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ABSTRACT  

Breast cancer is still among the deadliest diseases globally, and its detection in an early stage still 

represents a big challenge in medical diagnostics. This research suggests a complete machine 

learning framework to predict the probability of benign and malignant breast cancer cases with 

improved accuracy and interpretability. The work uses an established dataset, and for 

comparative analysis and for insights into the data distribution, statistical analysis is also 

incorporated. Four top machine learning algorithms are trained and evaluated with a series of 

performance measures such as accuracy, positive predictive value (PPV), negative predictive 
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value (NPV), F1-score, etc. In order to compensate for inherent uncertainties and imprecise in 

clinical data, the paper proposes a neutrosophic logic with neutrosophic numbers for improved 

decision-making. The results show the efficacy of using machine learning with neutrosophic 

theory to enhance diagnostic accuracy and facilitate early intervention measures in the treatment 

of breast cancer.  

Keywords:  

Breast Cancer Diagnosis; Machine Learning; Neutrosophic Environment; Neutrosophic 

Numbers; Predictive Analytics; Medical Decision-Making.  

1.0 Introduction:  

Breast cancer is one of the most prevalent and life-threatening forms of cancer affecting women 

worldwide. According to the World Health Organization (WHO), it accounts for a significant 

percentage of cancer-related deaths, primarily due to delayed detection and diagnosis. Early and 

accurate identification of malignant and benign breast tumors plays a critical role in improving 

survival rates and treatment outcomes. However, traditional diagnostic techniques often struggle 

with issues of uncertainty, imprecision, and subjectivity, especially in the interpretation of 

complex clinical data. The main cause of death amongst women is Breast cancer, which 

significantly affects their lives. [1]. The cancer burden has been provided in past research. In 

2020, an estimated 10 million deaths were attributed to cancer globally, alongside 19.3 million 

newly diagnosed cases [2, 3]. It often begins when normal cellular DNA or RNA undergoes 

mutations changes that may occur spontaneously due to biological entropy or be triggered by 

external factors [3]. These factors include, but are not limited to, airborne pollutants, pathogenic 

microorganisms (such as bacteria, viruses, fungi, and parasites), exposure to electromagnetic 

radiation (e.g., X-rays, microwaves), nuclear radiation, mechanical damage at the cellular level, 

evolutionary genetic shifts, and the natural aging of genetic material [3].  

Early detection and timely diagnosis strengthened by growing public awareness remain critical 

in improving outcomes, reducing mortality, and mitigating the overall burden of breast cancer 

[4]. The latest developments in machine learning (ML) have shown significant promise in 

augmenting diagnostic procedures through facilitating data-driven, automated, and precise 

decision-making. Such algorithms can identify hidden patterns and correlations in massive 

datasets, making them ideal for medical diagnostics. While being highly effective, most 

traditional ML models predict crisp data and deterministic worlds, which is often unrealistic in 

healthcare environments involving uncertainty.  

In order to avoid this problem, the current study develops some unites machine learning models 

with neutrosophic theory, a mathematical framework intended to tackle indeterminate, 
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incomplete, and inconsistent information. Neutrosophic numbers [5] building on classical and 

fuzzy representations by including three elements, truth, indeterminacy, and falsity offer a strong 

framework for modelling imprecise or vague medical information. Neutrosophic theory was first 

developed by Smarandache [5]. Theoretical developments of neutrosophic theories and 

applications have been depicted in the studies [6-15]. Several studies contributed in the 

development of different fields and their applications such as decision making [16-37], graph 

theory [38-47], Machine learning [48, 49] and so on.    

Breast cancer diagnosis is still one of the most difficult problems in contemporary medical 

science because of the intricacy of the disease and uncertainty of clinical data. Recent studies 

have validated the utility of combining neutrosophic theory with machine learning algorithms for 

handling indeterminacy and imprecision in medical data.  

A number of recent research works have used neutrosophic logic in breast cancer classification 

and prediction. For example, Abdullah [50] discussed the combination between neutrosophic sets 

and deep learning models for the enhancement of diagnosis accuracy in breast cancer. Likewise, 

Ashika et al. [51] introduced an improved neutrosophic set-based machine learning model that 

exhibited better performance in the management of uncertain clinical features. Torres et al. [52] 

utilized neutrosophic-based machine learning algorithms for precise analysis and diagnosis of 

breast cancer, demonstrating the ability of the model to handle vague inputs efficiently. In 

addition, Shaban [53] combined deep neural networks with neutrosophic methods for stable 

classification outcomes. These efforts emphasize the increasing popularity of neutrosophic 

environments as an effective platform for uncertainty modelling in biomedical decision-making. 

Expanding on this platform, this current study suggests an integrative strategy that incorporates 

neutrosophic numbers with multiple machine learning techniques to improve the prediction of 

malignant and benign breast cancer cases. In doing so, not only does the model enhance 

diagnostic accuracy but also ensures a more robust and interpretable decision support system for 

clinicians.  

The present paper intends to create a strong and general machine learning method to predict 

breast cancer cases as benign or cancerous based on a common dataset, with an improvement in 

interpretability and reliability of the outcome by utilizing neutrosophic numbers in a neutrosophic 

environment. Ml models has been shown promising result in healthcare research [54-61]. The 

paper also performs an analysis at a detailed statistical level and utilizes various performance 

measures such as accuracy, PPV, (NPV and F1-score to analyse the effectiveness of the new 

methodology. This study's core contribution lies in the hybrid framework that fuses machine 

learning with neutrosophic theory to better manage diagnostic uncertainty, a robust feature 

selection mechanism, and rigorous comparative performance analysis.  
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2. Materials and Methods  

2.1 Dataset Description  

The data used in this research work is the open-source Wisconsin Diagnostic Breast Cancer 

(WDBC) dataset that does not need any ethical approval because it is open source. The data set 

consists of 569 instances, each one of which is either benign or malignant and is described by 30 

real-valued features extracted from a digitized image of a fine needle aspirate (FNA) of a breast 

mass. These were reduced to ten representative features such as radius mean, texture mean, 

perimeter mean, area mean, smoothness mean, and concave points mean and were used for 

modelling based on their importance for breast cancer diagnosis as determined in previous 

research.  

2.2 Data Pre-processing  

Prior to model building, the dataset was cleaned and pre-processed. The data was checked for 

missing values, outliers, and inconsistent entries. Standardization was applied to scale the 

numerical features for uniformity. To evaluate the statistical properties of the dataset, we 

conducted descriptive statistical analysis using SPSS version 28, which helped in understanding 

the distribution, central tendency, and variability of each feature.  

2.3 Integration with Neutrosophic Framework  

To deal with the indeterminacy and uncertainty of medical information, the chosen features were 

converted into neutrosophic numbers, wherein each observation was described in terms of its 

truthmembership (T), indeterminacy-membership (I), and falsity-membership (F) values. This 

conversion was done using pre-defined mapping strategies consistent with neutrosophic theory 

guidelines. The resulting neutrosophic setting enabled the machine learning models to more 

effectively deal with unclear and borderline cases that characteristically occur in clinical 

diagnosis.  

2.4 Machine Learning Models  

Four widely used machine learning algorithms were employed in this study for classification 

purposes:  

• Logistic Regression (LR)  

• Support Vector Machine (SVM)  
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• Random Forest (RF)  

• K-Nearest Neighbours (KNN)  

The dataset was split into a training set (80%) and a testing set (20%) to assess model 

performance. Additionally, k-fold cross-validation (with k=10) was used to ensure the robustness 

and generalizability of the results. Model performance was evaluated using standard metrics such 

as accuracy, precision, recall, F1-score, PPV, and NPV. The justification of choosing the 

particular machine learning models LR, SVM, RF, and KNN lies in their complementary 

capabilities. LR is best suited for binary classification with understandable coefficients. SVM 

operates best in high dimensional spaces with distinct decision boundaries. RF is an ensemble 

learner with good robustness properties and overfitting handling capabilities, whereas KNN 

provides a straightforward yet potent proximity logic-based approach. These techniques are also 

firmly established in earlier medical diagnostics research, allowing for reproducibility and 

benchmarking.  

Out of the 30 initial features, 10 attributes were chosen based on statistical significance and 

domain importance, which were determined through literature and exploratory data visualization. 

Features like radius mean, concavity mean, and perimeter mean were highly class-separable and 

had low p values, making them a good choice.  

2.5 Data Visualization  

Data visualization played a critical role in exploring and understanding the relationship between 

features and the target variable. Various plots were generated to analyze feature distributions and 

class separability. For instance, box plots were used to illustrate how variables like radius mean, 

perimeter mean, smoothness mean, and concave points mean vary across benign and malignant 

classes. Furthermore, normal distribution plots were generated to inspect the skewness and spread 

of selected features. These visual tools aided in selecting the most discriminative attributes for 

the predictive model and provided insight into the underlying data structure.  
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Fig 1 Distribution of continuous variables with respect to outcome.  
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Fig 2 Normal density plot of radius mean  

  

Fig 3 Normal density plot of perimeter mean  
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Table 1. Statistical Analysis in a Neutrosophic Environment  

Feature  Group  N  

Neutrosophic  

Mean (T, I, F)  SD  

P- 

Value  

Radius mean  Benign  357  (0.84, 0.10, 0.06)  1.781  <0.001  

   Malignant  212  (0.92, 0.05, 0.03)  3.204     

Texture mean  Benign  357  (0.78, 0.12, 0.10)  3.995  <0.001  

   Malignant  212  (0.88, 0.07, 0.05)  3.779     

perimeter mean  Benign  357  (0.76, 0.14, 0.10)  11.807  <0.001  

   Malignant  212  (0.91, 0.06, 0.03)  21.855     

Area mean  Benign  357  (0.70, 0.18, 0.12)  134.287  <0.001  

   Malignant  212  (0.93, 0.04, 0.03)  367.938     

Smoothness mean  Benign  357  (0.74, 0.15, 0.11)  0.013  <0.001  

   Malignant  212  (0.82, 0.10, 0.08)  0.013     

Compactness mean  Benign  357  (0.68, 0.20, 0.12)  0.034  <0.001  

   Malignant  212  (0.85, 0.10, 0.05)  0.054     

Concavity mean  Benign  357  (0.60, 0.25, 0.15)  0.043  <0.001  

   Malignant  212  (0.89, 0.06, 0.05)  0.075     

Concavepoints mean  Benign  357  (0.62, 0.23, 0.15)  0.016  <0.001  

   Malignant  212  (0.87, 0.08, 0.05)  0.034     

Symmetry means  Benign  357  (0.72, 0.16, 0.12)  0.025  <0.001  

   Malignant  212  (0.80, 0.12, 0.08)  0.028     

Fractal dimension mean  Benign  357  (0.66, 0.20, 0.14)  0.007  0.76  

   Malignant  212  (0.66, 0.19, 0.15)  0.008     
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3.0 Results  

Table 1 presents a statistical comparison of selected features from benign and malignant breast 

cancer cases, represented using Neutrosophic Numbers to encapsulate data uncertainty. Each 

feature value is expressed in the form (T, I, F), reflecting its truthiness, indeterminacy, and falsity 

based on a neutrosophic transformation of its distribution.  

The mean radius of benign cases is represented as (0.84, 0.10, 0.06), whereas malignant cases 

exhibit a significantly higher value of (0.92, 0.05, 0.03), with a p-value < 0.001, indicating strong 

discriminative power. Similarly, mean texture, perimeter, area, compactness, and concavity 

values display substantial divergence between the two classes, as evidenced by their neutrosophic 

scores and low p-values.  

For example, perimeter_mean increases from (0.76, 0.14, 0.10) in benign to (0.91, 0.06, 0.03) in 

malignant cases, and concavity_mean rises from (0.60, 0.25, 0.15) to (0.89, 0.06, 0.05). These 

transitions signify a shift toward higher certainty and lower indeterminacy in malignant cases 

highlighting the potential of neutrosophic modeling in capturing underlying pathological  

distinctions.  

Notably, the fractal_dimension_mean shows nearly identical neutrosophic values across both 

groups (p = 0.76), suggesting its limited utility in discrimination.These findings emphasize that 

neutrosophic representations not only preserve statistical insights but also enhance 

interpretability by explicitly modeling uncertainty, which is crucial in complex domains like 

medical diagnostics.  
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Fig 4 Decision boundary matrix of machine learning model  

  

Table 2 Machine learning classification and validation  

Evaluation Metrics  LR  SVM  KNN  RF  

Accuracy  0.938  0.929  0.947  0.929  

FPR  0.078  0.074  0.055  0.082  

FDR  0.053  0.074  0.055  0.072  

F1 Score  0.937  0.909  0.936  0.929  

MCC  0.868  0.851  0.891  0.846  

AUC  0.991  0.926  0.981  0.968  

NPV  0.947  0.926  0.955  0.928  

TNR  0.922  0.926  0.955  0.918  
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FNR  0.078  0.074  0.055  0.087  

False Omission Rate  0.053  0.074  0.055  0.072  

Threat Score  4.942  4.375  5.944  4.290  

Statistical Parity  1  1  1  1  

  

Table 2 shows assessment metrics for several machine learning methods, LR, SVM,  KNN, 

and R.F.  

Accuracy, which measures total accuracy, is greatest for KNN (0.947), followed by LR (0.938). 

The False Positive Rate, which measures the fraction of true negatives wrongly categorized, is 

lowest for KNN (0.055) and highest for R.F. (0.082). F1 Score, a measure of accuracy and recall, 

is greatest for LR (0.937). KNN has the greatest Matthews Correlation Coefficient (0.891), which 

measures the quality of binary classifications. The AUC, which represents the model's ability to 

distinguish across classes, is highest for LR (0.991). KNN has the greatest negative predictive 

value (0.955), which measures the probability of genuine negatives among negative predictions. 

The True Negative Rate, a statistic indicating the proportion of real negatives properly 

categorized, is most excellent for KNN (0.955). The False Negative Rate, which is the fraction 

of true positives erroneously identified, is greatest for R.F. (0.087). KNN has the greatest Threat 

Score (5.944), which measures the classifier's overall performance. Statistical parity, which 

ensures fairness across demographic groupings, is consistently 1 for all algorithms, 

demonstrating equal treatment. These metrics give information about each algorithm's 

performance and attributes, making it easier to pick algorithms for classification jobs.  

  

4.0 Discussion  

Patients with breast cancer can benefit from timely clinical treatment, a better prognosis, and 

increased chances of survival when the disease is detected early. The precise identification of 

breast cancer & the grouping of patients into different categories represent crucial avenues of 

research.  

Various techniques for forecasting breast cancer have now emerged. Classification techniques, 

including SVM, RF, KNN, XGBoost classifier and Ada boost Classifier have been employed in 

very recent research [62]. Detecting breast cancer involves the classification of tumors. In breast 

cancer cases, tumors are classified into two types: malignant and benign. Malignant tumors 

exhibit a higher rate of spreading compared to benign ones. To distinguish among these tumor 

types, doctors rely on a dependable diagnostic method. However, even specialists find it 
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challenging to differentiate these tumors. Therefore, an urgently needed solution is a consistent 

regular diagnostic system for tumor classification. Clinically, the neutrosophic-ML hybrid model 

presents enhanced immunity to data uncertainty and is thus a useful decision-making tool for 

early cancer diagnosis and minimizing false negatives a major issue in breast cancer diagnosis.  

The importance of tumor diagnosis is highlighted by the aforementioned studies, which have 

recently become a hot topic in biomedicine. To forecast breast cancer, researchers are 

increasingly using ML and data mining (DM) technologies [63]. Reducing diagnostic errors and 

increasing the accuracy of cancer diagnosis are key goals of prediction models based on 

classifiers in D.M. and ML. Data mining is the broad field of methods used to extract hidden 

information and knowledge from large, difficult-to-analyze datasets. Its use includes the 

development of predictive models for several diseases, such as thyroid cancer [64], lung cancer 

[65], and heart disease [66]. Both DM & ML techniques have been incorporated into fuzzy-

genetics approaches [67] and computer-aided systems [68] for the recognition of breast cancer. 

Through the evaluation of classifiers, these studies have effectively classified the features into 

two different types of tumors and shown that it is possible to predict impending tumors based on 

historical data. We predicted breast cancer using the data set of two types of tumors, benign and 

malignant, of the breast. This study significantly contributes to the development of breast cancer 

diagnosis, providing a more precise and insightful approach through the application of 

comprehensive machine learning techniques. Compared to prior studies such as Abdullah [50], 

which integrated neutrosophic sets with deep learning, our approach leverages a broader 

ensemble of ML models and emphasizes feature explainability.  
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Fig 6 Receiver operating curve of four machine learning models.  

5.0 Conclusions  

This study presents a comprehensive framework that combines the strengths of machine learning 

and neutrosophic theory to enhance the accuracy and reliability of breast cancer diagnosis. By 

placing the diagnostic features in a neutrosophic context utilizing neutrosophic numbers, we 

essentially overcome uncertainty, indeterminacy, and incompleteness challenges inherent in 

medical data that are usually present. The application of neutrosophic numbers allows for a more 

comprehensive representation of the diagnostic features, not only picking up the truth but also 

the levels of indeterminacy and falsity contained in every observation. This blended strategy 

results in more informed decision-making procedures, particularly in marginal or uncertain cases. 

The incorporation of four prominent machine learning models further enhances the predictive 

ability of the proposed model. Our empirical findings show that this blended strategy 

significantly enhances the distinction between benign and malignant breast cancer cases. The 

statistical and visual examinations confirm the efficiency of the neutrosophic representation in 

uncovering interpretable patterns and minimizing diagnostic uncertainty. In conclusion, the 

model presented is a promising innovation in intelligent medical decision-making systems. Not 
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only does it enhance classification accuracy, but it also adds a new level of interpretability and 

robustness to conventional machine learning-based diagnostics. Future research can include 

applying this model to other areas of medicine and integrating more advanced neutrosophic 

inference methods for real-time clinical use. Despite the promising outcomes, this study is subject 

to several limitations. First, it relies solely on the WDBC dataset, which, although widely used, 

may not represent the full heterogeneity of realworld clinical populations  
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