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Abstract: The Randomized Block Design (RBD) is a fundamental experimental design widely 

utilized in agricultural and industrial research to control variation by grouping experimental units 

into homogeneous blocks. Moreover, real-world experiments are often subjected to various sources 

of uncertainty, including indeterminate, vague, imprecise, and erroneous data, which further 

complicate the analysis. To address these challenges, this paper introduces a novel neutrosophic 

analysis approach using Neutrosophic Logic for handling missing values in RBD under an uncertain 

environment. To further illustrate the practical application and effectiveness of the Neutrosophic 

Randomized Block Design (NRBD), an illustrative example from the medical field is presented. 

Further, simulation study is conducted to evaluate the performance of various parameters across 

different sample sizes. The analysis demonstrates the efficacy of Neutrosophic Randomized Block 

Design in preserving the statistical properties of the dataset and ensures more accurate and reliable 

experimental conclusions. 

Keywords: Randomized Block Design, Neutrosophic Logic, Missing Value, Analysis of Variance, 

Neutrosophic Randomized Block Design. 

 

1. Introduction 

Randomized Block Design (RBD) is a fundamental technique to control variability and increase the 

precision of the outcomes of an experiment. It controls variability among experimental units by 

grouping them into homogeneous blocks. In many experiments, missing observations frequently 

occur, particularly when dealing with biological or breeding varieties. For example, consider a long-

term study where different plant genotypes are evaluated for their resistance to fungal infections. 

The experiment might use a blocking design to account for variations in soil composition across the 

field. During the study, some plants might be lost due to disease, pest damage, or environmental 

stress, leading to missing data. Such gaps can substantially impact the accuracy and reliability of the 

experimental findings. In the field of biology, consider an experiment designed to study the growth 

rates of various bacterial strains under different temperature conditions. The experimental setup 

includes several blocks, each representing a specific temperature range. Due to unforeseen 

contamination or equipment failure, some bacterial cultures might not grow as expected, resulting in 

missing observations. This missing data can hinder the ability to draw accurate conclusions about the 

optimal growth conditions for each strain. In another example, a wildlife biologist might conduct a 

study to assess the impact of different feeding regimens on the reproductive success of a bird species. 

The study uses a blocking design to account for variations in habitat quality across different study 

sites. During the breeding season, some nests might be abandoned or predated, leading to missing 

data on reproductive success. This missing information can affect the validity of the study's 

conclusions. Missing data can lead to biased estimates and reduced statistical power thereby 

compromising the validity of the experimental conclusions. Addressing the issue of missing values 

is thus crucial for maintaining the integrity of the experimental analysis.  
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The issue of missing values has been extensively studied in various experimental designs[1]. Cornish 

[2]methods for estimating missing values in Incomplete Block Designs (IBD), while Baird [3] focused 

on handling multiple missing values in Balanced IBDs. Beyond these estimation techniques, 

researchers have also proposed an exact approach to address missing values through the general 

regression significance test, a method primarily applied in the analysis of covariance. More recently, 

Sirikasemsuk et al. [4] investigated an exact approach for calculating the adjusted regression sum of 

squares in a Randomized Complete Block Design (RCBD) with missing observations. Despite these 

advancements, the issue of missing values remains underexplored in the Augmented Randomized 

Complete Block Design (ARCBD). Two key challenges arise in this context. First, estimating missing 

values becomes increasingly uncertain when the dataset contains inherent ambiguities and 

indeterminate information. Second, approximate methods for handling missing values may lack 

efficiency and reliability, leading to potential biases in statistical inference. The classic statistical 

approach does not account for uncertainty and indeterminacy, limiting its ability to accurately 

analyze genotype data. Similarly, conventional approximation methods may not always provide 

unbiased and precise results.  

Traditional methods for handling missing values including mean substitution, listwise deletion and 

regression imputation often come with significant limitations. While various classes of augmented 

designs have been extensively studied using classical statistical methods, there remains a notable gap 

in their application within uncertain environments. Addressing this gap requires novel analytical 

frameworks that integrate uncertainty measures, ensuring more robust and reliable conclusions in 

experimental research. Uncertainty arises from incomplete knowledge about the data, while 

indeterminacy stems from conflicting or ambiguous information. Conventional statistical methods 

often struggle to address these aspects effectively which leads to less reliable results. Numerous 

researchers have utilized Fuzzy Sets (FSs)[5] and Intuitionistic Fuzzy Sets (IFSs) [6] in their studies to 

effectively address the uncertainty and ambiguity present in the data. Ali et al.[7] proposed a Fuzzy 

K-Top Matching Value (FKTM) method for imputing missing numerical and categorical data using 

fuzzy clustering and expectation-maximization, outperforming traditional methods like MICE in 

terms of accuracy, RMSE, and execution time. Malik et al.[8] proposed a new weighted correlation 

coefficient measure for IFSs, ranging between [-1, 1] in which the weights were assigned using the 

cosine entropy measure. Kumaran et al. [9]proposed a hybrid fuzzy clustering mean and majority 

vote method for imputing missing values in microarray gene expression data, demonstrating 

improved accuracy and reduced RMSE compared to traditional methods across multiple benchmark 

datasets. Khan et al. [10] proposed a missing value imputation method based on Fuzzy C-Means 

clustering to enhance classification accuracy by utilizing only the known feature values from a subset 

of selected instances. Although fuzzy sets and intuitionistic fuzzy sets extend classical set theory, 

neutrosophic sets offer an advancement by introducing a third parameter i.e. indeterminacy. This 

parameter evaluates the level of uncertainty or incompleteness in a statement, enhancing the 

representation of uncertainty by incorporating not just membership and non-membership degrees 

but also indeterminacy.  The neutrosophic set (NS), first proposed by Smarandache [11] extends the 

concept of an intuitionistic fuzzy set (IFS) from a philosophical perspective. The benefits of 

neutrosophic logic compared to fuzzy logic and interval-based analysis were demonstrated by 

Smarandache and Khalid [12]. Some additional information on neutrosophic statistics, including 

relevant articles and books, are discussed [[13][14],[15],[16]]. Aslam [17] outlined the distinctions 

between fuzzy statistics, neutrosophic statistics and classical statistics. Aslam[18] discussed the 

neutrosophic ANOVA method, while AlAita and Aslam [19] emphasized the use of neutrosophic 

analysis of covariance in neutrosophic completely randomized designs, neutrosophic randomized 

complete block designs, and neutrosophic split-plot designs. Aslam and Albassam[20]  proposed 

post hoc multiple comparison tests within the framework of neutrosophic statistics. Additionally, 

Salama et al. [21] explored neutrosophic correlation and simple linear regression. Thakur et al. [22] 

defined the method of testing of normality under uncertainty. In recent years, a substantial number 

of studies on neutrosophic statistics have been discussed [[23],[24],[25],[26],[27],[28],[29],[30]]. After 
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the thorough literature review, there appears to be a notable gap in the existing body of work 

concerning the estimation and analysis of missing values of Randomized Block Designs (RBD) under 

uncertainty.  

1.1 Contribution 

In this study, we address the issue of missing values in Randomized Block Design (RBD), 

highlighting key challenges such as indeterminacy, ambiguity in the number of treatments, 

estimation errors, and imprecision in statistical tests like the F-test. Conventional and fuzzy-based 

methods often struggle to effectively manage these uncertainties, motivating the use of a 

Neutrosophic Statistical (NS) framework. By incorporating neutrosophic logic, we propose a novel 

approach to estimate missing values in RBD which proposes deeper insight into uncertainty and 

enhancing reliability in analysis. This work marks the first integration of neutrosophic theory into 

RBD, leading to the formulation of the Neutrosophic Randomized Block Design (NRBD). Within this 

environment, we derive neutrosophic estimations, adjusted sums of squares, and construct an 

ANOVA table suitable for interpretation under uncertainty. The proposed method is demonstrated 

using a neutrosophic blood pressure dataset and further validated through simulation studies. 

Overall, this approach addresses a significant computational and methodological gap in the analysis 

of RBD with missing data under uncertain conditions. 

Remaining paper are arranged in this manner. Section 2, consider some basic definitions of 

neutrosophic normal distribution (NND) and neutrosophic randomized block design (NRBD). In 

Section 3, we introduce a method for estimating missing values in neutrosophic observations within 

a randomized block design (NRBD). This section also includes the ANOVA table specifically 

developed for NRBD, along with a flowchart outlining the steps involved in the analysis. Section 4 

presents an illustration to validate the applicability of the proposed method in the field of medical 

sciences, demonstrating its practical relevance. In Section 5, a simulation study is conducted to 

evaluate the performance and robustness of the method under various scenarios. Finally, the study 

concludes with a summary of findings and insights drawn from the analysis. 

 

2. Preliminaries 

2.1. Neutrosophic Normal Distribution (NND) [22] 

Let 𝑦𝑁 = 𝑦𝑙 + 𝑦𝑢𝑖𝑁 are the neutrosophic numbers where the 𝑖𝑁 ∈ [𝑖𝑙 , 𝑖𝑢] is an indeterminacy interval, 

follows that neutrosophic normal distribution (NND) with the neutrosophic mean 𝜇𝑁 = 𝜇𝑙 +

𝜇𝑢𝑖𝑁 ; 𝑖𝑁 ∈ [𝑖𝑙 , 𝑖𝑢] and neutrosophic variance 𝜎𝑁
2 = 𝜎𝑙

2 + 𝜎𝑢
2𝑖𝑁  ; 𝑖𝑁 ∈ [𝑖𝑙 , 𝑖𝑢]. Then the probability 

density function of the NND is given by  

𝑓𝑁(𝑦𝑁) =
1

𝜎𝑁√2𝜋
𝑒𝑥𝑝 {−

(𝑦𝑁 − 𝜇𝑁)2

2𝜎𝑁
2 } ; 𝜇𝑁 ∈ [𝜇𝑙 , 𝜇𝑢] , 𝜎𝑁

2 ∈ [𝜎𝑙
2, 𝜎𝑢

2], 𝑖𝑁 ∈ [𝑖𝑙 , 𝑖𝑢] 

It is the generalized version of normal distribution. NND will reduce to the classical normal 

distribution if the 𝒊𝒍 = 𝟎 

3. Neutrosophic Randomized Block Design (NRBD) 

The statistical model of the Neutrosophic Randomized Block Design with "𝑣" number of treatments 

and "𝑟" number of replications is given below:  

𝑦𝑁𝑖𝑗 = 𝜇𝑁 + 𝑡𝑁𝑖 + 𝑏𝑁𝑗 + 𝜀𝑁𝑖𝑗,  𝑖 = 1,2, … , 𝑣  𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑟         (1) 

The neutrosophic form of response variable can be represented as 𝑦𝑁𝑖𝑗 = 𝑦𝑙𝑖𝑗 + 𝑦𝑢𝑖𝑗𝑖𝑁  ;  𝑖𝑁 ∈ [𝑖𝑙 , 𝑖𝑢] . 

𝑦𝑁𝑖𝑗 is the neutrosophic response variable or the neutrosophic experimental unit receiving the 𝑖𝑡ℎ 

treatment in 𝑗𝑡ℎ block 𝜇𝑁 is the neutrosophic general mean effect, 𝑡𝑁𝑖 is the neutrosophic effect of 

𝑖𝑡ℎ  treatment, 𝑏𝑁𝑗 is the neutrosophic effect of 𝑗𝑡ℎ block and 𝜀𝑁𝑖𝑗 is the random error term with 

neutrosophic zero mean and variance 𝜎𝑁
2 . 

3.1 Estimation of Neutrosophic Missing Value 
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Let us consider that in the given observations, one neutrosophic observation 𝑦𝑁𝑖𝑗 = 𝑥𝑁  in the 𝑗𝑡ℎ 

block and receiving the 𝑖𝑡ℎ  treatment is missing.  

Blocks 

↓ 

Treatments  
Totals 

1 2 …. i … v 

1 𝑦𝑁11 𝑦𝑁21 …. 𝑦𝑁𝑖1 …. 𝑦𝑁𝑣1 𝑆𝑁.1′ 

2 𝑦𝑁12 𝑦𝑁22 …. 𝑦𝑁𝑖2 …. 𝑦𝑁𝑣2 𝑆𝑁.2′ 

.        

j 𝑦𝑁1𝑗 𝑦𝑁2𝑗 …. 𝒚𝑵𝒊𝒋 = 𝒙𝑵 …. 𝑦𝑁𝑣𝑗 𝑆𝑁.𝑗
′ + 𝑥𝑁 

.        

r 𝑦𝑁1𝑟 𝑦𝑁2𝑟 …. 𝑦𝑁𝑖𝑟 …. 𝑦𝑁𝑣𝑟 𝑆𝑁.𝑟′ 

Totals 𝑆𝑁1.′ 𝑆𝑁2.′ …. 𝑆𝑁𝑖 .
′+ 𝑥𝑁 …. 𝑆𝑁𝑣.′ 𝑆𝑁. . +𝑥𝑁 

Table 1: Missing Observation in Neutrosophic RBD. 

Here 

• 𝑆𝑁𝑖.′  is the sum of the neutrosophic observations for the treatments without missing value. 

• 𝑆𝑁.𝑗′  is the sum of the neutrosophic observations in the blocks without missing value  

• 𝑆𝑁𝑖.  is the sum of (r-1) known neutrosophic observations for the 𝑖𝑡ℎ   treatments with 

missing value. 

• 𝑆𝑁.𝑗   is the sum of (v-1) known neutrosophic observations in the 𝑗𝑡ℎ block with the missing 

value. 

• 𝑆𝑁..  is the sum of (vr-1) known neutrosophic observations. 

Now, we will split the model given in equation (1) into two parts. First equation corresponding to 

known neutrosophic observations and another equation corresponding to missing observations as 

given below: 

𝑦𝑁𝑖′𝑗′ = 𝜇𝑁 + 𝑡𝑁𝑖′ + 𝑏𝑁𝑗′ + 𝜀𝑁𝑖′𝑗′                                                                 (2)  

𝑥𝑁 = 𝜇𝑁 + 𝑡𝑁𝑖 + 𝑏𝑁𝑗 + 𝜀𝑁𝑖𝑗                                                               (3) 

For the model NRBD,  

𝑆𝑆𝑁𝑇 = ∑ ∑ 𝑦𝑖′𝑗′
2

𝑗′≠𝑗 + 𝑥𝑁
2

𝑖′≠𝑖 −
(𝑆𝑁..+𝑥𝑁)2

𝑣𝑟
                           (4) 

𝑆𝑆𝑁𝑇𝑟 =
1

𝑟
∑ 𝑆𝑖.′

2
𝑖′≠𝑖 +

(𝑆𝑁𝑖.+𝑥𝑁)2

𝑟
−

(𝑆𝑁..+𝑥𝑁)2

𝑣𝑟
                                (5) 

𝑆𝑆𝑁𝐵𝑙 =
1

𝑣
∑ 𝑆.𝑗′

2
𝑗′≠𝑗 +

(𝑆𝑁.𝑗+𝑥𝑁)
2

𝑣
−

(𝑆𝑁..+𝑥𝑁)2

𝑣𝑟
                                (6) 

𝑆𝑆𝑁𝐸𝑟 = ∑ ∑ 𝑦𝑖′𝑗′
2

𝑗′≠𝑗 + 𝑥𝑁
2

𝑖′≠𝑖 −
(𝑆𝑁..+𝑥𝑁)2

𝑣𝑟
−

1

𝑟
∑ 𝑆𝑖′

2
𝑖′≠𝑖 −

(𝑆𝑁𝑖.+𝑥𝑁)2

𝑟
+

(𝑆𝑁..+𝑥𝑁)2

𝑣𝑟
−

1

𝑣
∑ 𝑆𝑖′

2
𝑗′≠𝑗 −

(𝑆𝑁.𝑗+𝑥𝑁)
2

𝑣
+

(𝑆𝑁..+𝑥𝑁)2

𝑣𝑟
                                                              (7) 

By using the principle of least square method we estimate the value of 𝑥𝑁 by minimising the sum of 

square due to error, we have  
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𝑑𝑆𝑆𝑁𝐸𝑟

𝑑𝑥
= 0 = 2𝑥𝑁 +

2(𝑆𝑁.. + 𝑥𝑁)

𝑣𝑟
−

2(𝑆𝑁.𝑗 + 𝑥𝑁)

𝑣
−

2(𝑆𝑁𝑖. + 𝑥𝑁)

𝑟
 

𝑥𝑁 ( 1 +
1

𝑣𝑟
−

1

𝑣
−

1

𝑟
) −

𝑆𝑁𝑖.

𝑟
−

𝑆𝑁.𝑗

𝑣
+

𝑆𝑁..

𝑣𝑟
= 0 

𝑥�̂� =
𝑣𝑆𝑁𝑖.+𝑟𝑆𝑁.𝑗−𝑆𝑁..

(𝑣−1)(𝑟−1)
                  (8) 

3.2 Analysis of Neutrosophic RBD After Estimation of Missing Value 

After estimating the missing Neutrosophic observation in NRBD, we have  

𝑆𝑆𝑁𝐸𝑟 = ∑ ∑ 𝑦𝑖′𝑗′
2

𝑗′≠𝑗 + 𝑥𝑁
2̂

𝑖′≠𝑖 −
(𝑆𝑁..+𝑥�̂�)2

𝑣𝑟
−

1

𝑟
∑ 𝑆𝑖′

2
𝑖′≠𝑖 −

(𝑆𝑁𝑖.+𝑥�̂�)2

𝑟
+

(𝑆𝑁..+𝑥�̂�)2

𝑣𝑟
−

1

𝑣
∑ 𝑆𝑖′

2
𝑗′≠𝑗 −

(𝑆𝑁.𝑗+𝑥�̂�)
2

𝑣
+

(𝑆𝑁..+𝑥�̂�)2

𝑣𝑟
                                                                             (9) 

Under the null hypothesis of treatments i.e. 𝐻𝑜𝑁: 𝑡𝑁𝑖 = 0  ∀ 𝑖  , the influence of Neutrosophic 

treatments disappears and contributes to the overall error term. 

The model given in equation (2) and (3) reduces to  

𝑦𝑁𝑖′𝑗′ = 𝜇𝑁 + 𝑏𝑁𝑗′ + 𝜀𝑁𝑖′𝑗′
∗  

                                     𝑥𝑁
′ = 𝜇𝑁 + 𝑏𝑁𝑗 + 𝜀𝑁𝑖𝑗

∗                                    (10) 

The least square estimates of the reduced models are  

𝜇�̂� = 𝑦𝑁. .̅̅ ̅̅ ̅ =
(𝑆𝑁..+𝑥𝑁

′̂ )

𝑣𝑟
             (11) 

𝑏𝑁�̂� =
(𝑆𝑁.𝑗+𝑥𝑁

′̂ )

𝑣
−

(𝑆𝑁..+𝑥𝑁
′̂ )

𝑣𝑟
        (12) 

Since there is one missing observation then we may take 𝜀𝑁𝑖𝑗
∗ = 0 . By using estimates of 𝜇𝑁 𝑎𝑛𝑑 𝑏𝑁𝑗 

in (10), we have  

𝑥𝑁
′̂ =

(𝑆𝑁.. + 𝑥𝑁
′̂ )

𝑣𝑟
+

(𝑆𝑁.𝑗 + 𝑥𝑁
′̂ )

𝑣
−

(𝑆𝑁.. + 𝑥𝑁
′̂ )

𝑣𝑟
 

𝑥𝑁
′̂ =

𝑆𝑁.𝑗

𝑣−1
         (13) 

The Neutrosophic Sum of Square due to Error (NSSE) under 𝐻0 is given by: 

𝑆𝑆𝑁𝐸𝑟𝐻𝑜
= [∑ ∑ 𝑦𝑖′𝑗′

2

𝑗′≠𝑗

+ 𝑥𝑁
′̂ 2

𝑖′≠𝑖

−
(𝑆𝑁.. + 𝑥𝑁

′̂ )
2

𝑣𝑟
] − [

1

𝑣
∑ 𝑆𝑖′

2

𝑗′≠𝑗

+
(𝑆𝑁.𝑗 + 𝑥𝑁

′̂ )
2

𝑣
−

(𝑆𝑁.. + 𝑥𝑁
′̂ )

2

𝑣𝑟
] 

The Neutrosophic Adjusted Treatment Sum of Square (NATSS) is given by: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝑁𝑇𝑟 = ∑ ∑ 𝑦𝑖′𝑗′
2

𝑗′≠𝑗 + 𝑥𝑁
2

𝑖′≠𝑖 −
(𝑆𝑁..+𝑥𝑁)2

𝑣𝑟
−

(𝑣𝑆𝑁𝑖.+𝑟𝑆𝑁.𝑗−𝑆𝑁..)
2

𝑣(𝑣−1)(𝑟−1)2          

Null and alternative hypothesis  

For Treatments:  

𝐻𝑁𝑜: 𝜇1. = 𝜇2. = ⋯ =  𝜇𝑣.  

𝐻𝑁𝑎: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝜇𝑖 .
′ 𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡.   

For Blocks:  

𝐻𝑁𝑜: 𝜇.1 = 𝜇.2 = ⋯ =  𝜇.𝑟  
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𝐻𝑁𝑎: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝜇.𝑗
′ 𝑠 𝑎𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡.   

 

Here, we define an ANOVA table in randomized block design for the neutrosophic observations after 

estimation of the missing value. 

 

Source of 

Variation 

Degree of 

Freedom  

Neutrosophic Sum of 

Squares  

Neutrosophic Mean Square Neutrosophic 

F value 

Treatments 

(Adjusted) 

v-1 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝑁𝑇𝑟 
𝑀𝑆𝑁𝑇𝑟 =

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑆𝑆𝑁𝑇𝑟

v − 1
 𝐹𝑁𝑇𝑟 =

𝑀𝑆𝑁𝑇𝑟

𝑀𝑆𝑁𝐸𝑟
 

Blocks r-1 𝑆𝑆𝑁𝐵𝑙 
𝑀𝑆𝑁𝐵𝑙 =

𝑆𝑆𝑁𝐵𝑙

r − 1
 𝐹𝑁𝐵𝑙 =

𝑀𝑆𝑁𝐵𝑙

𝑀𝑆𝑁𝐸𝑟
 

Error (v-1)(r-1)-1 𝑆𝑆𝑁𝐸𝑟 =By Subtraction 
𝑀𝑆𝑁𝐸𝑟 =

𝑆𝑆𝑁𝐸𝑟

(𝑣 − 1)(𝑟 − 1) − 1
 

 

Total vr-2 𝑆𝑆𝑁𝑇   

Table 2: NANOVA table for RBD after Estimating Missing Value 

3.3. Flow Chart for Analysis of Neutrosophic RBD:  

 

Fig 1: Analysis Procedure for the Neutrosophic RBD 
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4. Illustration 

Consider a pharmaceutical company conducting a clinical trial to evaluate the efficacy of different 

drug formulations for treating a specific medical condition, such as hypertension. The company aims 

to employ a randomized block design (RBD) to control the patient variability and to ensure accurate 

assessment of treatment effects. The trial collects data on blood pressure reduction (response variable) 

as the primary outcome measure in neutrosophic form due to inaccuracy in the measurement of 

blood pressure. Patients are randomly assigned one of five different drug formulations (treatments) 

and monitored over a specified period. In case where patients miss scheduled visits or withdraw 

from the study prematurely is the reasons for missing data. There is one patient having ID 8 

corresponding to which the data is missing (Appendix A, Table 5). The objective of the analysis is to 

estimate the missing observation and to assess the effectiveness of the different drug formulations in 

reducing blood pressure while considering the patient variability across medical centres. From the 

Table 5, 𝑣 = 5 , 𝑟 = 4 , 𝑆𝑁𝑖. = (53, 55) , 𝑆𝑁.𝑗 = (30, 40)  , 𝑆𝑁.. = (244, 292) 

Using equation (8), The estimate of missing value corresponding to the patient ID 8 is   𝑥�̂� =

(9.83, 10.67). The Neutrosophic ANOVA table, which include Neutrosophic sums of squares (NSSN) 

and the observed F-test statistics (FN) with corresponding p-values (𝑝𝑁), are calculated using both 

the proposed Neutrosophic RBD method for handling and analysis of missing values in RBD. The 

table is given below 

The Neutrosophic ANOVA table is   

    

Source of 

Variation 

Degree of 

Freedom 

Neutrosophic Sum 

of Squares 

Neutrosophic 

Mean Square 

Neutrosophic 

F value 

P value 

Treatments 

(Adjusted) 
4 (64.62, 65.41) (16.16, 16.35) (4.45, 35.36) 

(0.0352, 

0.5391) 

Blocks 3 (1.04, 43.85) (0.35, 14.62) (0.76, 3.98) (0, 0.0196) 

Error 12 (5.48, 44.13) (0.46, 3.68)   

Total 19 (71.15, 153.39)    

Table 3: Neutrosophic ANOVA Table for RBD 

From Table 3, the value of significance level lies within the range of Neutrosophic p-value of the 

treatments. So, there is 
0.05−0.0352

0.5391−0.0352
= 0.0293  chance of rejecting the null hypothesis and conclude 

that there are 2.93% chance that the blood pressure reduction in patients using different drug is not 

same. The maximum value of Neutrosophic p value for the blocks is less than the significance level 

so we reject the null hypothesis and conclude that the blood pressure reduction of the patients at 

different medical centres is not same.  

5. Simulation Study in Randomized Block Design with Neutrosophic Data:  

A comprehensive simulation study is conducted to assess the performance of the estimated 

parameter of Neutrosophic Randomized Block Design (NRBD). The dataset is generated from 

neutrosophic normal distribution. The data generation function creates a matrix of these observations 

for various sample sizes. For each generated dataset, the Neutrosophic grand mean, Neutrosophic 
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treatment effects and Neutrosophic block effects are estimated. The performance of these estimates 

is assessed in terms of Mean Squared Error (MSE). The simulation is repeated 1000 times for each 

sample size and the results are given in table 4. 

Sample Size Grand Mean MSE Treatments effect MSE Block Effect MSE 

16 (0.004996,0.019982) (0.074744,0.298975) (0.072379,0.289516) 

20 (0.003286,0.013143) (0.059720,0.238880) (0.059590,0.238361) 

30 (0.001359,0.005437) (0.040962,0.163848) (0.040182,0.160729) 

36 (0.000931,0.003723) (0.034127,0.136509) (0.033745,0.134978) 

42 (0.000711,0.002844) (0.028917,0.115667) (0.029164,0.116657) 

48 (0.000548,0.002193) (0.025404,0.101616) (0.025626,0.102502) 

72 (0.000246,0.000984) (0.017169,0.068676) (0.017124,0.068496) 

100 (0.000124,0.000497) (0.012432,0.049728) (0.012385,0.049539) 

Table 4: Performance of Neutrosophic MSE of Estimates at Different Sample Sizes 

 

Fig 2: Effect of Sample Size on the Grand Mean MSE 

 

Fig 3: Effect of Sample Size on the Treatment Effect MSE 



Neutrosophic Sets and Systems, Vol. 87, 2025 157  

 

 

Masum Raj, S. C. Malik and Rahul Thakur, Missing Value Estimation and Analysis in Neutrosophic RBD 

 

 

Fig 4: Effect of Sample Size on the Block Effect MSE 

From Table 4, Fig 2, Fig 3 and Fig 4, it is evident that as the sample size increases, the MSE of Grand 

Mean, Treatment effect and Block effect decreases. It reveals that the larger the sample size in RBD 

tends to yield the more precise estimates in neutrosophic statistical analysis. From the above study 

we also conclude that the sample size improves the accuracy and reliability of the neutrosophic 

estimates in neutrosophic experimental designs. 

6. Discussion 

The findings from both the case study and the simulation study underscore the value of applying a 

neutrosophic framework to RBDs with missing values. The real-world medical illustration 

demonstrated that incorporating neutrosophic logic allows for a more nuanced understanding of 

variability across treatments and blocks, especially when dealing with incomplete or imprecise data. 

Notably, the neutrosophic p-value intervals provide a range that reflects the indeterminacy and 

uncertainty inherent in medical trials, rather than a binary decision from classical methods. For 

instance, the adjusted F-test values for treatments ranged widely, indicating possible sensitivity to 

uncertainty. This suggests that NRBD can be a more cautious and informative method for 

experimental conclusions. From the simulation results, we observed that larger sample sizes 

considerably reduce the mean squared error (MSE) of the estimated neutrosophic parameters, 

indicating improved estimation stability and precision. This implies that NRBD methods become 

more powerful with larger datasets, affirming their applicability in big-data experimental setups such 

as agricultural field trials or clinical trials. However, the study is not without limitations. The 

approach assumes the availability of bounds for neutrosophic observations, which may not always 

be feasible. Furthermore, the estimation formula used in this study handles only one missing 

observation; generalizing this method to multiple missing values is a crucial direction for future 

research. 

7. Conclusion 

In this study, we proposed the method of estimation of missing value and its analysis in Randomized 

Block Design (RBD) by introducing a Neutrosophic approach. The expressions for calculating 

Neutrosophic sum of squares, Neutrosophic Mean squares and Neutrosophic F values are also 
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provided. An illustration of this approach through a medical case study involving a clinical trial to 

evaluate drug formulations for hypertension. The results indicated that there is a 2.93% chance of 

rejecting the null hypothesis regarding the uniformity of blood pressure reduction across different 

drug formulations and a significant difference in blood pressure reduction across medical centers. 

Additionally, simulations conducted to assess the performance of Neutrosophic RBD showed that 

increasing the sample size leads to more precise estimates for Neutrosophic grand means, treatment 

effects, and block effects as decrease in Mean Squared Error (MSE). This highlights that larger sample 

sizes improve the accuracy and reliability of neutrosophic estimates in experimental designs. The 

Neutrosophic RBD approach proves an effective method for handling missing data and managing 

indeterminacy which offers valuable improvements in the analysis of neutrosophic datasets. In 

future, this work could be extended on other experimental designs.   
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Appendix A:  

Patient ID Medical Center (Block) Treatment Blood Pressure Reduction (mmHg) 

1 1 1 (15,17) 

2 1 2 (12,15) 

3 1 3 10 

4 1 4 (13,15) 

5 1 5 (14,15) 

6 2 1 16 

7 2 2 11 

8 2 3 - 

9 2 4 (12,14) 

10 2 5 14 

11 3 1 (14,18) 

12 3 2 (12,18) 

13 3 3 (11,16) 

14 3 4 13 

15 3 5 (15,20) 

16 4 1 (15,19) 

17 4 2 (12,18) 

18 4 3 (9,14) 

19 4 4 12 

20 4 5 (14,17) 

Table 5: Data for Patients for Neutrosophic RBD 
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