows:
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Λ =


λ 0 v b n l

λT 1 0.7 0.6 0.6 0.4

λI 0 0.3 0.5 0.5 0.7

λF 1 0.8 0.7 0.7 0.5

 .

Then,

λT (0) ≥ λT (h), λI(0) ≤ λI(h), λF (0) ≥ λF (h)∀h ∈ Π.

Also, for b, n, v ∈ Π we have

λT (b � v) = λT (0) = 1 ≥ min {λT (b � (n � v)), λT (n)}

= min {λT (b � 0), λT (n)}

= min {1, 0.6}

= 0.6,

λI(b � v) = λI(0) = 0 ≤ max {λI(b � (n � v)), λI(n)}

= max {λI(b � 0), λI(n)}

= max {0, 0.5}

= 0.5,

λF (b � v) = λF (0) = 1 ≥ min {λF (b � (n � v)), λF (n)}

= min {λF (b � 0), λF (n)}

= min {1, 0.7}

= 0.7.

The remaining elements of Π can be verified similarly. Hence, Λ is a neutrosophic UP-ideal of

Π.

Definition 2.16. Let Λ be a neutrosophic structure in Π. Then, Λ is called a neutrosophic

strong UP-ideal of Π if the condition (K) of Definition 2.10 and the following postulates are

valid (∀h, j, k ∈ Π):

(1) λT (h) ≥ min {λT ((k � j) � (k � h)), λT (j)},
(2) λI(h) ≤ max {λI((k � j) � (k � h)), λI(j)},
(3) λF (h) ≥ min {λF ((k � j) � (k � h)), λF (j)}.

Example 2.17. Let Π = {0, v, b, n, l} be a UP-algebra with a binary operation “ � ” defined

by the following Cayley table:
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Table 6. A UP-algebra Π = {0, v, b, n, l} of Example 2.17

� 0 v b n l

0 0 v b n l

v 0 0 b n l

b 0 v 0 n l

n 0 v 0 0 l

l 0 v 0 n 0

Define a neutrosophic structure P in Π as follows:

P =


λ 0 v b n l

λT 0.4 0.4 0.4 0.4 0.4

λI 0.3 0.3 0.3 0.3 0.3

λF 0.5 0.5 0.5 0.5 0.5

 .

Then,

λT (0) ≥ λT (h), λI(0) ≤ λI(h), λF (0) ≥ λF (h)∀h ∈ Π.

Also, for n, b, l ∈ Π we have

λT (n) = 0.4 ≥ min{λT ((l � b) � (l � n)), λT (b)}

= min{λT ((0 � n), λT (b)}

= min{0.4, 0.4}

= 0.4,

λI(n) = 0.3 ≤ max{λI((l � b) � (l � n)), λI(b)}

= max{λI((0 � n), λI(b)}

= max{0.3, 0.3}

= 0.3

λF (n) = 0.5 ≥ min{λF ((l � b) � (l � n)), λF (b)}

= min{λF ((0 � n), λF (b)}

= min{0.5, 0.5}

= 0.5.

The remaining elements of Π can be verified similarly. Hence, P is a neutrosophic strong

UP-ideal of Π.
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2.4. Pentapartitioned Neutrosophic Structures

Definition 2.18. [19] A pentapartitioned neutrosophic structure P in Π (universe set) is a

structure of the form:

P = {〈h, TP (h), QP (h), EP (h), DP (h), FP (h)〉 | h ∈ Π},

where, TP : Π → [0, 1] is a truth, QP : Π → [0, 1] is an contradiction, EP : Π → [0, 1] is

an ignorance, DP : Π → [0, 1] is an unknown and FP : Π → [0, 1] is a falsity membership

functions, respectively such that (∀h ∈ Π) :

0 ≤ TP (h) +QP (h) + EP (h) +DP (h) + FP (h) ≤ 5.

In this article, we use the symbol P = 〈TP , QP , EP , DP , FP 〉 for the pentapartitioned neu-

trosophic structure

P = {〈h, TP (h), QP (h), EP (h), DP (h), FP (h)〉 | h ∈ Π} .

Example 2.19. Consider a UP-algebra Π which is given in Example 2.3. Then,

Λ =



Π 0 v b n

TP 0.2 0.7 0.4 0.2

QP 0.3 0.1 0.2 0.3

EP 0.5 0.2 0.1 0.4

DP 0.2 0.3 0.6 0.5

FP 0.4 0.3 0.3 0.6


is a pentapartitioned neutrosophic structure of Π.

3. Certain Types of Pentapartitioned Neutrosophic UP-Algebraic Substructures

In this section, we introduce the notions of pentapartitioned neutrosophic UP-subalgebras,

pentapartitioned neutrosophic near UP-filters, pentapartitioned neutrosophic UP-filters, pen-

tapartitioned neutrosophic UP-ideals, and pentapartitioned neutrosophic strong UP-ideals of

UP-algebras. Based on these notions, certain necessary examples and properties with their

generalizations are provided and discussed.

Definition 3.1. A pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

is called a pentapartitioned neutrosophic UP-subalgebra of Π if the following postulates are

valid (∀h, j,∈ Π) :

(1) TP (h � j) ≥ min{TP (h), TP (j)},
(2) QP (h � j) ≥ min{QP (h), QP (j)},
(3) EP (h � j) ≤ max{EP (h), EP (j)},
(4) DP (h � j) ≤ max{DP (h), DP (j)},
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(5) FP (h � j) ≤ max{FP (h), FP (j)}.

Proposition 3.2. If P = 〈TP , QP , EP , DP , FP 〉 is a pentapartitioned neutrosophic UP-

subalgebra of Π, then the condition (P) is valid, where

(P)
(
∀h ∈ Π

)


TP (0) ≥ TP (h),

QP (0) ≥ QP (h),

EP (0) ≤ EP (h),

DP (0) ≤ DP (h),

FP (0) ≤ FP (h)


.

Proof. Let P = 〈TP , QP , EP , DP , FP 〉 be a pentapartitioned neutrosophic UP-subalgebra of

Π. Using (1) of Proposition 2.2, we have

TP (0) = TP (h � h) ≥ min{TP (h), TP (h)} = TP (h),

QP (0) = QP (h � h) ≥ min{QP (h), QP (h)} = QP (h),

EP (0) = EP (h � h) ≤ max{EP (h), EP (h)} = EP (h),

DP (0) = DP (h � h) ≥ min{DP (h), DP (h)} = DP (h),

FP (0) = FP (h � h) ≤ max{FP (h), FP (h)} = FP (h).

for all h ∈ Π.

Example 3.3. Let Π = {0, v, b, n, l} be a UP-algebra with a binary operation “ � ” defined by

the following Cayley table:

Table 7. A UP-algebra Π = {0, v, b, n, l} of Example 3.3

� 0 v b n l

0 0 v b n l

v 0 0 v n l

b 0 0 0 n l

n 0 0 0 0 l

l 0 0 0 0 0

Define a pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

in Π as follows:
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P =



Π 0 v b n l

TP 0.7 0.4 0.5 0.2 0.6

QP 1 0.5 0.7 0.3 0.7

EP 0 0.4 0.1 0.8 0.2

DP 0.3 0.5 0.4 0.9 0.4

FP 0 0.4 0.2 0.7 0.8


.

Then, for n, l ∈ Π we have

TP (n � l) = TP (l) = 0.6 ≥ min{TP (n), TP (l)}

= min{0.2, 0.6}

= 0.2,

QP (n � l) = QP (l) = 0.7 ≥ min{QP (n), QP (l)}

= min{0.3, 0.7}

= 0.3,

EP (n � l) = EP (l) = 0.2 ≤ max{EP (n), EP (l)}

= max{0.8, 0.2}

= 0.8,

DP (n � l) = DP (l) = 0.4 ≤ max{DP (n), DP (l)}

= max{0.9, 0.4}

= 0.9,

FP (n � l) = FP (l) = 0.8 ≤ max{FP (n), FP (l)}

= max{0.7, 0.8}

= 0.8

The remaining elements of Π can be verified similarly. Hence, P is a pentapartitioned neutro-

sophic UP-subalgebra of Π.

Definition 3.4. A pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

is called a pentapartitioned neutrosophic near UP-filter of Π if the condition (P) of Proposition

3.2 and the following postulates are valid (∀h, j,∈ Π) :
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

TP (h � j) ≥ TP (j),

QP (h � j) ≥ QP (j),

EP (h � j) ≤ EP (j),

DP (h � j) ≤ DP (j),

FP (h � j) ≤ FP (j)


.

Example 3.5. Consider a UP-algebras Π which is given in Example 2.11. Define a penta-

partitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

in Π as follows:

P =



Π 0 v b n l

TP 1 0.6 0.5 0.4 0.1

QP 1 0.8 0.7 0.6 0.3

EP 0 0.1 0.3 0.5 0.8

DP 0.1 0.3 0.4 0.6 0.9

FP 0.1 0.2 0.6 0.7 0.5


.

Then, TP (0) ≥ TP (h), QP (0) ≥ QP (h), EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤ FP (h)

∀h ∈ Π. Also, for l, v ∈ Π we have

TP (l � v) = TP (v) = 0.6 ≥ TP (v) = 0.6,

QP (l � v) = QP (v) = 0.8 ≥ QP (v) = 0.8,

EP (l � v) = EP (v) = 0.1 ≤ EP (v) = 0.1,

DP (l � v) = DP (v) = 0.3 ≤ DP (v) = 0.3,

FP (l � v) = FP (v) = 0.2 ≤ FP (v) = 0.2.

The remaining elements of Π can be verified similarly. Hence, P is a pentapartitioned neutro-

sophic near UP-filter of Π.

Definition 3.6. A pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

is called a pentapartitioned neutrosophic UP-filter of Π if the condition (P) of Proposition 3.2

and the following postulates are valid (∀h, j ∈ Π) :

TP (j) ≥ min {TP (h � j), TP (h)} ,
QP (j) ≥ min {QP (h � j), QP (h)} ,
EP (j) ≤ max {EP (h � j), EP (h)} ,
DP (j) ≤ max {DP (h � j), DP (h)} ,
FP (j) ≤ max{FP (h � j), FP (h)}


.

Example 3.7. Consider a UP-algebras Π which is given in Example 2.13. Define a penta-

partitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉
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in Π as follows:

P =



Π 0 v b n l

TP 0.8 0.6 0.5 0.2 0.2

QP 0.9 0.7 0.6 0.4 0.4

EP 0 0.2 0.4 0.7 0.7

DP 0.1 0.3 0.5 0.9 0.9

FP 0.1 0.2 0.9 0.3 0.3


,

Then, TP (0) ≥ TP (h), QP (0) ≥ QP (h), EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤ FP (h)

∀h ∈ Π. Also, for b, l ∈ Π we have

TP (l) = 0.2 ≥ min{TP (b � l), TP (b)}

= min{TP (n), TP (b)}

= min{0.2, 0.5}

= 0.2,

QP (l) = 0.4 ≥ min{QP (b � l), QP (b)}

= min{QP (n), QP (b)}

= min{0.4, 0.6}

= 0.4,

EP (l) = 0.7 ≤ max{EP (b � l), EP (b)}

= max{EP (n), EP (b)}

= max{0.7, 0.4}

= 0.7,

DP (l) = 0.9 ≤ max{DP (b � l), DP (b)}

= max{DP (n), DP (b)}

= max{0.9, 0.5}

= 0.9,

FP (l) = 0.3 ≤ max{FP (b � l), FP (b)}

= max{FP (n), FP (b)}

= max{0.3, 0.9}

= 0.9.
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The remaining elements of Π can be verified similarly. Hence, P is a pentapartitioned neutro-

sophic UP-filter of Π.

Definition 3.8. A pentapartitioned neutrosophic set is called a pentapartitioned neutrosophic

UP-ideal of Π if the condition (P) of Proposition 3.2 and the following postulates are valid

(∀h, j, k ∈ Π) : 

TP (h � k) ≥ min {TP (h � (j � k)), TP (j)} ,
QP (h � k) ≥ min {QP (h � (j � k)), QP (j)} ,
EP (h � k) ≤ max {EP (h � (j � k)), EP (j)} ,
DP (h � k) ≤ max {DP (h � (j � k)), DP (j)} ,
FP (h � k) ≤ max{FP (h � (j � k)), FP (j)}


.

Example 3.9. Let Π = {0, v, b, n, l} be a UP-algebra with a binary operation “ � ” defined by

the following Cayley table:

Table 8. A UP-algebra Π = {0, v, b, n, l} of Example 3.9

� 0 v b n l

0 0 v b n l

v 0 0 b n l

b 0 0 0 0 l

n 0 0 b 0 l

l 0 0 0 0 0

Define a pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

in Π as follows:

P =



Π 0 v b n l

TP 0.8 0.5 0.4 0.5 0.4

QP 0.9 0.9 0.6 0.8 0.5

EP 0.1 0.3 0.4 0.3 0.5

DP 0.3 0.5 0.7 0.6 0.9

FP 0 0.2 0.7 0.4 0.9


,

Then, TP (0) ≥ TP (h), QP (0) ≥ QP (h), EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤ FP (h)

∀h ∈ Π. Also, for v, b, n ∈ Π we have

TP (v � n) = TP (n) = 0.5 ≥ min{TP (v � (b � n)), TP (b)}

= min{TP (0), TP (b)}

= min{0.8, 0.4}

= 0.4
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QP (v � n) = QP (n) = 0.8 ≥ min{QP (v � (b � n)), QP (b)}

= min{QP (0), QP (b)}

= min{0.9, 0.6}

= 0.6

EP (v � n) = EP (n) = 0.3 ≤ max{EP (v � (b � n)), EP (b)}

= max{EP (0), EP (b)}

= max{0.1, 0.4}

= 0.4

DP (v � n) = DP (n) = 0.6 ≤ max{DP (v � (b � n)), DP (b)}

≤ max{DP (0), DP (b)}

≤ max{0.3, 0.7}

≤ 0.7

FP (v � n) = FP (n) = 0.4 ≤ max{FP (v � (b � n)), FP (b)}

≤ max{FP (0), FP (b)}

≤ max{0, 0.7}

≤ 0.7

The remaining elements of Π can be verified similarly. Hence, P is a pentapartitioned neutro-

sophic UP-ideal of Π.

Definition 3.10. A pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

is called a pentapartitioned neutrosophic strong UP-ideal of Π if the condition (P) of Propo-

sition 3.2 and the following postulates are valid (∀h, j, k ∈ Π) :

TP (h) ≥ min {TP ((k � j) � (k � h)), TP (j)} ,
QP (h) ≥ min {QP ((k � j) � (k � h)), QP (j)} ,
EP (h) ≤ max {EP ((k � j) � (k � h)), EP (j)} ,
DP (h) ≤ max {DP ((k � j) � (k � h)), DP (j)} ,
FP (h) ≤ max{FP ((k � j) � (k � h)), FP (j)}


.

Example 3.11. Consider a UP-algebras Π which is given in Example 2.17. Define a penta-

partitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉
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in Π as follows:

P =



Π 0 v b n l

TP 0.4 0.4 0.4 0.4 0.4

QP 0.5 0.5 0.5 0.5 0.5

EP 0.3 0.3 0.3 0.3 0.3

DP 0.9 0.9 0.9 0.9 0.9

FP 0.7 0.7 0.7 0.7 0.7


.

Then, TP (0) ≥ TP (h), QP (0) ≥ QP (h), EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤ FP (h)

∀h ∈ Π. Also, for n, b, l ∈ Π we have

TP (n) = 0.4 ≥ min{TP ((l � b) � (l � n)), TP (b)}

= min{TP (0 � n), TP (b)}

= min{0.4, 0.4}

= 0.4,

QP (n) = 0.5 ≥ min{QP ((l � b) � (l � n)), QP (b)}

= min{QP (0 � n), QP (b)}

= min{0.5, 0.5}

= 0.5,

EP (n) = 0.3 ≤ max{EP ((l � b) � (l � n)), EP (b)}

= max{EP (0 � n), EP (b)}

= max{0.3, 0.3}

= 0.3,

DP (n) = 0.9 ≤ max{DP ((l � b) � (l � n)), DP (b)}

= max{DP (0 � n), DP (b)}

= max{0.9, 0.9}

= 0.9,

FP (n) = 0.7 ≤ max{FP ((l � b) � (l � n)), FP (b)}

= max{FP (0 � n), FP (b)}

= max{0.7, 0.7}

= 0.7

A. Al-Masarwah and H. Al-Zghoul, Ideals and Filters of UP-Algebras in the Frame of
Pentapartitioned Neutrosophic Structures

Neutrosophic Sets and Systems, Vol. 87, 2025                                                                                104



The remaining elements of Π can be verified similarly. Hence, P is a pentapartitioned neutro-

sophic strong UP-ideal of Π.

Definition 3.12. Let P = 〈TP , QP , EP , DP , FP 〉 be a pentapartitioned neutrosophic structure

of Π. Then, P is said to be a constant pentapartitioned neutrosophic structure in Π if TP (h) =

TP (0), QP (h) = QP (0), EP (h) = EP (0), DP (h) = DP (0) and FP (h) = FP (0) ∀h ∈ Π.

Theorem 3.13. A pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

in Π is constant if and only if it is a pentapartitioned neutrosophic strong UP-ideal of Π.

Proof. Assume that P is a constant pentapartitioned neutrosophic structure in Π. Then,

TP (h) = TP (0), QP (h) = QP (0), EP (h) = EP (0), DP (h) = DP (0) and FP (h) = FP (0) for all

h ∈ Π. This implies that, TP (0) ≥ TP (h), QP (0) ≥ QP (h), EP (0) ≤ EP (h), DP (0) ≤ DP (h)

and FP (0) ≤ FP (h). Also, for all h, j, k ∈ Π, we get

min {TP ((k � j) � (k � h)), TP (j)} = min {TP (0), TP (0)}

= TP (0)

= TP (h),

min {QP ((k � j) � (k � h)), QP (j)} = min {QP (0), QP (0)}

= QP (0)

= QP (h),

max {EP ((k � j) � (k � h)), EP (j)} = max {EP (0), EP (0)}

= EP (0)

= EP (h),

max {DP ((k � j) � (k � h)), DP (j)} = max {DP (0), DP (0)}

= DP (0)

= DP (h),

max {FP ((k � j) � (k � h)), FP (j)} = max {FP (0), FP (0)}

= FP (0)

= FP (h).

Hence, P is a pentapartitioned neutrosophic strong UP-ideal of Π.
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Conversely, assume that P is a pentapartitioned neutrosophic strong UP-ideal of Π. Then,

for all h, j, k ∈ Π, we have

TP (h) ≥ min {TP ((h � 0) � (h � h)), TP (0)}

= min {TP (h � h), TP (0)}

= min {TP (0), TP (0)}

= TP (0)

≥ TP (h),

QP (h) ≥ min {QP ((h � 0) � (h � h)), QP (0)}

= min {QP (0 � (h � h)), QP (0)}

= min {QP (h � h), QP (0)}

= min {QP (0), QP (0)}

= QP (0)

≥ QP (h),

EP (h) ≤ max {EP ((h � 0) � (h � h)), EP (0)}

= max {EP (0 � (h � h)), EP (0)}

= max {EP (h � h), EP (0)}

= max {EP (0), EP (0)}

= EP (0)

≤ EP (h),

DP (h) ≤ max {DP ((h � 0) � (h � h)), DP (0)}

= max {DP (0 � (h � h)), DP (0)}

= max {DP (h � h), DP (0)}

= max {DP (0), DP (0)}

= DP (0)

≤ DP (h),
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FP (h) ≤ max {FP ((h � 0) � (h � h)), FP (0)}

= max {FP (0 � (h � h)), FP (0)}

= max {FP (h � h), FP (0)}

= max {FP (0), FP (0)}

= FP (0)

≤ FP (h).

Thus, TP (0) = TP (h), QP (0) = QP (h), EP (0) = EP (h), DP (0) = DP (h), and FP (0) = FP (h)

(∀h ∈ Π). Hence, P is a constant.

4. Some Relations of Pentapartitioned Neutrosophic UP-Algebraic Substructures

This section discusses the relations between pentapartitioned neutrosophic UP-subalgebras

(resp., pentapartitioned neutrosophic near UP-filters, pentapartitioned neutrosophic UP-

filters, pentapartitioned neutrosophic UP-ideals and pentapartitioned neutrosophic strong UP-

ideals) in UP-algebras P.

Theorem 4.1. Every pentapartitioned neutrosophic near UP-filter of Π is a pentapartitioned

neutrosophic UP-subalgebra.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic near UP-filter of Π. Then, TP (0) ≥ TP (h), QP (0) ≥ QP (h),

EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤ FP (h). ∀h ∈ Π. Now, let h, j ∈ Π. Then,

TP (h � j) ≥ TP (j) ≥ min {TP (h), TP (j)} ,

QP (h � j) ≥ QP (j) ≥ min {QP (h), QP (j)} ,

EP (h � j) ≤ EP (j) ≤ max {EP (h), EP (j)} ,

DP (h � j) ≤ DP (j) ≤ max {DP (h), DP (j)} ,

FP (h � j) ≤ FP (j) ≤ max {FP (h), FP (j)} .

Hence, P is a pentapartitioned neutrosophic UP-subalgebra of Π.

The following example shows that the converse of Theorem 4.1 is not true.

Example 4.2. From Example 3.3, P is a pentapartitioned neutrosophic UP-subalgbra of Π.

Since

EP (v � b) = 0.4 � EP (b) = 0.1,
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P is not a pentapartitioned neutrosophic near UP-filter of Π.

Theorem 4.3. Every pentapartitioned neutrosophic UP-filter of Π is a pentapartitioned neu-

trosophic near UP-filter.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic UP-filter of Π. Then, TP (0) ≥ TP (h), QP (0) ≥ QP (h),

EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤ FP (h) ∀h ∈ Π. Now, let h, j ∈ Π. Then,

TP (h � j) ≥ min {TP (j � (h � j)), TP (j)}

= min {TP (0), TP (j)}

= TP (j),

QP (h � j) ≥ min {QP (j � (h � j)), QP (j)}

= min {QP (0), QP (j)}

= QP (j),

EP (h � j) ≤ max {EP (j � (h � j)), EP (j)}

= max {EP (0), EP (j)}

= EP (j),

DP (h � j) ≤ max {DP (j � (h � j)), DP (j)}

= max {DP (0), DP (j)}

= DP (j),

FP (h � j) ≤ max {FP (j � (h � j)), FP (j)}

= max {FP (0), FP (j)}

= FP (j)

Hence, P is a pentapartitioned neutrosophic near UP-filter of Π.

The following example shows that the converse of Theorem 4.3 is not true.

Example 4.4. From Example 3.5, P is a pentapartitioned neutrosophic near UP-filter of Π.

Since

TP (b) = 0.5 � 0.6 = min {TP (v � b), TP (v)},

P is not a pentapartitioned neutrosophic UP-filter of Π.
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Theorem 4.5. Every pentapartitioned neutrosophic UP-ideal of Π is a pentapartitioned

neutrosophic UP-filter.

Proof. Assume that P = 〈TP , QP , EP , DP , FP 〉 is a pentapartitioned neutrosophic UP-ideal of

Π. Then, TP (0) ≥ TP (h), QP (0) ≥ QP (h), EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤
FP (h). ∀h ∈ Π. Now, let h, j ∈ Π. Then,

TP (j) = TP (0 � j)

≥ min {TP (0 � (h � j)), TP (h)}

= min {TP (h � j), TP (h)} ,

QP (j) = QP (0 � j)

≥ min {QP (0 � (h � j)), QP (h)}

= min {QP (h � j), QP (h)} ,

EP (j) = EP (0 � j)

≤ max {EP (0 � (h � j)), EP (h)}

= max {EP (h � j), EP (h)} ,

DP (j) = DP (0 � j)

≤ max {DP (0 � (h � j)), DP (h)}

= max {DP (h � j), DP (h)} ,

FP (j) = FP (0 � j)

≤ max {FP (0 � (h � j)), FP (h)}

= max {FP (h � j), FP (h)} .

Hence, P is a pentapartitioned neutrosophic UP-filter of Π.

The following example shows that the converse of Theorem 4.5 is not true.

Example 4.6. From Example 3.7, we have P is a pentapartitioned neutrosophic UP-filter of

Π. Since

TP (n � l) = 0.2 � 0.5 = min {TP (n � (b � l)), TP (b)} ,

P is not a pentapartitioned neutrosophic UP-ideal of Π.

Theorem 4.7. Every pentapartitioned neutrosophic strong UP-ideal of Π is a pentapartitioned

neutrosophic UP-ideal.

Proof. Assume that
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P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic strong UP-ideal of Π. Then, TP (0) ≥ TP (h), QP (0) ≥
QP (h), EP (0) ≤ EP (h), DP (0) ≤ DP (h) and FP (0) ≤ FP (h) ∀h ∈ Π. Now, let h, j, k ∈ Π.

Then,

TP (h � k) = TP (j) ≥ min {TP (h � (j � k)), TP (j)} ,
QP (h � k) = QP (j) ≥ min {QP (h � (j � k)), QP (j)} ,
EP (h � k) = EP (j) ≤ max {EP (h � (j � k)), EP (j)} ,
DP (h � k) = DP (j) ≤ max {DP (h � (j � k)), DP (j)} ,
FP (h � k) = FP (j) ≤ max {FP (h � (j � k)), FP (j)} .

Hence, P is a pentapartitioned neutrosophic UP-ideal of Π.

The following example shows that the converse of Theorem 4.7 is not true.

Example 4.8. From Example 3.9, P is a pentapartitioned neutrosophic UP-ideal of Π. Since

FP (n) = 0.4 > 0 = max {FP ((b � 0) � (b � n)), FP (0)} ,

P is not a pentapartitioned neutrosophic strong UP-ideal of Π.

Remark 4.9. Using Theorems 4.1, 4.3, 4.5 and 4.7; and Examples 4.2, 4.4, 4.6 and 4.8 we

show the following:

• A pentapartitioned neutrosophic UP-subalgebra is an extension of a pentapartitioned

neutrosophic near UP-filter.

• A pentapartitioned neutrosophic near UP-filter is an extension of a pentapartitioned

neutrosophic UP-filter.

• A pentapartitioned neutrosophic UP-filter is an extension of a pentapartitioned neu-

trosophic UP-ideal.

• A pentapartitioned neutrosophic UP-ideal is an extension of pentapartitioned neutro-

sophic strong UP-ideals.

• Theorem 3.13 obtains that a pentapartitioned neutrosophic strong UP-ideal and a

constant pentapartitioned neutrosophic strucure are coincided.

Theorem 4.10. If

P = 〈TP , QP , EP , DP , FP 〉
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is a pentapartitioned neutrosophic UP-subalgebra of Π satisfying the following condition

(∀h, j ∈ Π) :

(h � j 6= 0)⇒



TP (h) ≥ TP (j),

QP (h) ≥ QP (j),

EP (h) ≤ EP (j),

DP (h) ≤ DP (j),

FP (h) ≤ FP (j)


,

then P is a pentapartitioned neutrosophic near UP-filter of Π.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic UP-subalgebra of Π satisfying the assumption. This implies

that P satisfies the conditions in Proposition 3.2. Now, let h, j ∈ Π. Then, we have the

following two cases:

Case (1). If (h � j = 0), then

TP (h � j) = TP (0) ≥ TP (j),

QP (h � j) = QP (0) ≥ QP (j),

EP (h � j) = EP (0) ≤ EP (j),

DP (h � j) = DP (0) ≤ DP (j),

FP (h � j) = DP (0) ≤ FP (j).

Case (2). If (h � j 6= 0), then

TP (h � j) ≥ min {TP (h), TP (j)} = TP (j),

QP (h � j) ≥ min {QP (h), QP (j)} = QP (j),

EP (h � j) ≤ max {EP (h), EP (j)} = EP (j),

DP (h � j) ≤ max {DP (h), DP (j)} = DP (j),

FP (h � j) ≤ max {FP (h), FP (j)} = FP (j).

Thus, P is a pentapartitioned neutrosophic near UP-filter of Π.

Theorem 4.11. If

P = 〈TP , QP , EP , DP , FP 〉
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is a pentapartitioned neutrosophic UP-filter of Π satisfying the following condition (∀h, j, k ∈
Π) : 

TP (j � (h � k)) = TP (h � (j � k))

QP (j � (h � k)) = QP (h � (j � k))

EP (j � (h � k)) = EP (h � (j � k))

DP (j � (h � k)) = DP (h � (j � k))

FP (j � (h � k)) = FP (h � (j � k))


,

then P is a pentapartitioned neutrosophic UP-ideal of Π.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic UP-filter of Π satisfying the assumption. Then, P satisfies

the conditions in Proposition 3.2. Now, let h, j, k ∈ Π. Then,

TP (h � k) ≥ min {TP (j � (h � k)), TP (j)}

= min {TP (h � (j � k)), TP (j)} ,

QP (h � k) ≥ min {QP (j � (h � k)), QP (j)}

= min {QP (h � (j � k)), QP (j)} ,

EP (h � k) ≤ max {EP (j � (h � k)), EP (j)}

= max {EP (h � (j � k)), EP (j)} ,

DP (h � k) ≤ max {DP (j � (h � k)), DP (j)}

= max {DP (h � (j � k)), DP (j)} ,

FP (h � k) ≤ max {FP (j � (h � k)), FP (j)}

= max {FP (h � (j � k)), FP (j)} ,

Therefore, P is a pentapartitioned neutrosophic UP-ideal of Π.

5. UP-Algebraic Substructures and Pentapartitioned Neutrosophic Structures

This section investigates some results on certain types of UP-algebraic substructures in view

of pentapartitioned neutrosophic structures.

Theorem 5.1. If

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic structure of Π satisfying the condition (S1), where
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(S1) (∀h, j, k ∈ Π)(k ≤ h � j)⇒



TP (k) ≥ min {TP (h), TP (j)} ,
QP (k) ≥ min {QP (h), QP (j)} ,
EP (k) ≤ max {EP (h), EP (j)} ,
DP (k) ≤ max {DP (h), DP (j)} ,
FP (k) ≤ max {FP (h), FP (j)}


,

then P is a pentapartitioned neutrosophic UP-subalgebra of Π.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic structure of Π satisfying the condition (S1). Let h, j ∈ Π.

Then, by (1) of Proposition 2.2, (h � j) � (h � j) = 0, that is h � j ≥ h � j. It follows from (S1)

that

TP (h � j) ≥ min {TP (h), TP (j)} ,
QP (h � j) ≥ min {QP (h), QP (j)} ,
EP (h � j) ≤ max {EP (h), EP (j)} ,
DP (h � j) ≤ max {DP (h), DP (j)} ,
FP (h � j) ≤ max {FP (h), FP (j)} .

Hence, P is a pentapartitioned neutrosophic UP-subalgebra of Π.

Theorem 5.2. If

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic structure of Π satisfying the condition (S2), where

(S2) (∀h, j, k ∈ Π)(k ≤ h � j)⇒



TP (j) ≥ min {TP (k), TP (h)} ,
QP (j) ≥ min {QP (k), QP (h)} ,
EP (j) ≤ max {EP (k), EP (h)} ,
DP (j) ≤ max {DP (k), DP (h)} ,
FP (j) ≤ max {FP (k), FP (h)}


,

then P is a pentapartitioned neutrosophic UP-filter of Π.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic structure of Π satisfying the condition (S2). Let h ∈ Π.

Then, by (3) of Definition 2.1, h � (h � 0) = 0, that is (h ≤ h � 0). It follows from (S2) that
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TP (0) ≥ min {TP (h), TP (h)} = TP (h),

QP (0) ≥ min {QP (h), QP (h)} = QP (h),

EP (0) ≤ max {EP (h), EP (h)} = EP (h),

DP (0) ≤ max {DP (h), DP (h)} = DP (h),

FP (0) ≤ max {FP (h), FP (h)} = FP (h).

Next, let h, j ∈ Π. Then, by (1) of Proposition 2.2, we have (h � j) � (h � j) = 0, that is

h � j ≥ h � j. This implies that

TP (j) ≥ min {TP (h � j), TP (h)} ,
QP (j) ≥ min {QP (h � j), QP (h)} ,
EP (j) ≤ max {EP (h � j), EP (h)} ,
DP (j) ≤ max {DP (h � j), DP (h)} ,
FP (j) ≤ max {FP (h � j), FP (h)} .

Thus, P is a pentapartitioned neutrosophic UP-filter of Π.

Theorem 5.3. If

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic structure of Π satisfying the condition (S3), where

(∀a, h, j, k ∈ Π)

(S3) (a ≤ h � (j � k))⇒



TP (h � k) ≥ min {TP (a), TP (j)} ,
QP (h � k) ≥ min {QP (a), QP (j)} ,
EP (h � k) ≤ max {EP (a), EP (j)} ,
DP (h � k) ≤ max {DP (a), DP (j)} ,
FP (h � k) ≤ max {FP (a), FP (j)}


,

then P is a pentapartitioned neutrosophic UP-ideal of Π.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic structure of Π satisfying the condition (S3). Let h ∈ Π.

Then, by (3) of Definition 2.1, h � (0 � (h � 0)) = 0, that is h ≤ 0 � (h � 0). It follows that

Tp(0) = TP (0 � 0) ≥ min {TP (h), TP (h)} = TP (h),

Qp(0) = QP (0 � 0) ≥ min {QP (h), QP (h)} = QP (h),

Ep(0) = EP (0 � 0) ≤ max {EP (h), EP (h)} = EP (h),

Dp(0) = DP (0 � 0) ≤ max {DP (h), DP (h)} = DP (h),

Fp(0) = FP (0 � 0) ≤ max {FP (h), FP (h)} = FP (h).
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Next, let h, j, k ∈ Π. Then, by (1) of Definition 2.2, we have (h � (j � k)) � (h � (j � k)) = 0,

that is h � (j � k) ≥ h � (j � k). It follows that

TP (h � k) ≥ min {TP (h � (j � k)), TP (j)} ,
QP (h � k) ≥ min {QP (h � (j � k)), QP (j)} ,
EP (h � k) ≤ max {EP (h � (j � k)), EP (j)} ,
DP (h � k) ≤ max {DP (h � (j � k)), DP (j)} ,
FP (h � k) ≤ max {FP (h � (j � k)), FP (j)} .

Hence, P is a pentapartitioned neutrosophic UP-ideal of Π.

Theorem 5.4. A pentapartitioned neutrosophic structure

P = 〈TP , QP , EP , DP , FP 〉

satisfies the condition (S4), where

(S4) (∀h, j, k ∈ Π)(k ≤ h � j)⇒



TP (k) ≥ TP (j),

QP (k) ≥ QP (j),

EP (k) ≤ EP (j),

DP (k) ≤ DP (j),

FP (k) ≤ FP (j)


if and only if P is a pentapartitioned neutrosophic strong UP-ideal of Π.

Proof. Assume that

P = 〈TP , QP , EP , DP , FP 〉

is a pentapartitioned neutrosophic structure of Π satisfying the condition (S4). Let h, j ∈ Π.

Then, By (3) of Definition 2.1 and (1) of Definition 2.2, (h � 0 = 0), that is (h ≤ 0 = j � j). It

follows from (S4) that

TP (h) ≥ TP (j),

QP (h) ≥ QP (j),

EP (h) ≤ EP (j),

DP (h) ≤ DP (j)

FP (h) ≤ FP (j).

Similarly,

TP (j) ≥ TP (h),

QP (j) ≥ QP (h),

EP (j) ≤ EP (h),

DP (j) ≤ DP (h)

FP (j) ≤ FP (h).
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Then,

TP (h) = TP (j),

QP (h) = QP (j),

EP (h) = EP (j),

DP (h) = DP (j),

FP (h) = FP (j).

Thus, P is constant. Hence, by Theorem 3.13, P is a pentapartitioned neutrosophic strong

UP-ideal of Π.

6. Conclusions

In this paper, we introduced the notions of pentapartitioned neutrosophic UP-subalgebras,

pentapartitioned neutrosophic near UP-filters, pentapartitioned neutrosophic UP-filters, pen-

tapartitioned neutrosophic UP-ideals and pentapartitioned neutrosophic strong UP-ideals in

UP-algebras and proved their generalizations. Furthermore, we discussed the relationship

between pentapartitioned neutrosophic UP-subalgebras (resp., pentapartitioned neutrosophic

near UP-filters, pentapartitioned neutrosophic UP-filters, pentapartitioned neutrosophic UP-

ideals and pentapartitioned neutrosophic strong UP-ideals) in UP-algebras. After that, the

conditions under which pentapartitioned neutrosophic UP-subalgebra can be pentapartitioned

neutrosophic near UP-filter, and the condition under which pentapartitioned neutrosophic UP-

filter can be pentapartitioned neutrosophic UP-ideal in UP-algebra were discovered. At last,

we presented and proved some characterizations theorems of pentapartitioned neutrosophic

structures in connection with UP-subalgebraic structures. In the future work, we will use the

idea and results in this paper to study other algebraic structures, for example, KU-algebras,

hoop algebras, MV-algebra and equality algebra.
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