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—————————————————————————————————————————

1. Introduction

Since its inception by Zadeh in 1965 [14], the theory of fuzzy sets has transformed the way we

model membership via a continuous degree t ∈ [0, 1]. In 1986, Atanassov expanded this frame-

work with intuitionistic fuzzy sets, introducing a second parameter f for non-membership,

subject to the constraint t + f ≤ 1 [1]. While this ensures consistency between member-

ship and non-membership, it limits the ability to handle contradictory or entirely unknown

information.

To overcome these limitations, Smarandache developed the theory of neutrosophy and the

corresponding neutrosophic sets between 1995 and 1998 [10,11]. In this setting, each element is

described by three independent components—truth t, indeterminacy i, and falsehood f—with

no restriction on the sum t+ i+ f . This added flexibility makes neutrosophic sets particularly
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well-suited for representing incomplete, inconsistent, or inherently indeterminate information,

and has led to applications in logic, algebra, decision-making, and information theory.

Despite extensive applied work, the algebraic and categorical structure of neutrosophic M -

groups remains underdeveloped, especially regarding inverse and direct systems. Such con-

structions are crucial both for functorial considerations and for understanding whether exact-

ness properties are preserved under limits.

In this paper, we fill this gap by developing the algebraic and categorical theory of neutro-

sophic M -groups through the introduction of inverse and direct systems. Drawing inspiration

from the frameworks in [3, 4], we establish key structural properties of these systems and ex-

amine the behavior of their limits. In particular, we prove criteria under which inverse and

direct limits of exact sequences of neutrosophic M -groups themselves remain exact.

In Section 2 we recall the basic definitions and notational conventions for neutrosophic M -

groups, along with the necessary categorical and topological background. Section 3 is devoted

to inverse systems of neutrosophic M -groups: we introduce their morphisms, establish funda-

mental properties, and prove conditions under which inverse limits preserve exact sequences.

In Section 4 we develop the theory of direct systems and prove analogous results for direct

limits. Finally, in Section 5 we summarise the main contributions and suggest directions for

future developments.

2. Preliminaries

Before giving the formal definitions, we first discuss the intuition behind neutrosophic M -

groups and explain why their categorical and topological underpinnings are essential. Neutro-

sophic structures arise naturally when one wishes to handle simultaneously degrees of truth,

falsity, and indeterminacy in an algebraic setting; the extra flexibility of allowing these three

components to vary independently leads to richer notions of subgroup, quotient and limit.

Moreover, viewing neutrosophic M -groups as objects in a category with well-behaved prod-

ucts, coproducts and (co)kernels provides the groundwork for studying inverse and direct

systems in later sections.

Definition 2.1. [10,12] Let U be an initial universe set, a neutrosophic set (more, precisely

a single valued neutrosophic set) over U, denoted by A = ⟨µ, ξ, γ⟩ is a set of the form

A = {(x, µ(x), ξ(x), γ(x)) : x ∈ U}

where µ : U → I, ξ : U → I and γ : U → I are the truth function, the indeterminacy

function and the falsity function of A, respectively and I = [0, 1] is the unit interval of the real

line. For every x ∈ U, µ(x), ξ(x) and γ(x) are said the degree of truth (or membership), the

degree of indeterminacy and the degree of falsity(or non-membership) of x in A, respectively.
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Throughout the paper, we also refer to µ, ξ, γ as modular grade functions. Moreover, for the

neutrosophic set A having initial universe U and modular grade functions µ, ξ and γ, in order

to simplify the notation we denote it by A = ⟨µ, ξ, γ⟩ or A = (µ, ξ, γ)U.

Definition 2.2. Let (G, ◦) be an abelian group and M be a set. Given an exterior operation

· : M ×G→ G, G is called an M-group if m(a ◦ b) = (ma) ◦ (mb) for all a, b ∈ G and for all

m ∈M .

Remark 2.3. Let (G, ◦) be an M -group. Denoted by 1G the identity of G, we can deduce that

m1G = 1G and mx−1 = (mx)−1 for all m ∈M and for all x ∈ G.

Example 2.4. Every ring (R,+,×) is trivially an M-group where M = R and the operation

· :M ×R→ R coincide with ×.

Definition 2.5. Let (G, ◦) be an M -group. We say that G′ is a subgroup of G if

• For all x, y ∈ G′, we have x ◦ y−1 ∈ G′.
• For all m ∈M and for all x ∈ G′ we have mx ∈ G′.

Observe that, if G′ is subgroup of G, then quotient group G/G′ is also an M -group where the

exterior operation is naturally induced by the operation · :M ×G→ G.

Definition 2.6. A neutrosophic set A = ⟨µ, ξ, γ⟩ on a group (G, ◦) is said to be a neutrosophic

group if G is the initial universe set of A and the following holds:

(1) µ(x ◦ y) ≥ min{µ(x), µ(y)},
(2) ξ(x ◦ y) ≥ min{ξ(x), ξ(y)},
(3) γ(x ◦ y) ≤ max{γ(x), γ(y)},
(4) µ(x−1) = µ(x),

(5) ξ(x−1) = ξ(x),

(6) γ(x−1) = γ(x),

for all x, y ∈ G. Moreover, if 0 is the unit of G, then µ(0) = ξ(0) = 1 and γ(0) = 0.

Definition 2.7. Let a group (G, ◦) be M -group. A neutrosophic set A = ⟨µ, ξ, γ⟩ on a M-

group (G, ◦) is a neutrosophic M -group if G is the initial universe set of A and the following

holds:

(1) µ(m(x ◦ y)) ≥ min{µ(mx), µ(my)},
(2) ξ(m(x ◦ y)) ≥ min{ξ(mx), ξ(my)},
(3) γ(m(x ◦ y)) ≤ max{γ(mx), γ(my)},
(4) µ(mx−1) = µ(mx),

(5) ξ(mx−1) = ξ(mx),

(6) γ(mx−1) = γ(mx),

for all m ∈M , x, y ∈ G. Moreover, if 0 is the unit of G, then µ(0) = ξ(0) = 1 and γ(0) = 0.
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3. Inverse system of neutrosophic M-groups

In this paper, A = (µ, ξ, γ) denotes a neutrosophic M -group of G. We denote this M -group

by (µ, ξ, γ)G. Recall that if G and G′ are M -groups, a group homomorphism f : G → G′ is

homomorphism of M -groups if f(ma) = mf(a) for all a ∈ G and for all m ∈ M . Moreover,

the sets ker(f) = {x ∈ G | f(x) = 0} and Im(f) = {y ∈ G′ | y = f(x) for some x ∈ G} are

M -groups, and in particular they are subgroup of G and G′ respectively.

Definition 3.1. Let f : G → G′ be an homomorphism of M -groups. The related function

f : (µ, ξ, γ)G → (µ′, ξ′, γ′)G′ is called a homomorphism of neutrosophic M -groups if µ′(f(x)) ≥
µ(x), ξ′(f(x)) ≥ ξ(x) and γ′(f(x)) ≤ γ(x) are satisfied. Neutrosophic M -groups and their

morphisms form a category. We denote this category by N-Mg.

Remark 3.2. Let (µ, ξ, γ)G be a neutrosophic M -group, let H be an M -group and let f :

G→ H be an M -group homomorphism. Now, as stated in the following result, we can define a

neutrosophicM -group structure on H by considering the neutrosophic image f(G) (see [5,7,8])

which is the neutrosophic set ⟨µf , ξf , γf ⟩ defined by:

µf (y) =


sup

x∈f−1({y})
µ(x) if f−1 ({y}) ̸= ∅

1 otherwise

,

ξf (y) =


sup

x∈f−1({y})
ξ(x) if f−1 ({y}) ̸= ∅

1 otherwise

,

γf (y) =


inf

x∈f−1({y})
γ(x) if f−1 ({y}) ̸= ∅

0 otherwise

for every y ∈ H.

Proposition 3.3. Let f : G→ H, with the notation above. If G is a neutrosophic M -group,

then (µf , ξf , γf )H is a neutrosophic M -group. In particular, f : (µ, ξ, γ)G → (µf , ξf , γf )H is

a homomorphism of neutrosophic M -groups.

Proof. Let us prove that µf (m(y1 ◦ y2)) ≥ min{µf (mx), µf (my)}. By definition we know that

µf (m(y1 ◦ y2)) ≥ µ(x), for all x ∈ G such that f(x) = m(y1 ◦ y2) and let x1, x2 ∈ G such

that µf (my1) = µ(x1) and µf (my2) = µ(x2), in particular f(x1) = my1 and f(x2) = my2.

We have f(x1 ◦ x2) = f(x1) ◦ f(x2) = my1 ◦my2 = m(y1 ◦ y2). Therefore, µf (m(y1 ◦ y2)) ≥
µ(x1 ◦ x2) ≥ min{(µ(x1), µ(x2)} = {(µf (mx1), µf (mx2)}. Using the same arguments, it is

possible to obtain the other conditions of M -group. In a similar way one can prove all the

other conditions.
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Remark 3.4. If G is an M -group and (η, θ, ν)H is an neutrosophic M -group and f : G→ H

is a homomorphism of M -groups, then we can define a neutrosophic M -group structure in G

by ηf (x) = η(f(x)), θf (x) = θ(f(x)), νf (x) = ν(f(x)). Hence, it is clear that (ηf , θf , νf )G is

a neutrosophic M -group and f : (ηf , θf , νf )G → (η, θ, ν)H is a homomorphism of neutrosophic

M -groups.

Lemma 3.5. Let G and H be M -groups and let f : G → H be an M -group homomorphism.

The following holds:

(1) If (µ, ξ, γ)G is a neutrosophic M -group, then for every modular grade functions (η, θ, ν)

on H, f : (µ, ξ, γ)G → (η, θ, ν)H is a neutrosophic homomorphism if and only if

η ≥ µf , θ ≥ ξf , ν ≤ γf .
(2) If (η, θ, ν)H is a neutrosophicM -group, then for every modular grade functions (µ, ξ, γ)

on G, f : (µ, ξ, γ)G → (η, θ, ν)H is a neutrosophic homomorphism if and only if µ ≤
ηf , ξ ≤ θf , γ ≥ νf .

Proof. It is straightforward.

Definition 3.6. Given an M -group H, and (η1, θ1, ν1), (η2, θ2, ν2) modular grade functions

on H, we say that (η1, θ1, ν1) is smaller than (η2, θ2, ν2) if η1(x) ≤ η2(x), θ1(x) ≤ θ2(x) and

ν1(x) ≥ ν2(x) for every x ∈ H. This definition provides a partial order in the set of modular

grade functions.

Let A be a set and {fi}i∈I be a family of functions fi : A→ [0, 1]. We define the following

functions ∨
i∈I

fi : A→ [0, 1] defined by x 7−→ sup{fi(x) | i ∈ I}

∧
i∈I

fi : A→ [0, 1] defined by x 7−→ inf{fi(x) | i ∈ I}

Lemma 3.7. (1) Given M -groups {Gα}α∈∆, H and a family ofM -group homomorphisms

λ = {fα : Gα → H}α∈∆, if {(µα, ξα, γα)Gα}α∈∆ is a family of neutrosophic M -groups,

then there exists the smallest grade functions η = µλ = µ{fα}, θ = ξλ = ξ{fα}, ν =

γλ = γ{fα} such that, for all α ∈ ∆, f : (µα, ξα, γα)Gα → (η, θ, ν)H is a neutrosophic

homomorphism.

(2) Given M -groups G, {Hα}α∈∆ and a family of M -group homomorphisms B = {gα :

G→ Hα}α∈∆ if {(ηα, θα, να)Hα}α∈∆ is a family of neutrosophic M -groups, then there

exist the largest grade functions µ = ηB = η{fα}, ξ = θB = θ{fα}, γ = νB = ν{fα} such

that, for all α ∈ ∆, f : (µ, ξ, γ)G → (ηα, θα, να)Hα is a neutrosophic homomorphism.
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Proof. (1). Let η = µλ =
∨

α∈∆
µfαα , θ = ξλ =

∨
α∈∆

ξfαα , ν = γλ =
∧

α∈∆
γfαα .

(2). Let µ = ηB =
∧

α∈∆
(ηα)fα , ξ = θB =

∧
α∈∆

(θα)fα , γ = νB =
∨

α∈∆
(να)fα .

By using this lemma, we define subgroup, quotient M -group, product and co-product

operations in the category of neutrosophic M -groups. If (µ, ξ, γ)G is a neutrosophic M -

group and H ⊂ G is a subgroup, then (µ|H, ξ|H,γ|H)H is a neutrosophic subgroup of

(µ, ξ, γ)G. If (µ, ξ, γ)G is a neutrosophic M -group and p : G → G/ ∼ is a canonical ho-

momorphism, then (µp, ξp, γp)G/∼ is a quotient M -group of (µ, ξ, γ)G. Hence, for each ho-

momorphism of neutrosophic M -groups f : (µ, ξ, γ)G → (η, θ, ν)H , a neutrosophic subgroups

(µ|kerf, ξ|kerf, γ|kerf)kerf and the neutrosophic quotient M -group (ηp, θp, νp)H/Imf are ob-

tained, where p : H → H|Imf is a canonical homomorphism. If {(µα, ξα, γα)Gα}α∈∆ is a

family of neutrosophic M -groups, then we define product of this family by (µA, ξA, γA) ∏
α∈∆

Gα
,

where A =

{
πα,

∏
α∈∆

Gα → Gα

}
α∈∆

is a family of the usual projection maps. Co-product of

this family is (µB, ξB, γB)∑Gα
, where B =

{
iα, Gα →

∑
α∈∆

Gα

}
α∈∆

is a family of the usual

injections.

The following theorem is easily proved.

Theorem 3.8. The category of neutrosophic M -groups has zero objects, sums, products, ker-

nels and co-kernels.

Definition 3.9. Any functor D : Λop → N −Mg(D : Λ → N −Mg), where Λ is a directed

set (considered as a category), is called an inverse (direct) system of neutrosophic M -groups,

the limit of D is called a limit of the inverse (direct) system. Let

(µ, ξ, γ)G = {(µα, ξα, γα)Gα , pα′α
}α∈∆ (1)

be an inverse system of neutrosophic M -groups. A =

{
πα,

∏
α∈∆

Gα → Gα

}
α∈∆

be a family of

projections and (µA, ξA, γA) ∏
α∈∆

Gα
be a direct product of the neutrosophic M -groups. Then we

obtain a neutrosophic subgroup (µA|lim←−Gα, ξA|lim←−Gα, γA|lim←−Gα)lim←−Gα, where lim←−Gα is a limit

of an inverse system of M -groups {Gα}α∈∆.

Theorem

3.10. Every inverse system in representation (1) has a limit in the category of N-Mg, and

this limit is equal to the a neutrosophic subgroup (µA|lim←−Gα, ξA|lim←−Gα, γA|lim←−Gα)lim←−Gα.

Proof. It suffices to show that, there exists a unique homomorphism of neutrosophicM -groups

ψ : (η, θ, ν)H → (µA|lim←−Gα, ξA|lim←−Gα, γA|lim←−Gα)lim←−Gα , which makes the following diagram is

commutative:
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(η, θ, ν)H (µα, ξα, γα)Gα

(µA|lim←−Gα, ξA|lim←−Gα, γA|lim←−Gα)lim←−Gα

ψ

φα

Here, for every neutrosophic M -group (η, θ, ν)H and α < α′, it holds that {φα : (η, θ, ν)H →
(µα, ξα, γα)Gα}α∈∆ is a family of homomorphism of neutrosophic M -groups, which makes up

the following diagram is commutative:

(η, θ, ν)H (µα, ξα, γα)Gα

(µα′ , ξα′ , γα′)Gα′

φα′

pα,α
′

φα

Also, πα : (µA|lim←−Gα, ξA|lim←−Gα, γA|lim←−Gα)lim←−Gα → (µα, ξα, γα)Gα is a canonical projection.

We define ψ : H → lim←−Gα as a homomorphism of M -groups such that for every x ∈ H,

ψ(x) = {φα(x)}α∈∆. The homorphism ψ is unique by the definition of lim←−Gα. So it is

sufficent to show that ψ : (η, θ, ν)H → (µA|lim←−Gα, ξA|lim←−Gα, γA|lim←−Gα)lim←−Gα is a homomor-

phism of neutrosophic M -groups. Since φα : (η, θ, ν)H → (µα, ξα, γα)Gα is a homomorphism

of neutrosophic M -groups for every α ∈ ∆, the conditions µα(φα(x)) ≥ η(x), ξα(φα(x)) ≥
θ(x), γα(φα(x)) ≤ ν(x) are satisfied for every x ∈ H. Therefore, we obtain the conditions

µA({φα(x)}) =
∧

α∈∆
µα(φα(x)) ≥ η(x), ξA({φα(x)}) =

∧
α∈∆

ξα(φα(x)) ≥ θ(x), γA({φα(x)}) =∨
α∈∆

γα(φα(x)) ≤ ν(x). It is clear that lim←− is a functor from the category of inverse system of

neutrosophic M -groups to the category of neutrosophic M -groups.

Let us review the problem of exact limit for inverse systems of exact sequences.

Definition 3.11. A sequence of homomorphisms

· · · → (µn−1, ξn−1, γn−1)Gn−1

fn−1−−−→ (µn, ξn, γn)Gn

fn−→ (µn+1, ξn+1, γn+1)Gn+1 → · · · (2)

of neutrosophic M -groups is said to be a neutrosophic exact if and only if

(µn|Imfn−1, ξn|Imfn−1, γn|Imfn−1) = (µn|kerfn, ξn|kerfn, γn|kerfn), for every n ∈ Z.
Exactness of (2) will necessarily provide exactness of

· · · fn−1−−−→ Gn−1
fn−1−−−→ Gn

fn−→ Gn+1 → · · · (3)

since equality of two neutrosophic sets is just the equality of their respective maps, that implies

the equality of their corresponding domains (that is, kerfn = Imfn−1). On the other hand,

exactness of (3) does not necessarily imply exactness of (2).
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Example 3.12. Let Gn = Z, G′n = Z, G′′n = Z2 be M -groups where M = Z and using the

usual ring operation, for all n ∈ N. Then,

G = ({Gn}n∈N , {pn+1n : Gn+1 → Gn, pn+1n(m) = 3m}),

G′ = ({G′n}n∈N , {qn+1n : G′n+1 → G′n, qn+1n(m) = 3m}),

G′′ = ({G′′n}n∈N , {rn+1n : G′′n+1 → G′′n, rn+1n(m) = [m]})

are inverse systems of M -groups and f = {fn : G′n → Gn|fn(m) = 2m}, g = {gn : Gn →
G′′n|gn(m) = [m]} are morphisms of inverse systems. The following sequence 0 → G′

f−→ G
g−→

G′′ → 0 is short exact sequence of inverse systems of M -groups. Taking the inverse limits of

this sequence into consideration, the sequence 0 → 0 → 0 → Z2 → 0 is not exact. As it is

seen, the limit of inverse system of exact sequence of M -groups is not exact and, obviously,

the same happens equipping the M -groups with a neutrosophic structure.

It is known that in order to the inverse limit preserve short exact sequence of inverse system,

it is necessary to define derivative functor of inverse limit functor in N-Mg see [13, Chapter 3].

For this notion we get the inverse system in (1), assuming the set of indices ∆ is equal to N,
and using additive notation for the groups Gα. For α, α′ ∈ N, we use the notation α ≺ α′ to

denote α′ = α+ 1. Consider the homomorphism of M -groups

d :
∏
α

Gα →
∏
α

Gα (4)

defined by the formula: d({xα}) = {xα− pα′α(xα′)}α≺α′ . We show that d is a homomorphism

of neutrosophic M -groups. Indeed,

µA(d({xα})) = µA({xα − pα′α(xα′)}α≺α′)

=
∧
α
µα(xα − pα′α(xα′))

≥
∧
α
min{µα(xα), µα(pα′α(xα′))}

≥
∧
α
min{µα(xα), µ′α(xα′)} (∵ µα(pα′α(xα′)) ≥ µα′(xα′))

=
∧
α
(µα(xα) ∧ µ′α(xα′))

=
∧
α
µα(xα)

= µA({xα}),

Jafari S., Rajesh N., Nordo G. and Cisto C., Properties of the category of neutrosophic subgroups

Neutrosophic Sets and Systems, Vol. 88, 2025                                                                                66



ξA(d({xα})) = ξA({xα − pα′α(xα′)}α≺α′)

=
∧
α
ξα(xα − pα′α(xα′))

≥
∧
α
min{ξα(xα), ξα(pα′α(xα′))}

≥
∧
α
min{ξα(xα), ξ′α(xα′)} (∵ ξα(pα′α(xα′)) ≥ ξα′(xα′))

=
∧
α
(ξα(xα) ∧ ξ′α(xα′))

=
∧
α
ξα(xα)

= ξA({xα}),

γA(d(xα)) = γA({xα − pα′α(xα′)}α≺α′)

=
∨
α
γα(xα − pα′α(xα′))

≤
∨
α
max{γα(xα), γα(pα′α(xα′))} (∵ γα(pα′α(xα′)) ≤ γα′(xα′))

≤
∨
α
max{γα(xα), γα′(xα′)}

=
∨
α
(γα(xα) ∨ γ′α(xα′))

=
∨
α
γα(xα)

= γA({xα}).

Then, d is a homomorphism of neutrosophicM -groups. So, (µA|ker d, ξA|ker d, γA|ker d)ker d

and ((µA)
p, (ξA)

p, (γA)
p)coker d, where p is the canonical map defined by x 7→ x + Im(d), are

defined.

For inverse system of M -groups {Gα, pα′α}α∈∆, the M -group lim←−
(1)Gα =

∏
α
Gα/Imd is the

derivative functor [6].

If π :
∏
α
Gα → lim←−

(1)Gα is a canonical homomorphism, we can define a neutrosophic M -

group by ((µA)
π), (ξA)

π, (γA)
π)lim←−

(1)Gα
.

Definition 3.13. ((µA)
π, (ξA)

π, (γA)
π)lim←−

(1)Gα
is called “first derived functor” of limit of the

inverse system of neutrosophic M -groups given in (1) with ∆ = N and α′ = α + 1 (that we

always assume from now on).

The definition of lim←−
(1) allows to define a functor from the category of inverse system to

the category of M -groups, considering known result in homological algebra (see [13]). In the

next result, we prove that it is also a functor if the objects are equipped with a neutrosophic

structure, that is, a functor from the category of neutrosophic inverse system to the category

of neutrosophic M -groups.

Proposition 3.14. lim←−
(1) is a functor from the category of neutrosophic inverse system to the

category of neutrosophic M -groups.
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Proof. Let

A = {(µn, ξn, γn)Gn , pn+1,n : Gn+1 → Gn}n∈N, B = {(ηn, θn, νn)Nn , qn+1,n : Nn+1 → Nn}n∈N
be inverse systems and f = (fn : Gn → Nn)n∈N be a nutrosophic morphism (in particular,

every morphism fn is neutrosophic) from A to B. We need to prove that the homomorphism

of M -groups

lim←−
(1)f : ((µA)

π, (ξA)
π, (γA)

π)lim←−
(1)Gn

−→ ((ηB)
π, (θB)

π, (νB)
π)lim←−

(1)Nn

(xn)n∈N + Imd 7−→ (fn(xn))n∈N + Imd

is a is also an homomorphism of neutrosophic M -groups. Denoted x = (xn)n∈N and f(x) =

(fn(xn))n∈N, this fact is proved considering the inequalities:

(µA)
π(x+ Imd) = sup

z∈Imd
µA(x+ z)

= sup
n∈N

sup
z∈Imd

µn(x+ z)

≤ sup
n∈N

sup
z∈Imd

ηn(f(x+ z)

= sup
z∈Imd

ηA(f(x+ z))

= sup
z∈Imd

ηA(f(x) + f(z))

= sup
y=f(z)

ηA(f(x) + y)

≤ sup
y∈Imd

ηA(f(x) + y)

= (ηA)
π(lim←−

(1)f(x+ Imd)),

and similarly, we have also the following:

(ξA)
π(x+ Imd) = sup

z∈Imd
ξA(x+ z)

≤ sup
z∈Imd

θA(f(x+ z))

= sup
z∈Imd

θA(f(x) + f(z))

= sup
y=f(z)

θA(f(x) + y)

≤ sup
y∈Imd

θA(f(x) + y)

= (θA)
π(lim←−

(1)f(x+ Imd)),

(γA)
π(x+ Imd) = inf

z∈Imd
γA(x+ z)

≥ inf
z∈Imd

νB(f(x+ z))

= inf
z∈Imd

νB(f(x) + f(z))

= inf
y=f(z)

νB(f(x) + y)

≥ inf
y∈Imd

νA(f(x) + y)

= (νA)
π(lim←−

(1)f(x+ Imd)).
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Hence lim←−
(1) is a functor from the category of neutrosophic inverse system to the category of

neutrosophic M -groups.

To study the functor lim←−
(1) functor, let us introduce category of chain (co-chain) complexes

of neutrosophic M -groups. This category is defined to the respective procedure [2].

Definition 3.15. A neutrosophic chain complex (µ, ξ, γ)G = {(µn, ξn, γn)Gn , ∂n}n∈Z is an

object in N-Mg together with a neutrosophic endomorphism ∂ : (µ, ξ, γ)G → (µ, ξ, γ)G of

degree −1 with ∂∂ = 0.

Definition 3.16. A morphism of neutrosophic chain complexes φ : (µ, ξ, γ)G → (η, θ, ν)H

is a morphism φ = {φn : (µn, ξn, γn)Gn → (ηn, θn, νn)Nn}, which has a degree 0 such that

φn−1 ◦ ∂n = ∂′nφn, where ∂ denotes the neutrosophic differential in (η, θ, ν)H .

Definition 3.17. Let (µ, ξ, γ)G = {(µn, ξn, γn)Gn , ∂n}n∈Z be a neutrosophic chain complex.

The condition ∂ ◦ ∂ = 0 implies that Im∂n+1 ⊂ ker∂n, n ∈ Z. Hence, we can associate the

neutrosophic graded M -group with (µ, ξ, γ)G H((µ, ξ, γ)G) = {Hn(µ, ξ, γ)G}, where

Hn((µ, ξ, γ)G) =
(µn|ker∂n, ξn|ker∂n, γn|ker∂n)ker∂n

(µn|Img∂n+1, ξn|Img∂n+1, γn|Img∂n+1)Img∂n+1

.

Definition 3.18. H((µ, ξ, γ)G) is called a neutrosophic homology M -group of neutrosophic

chain complex (µ, ξ, γ)G. By duality, we can define co-chain complex and co-homology M -

group.

Definition 3.19. Let φ,ψ : (µ, ξ, γ)G → (η, θ, ν)H be morphisms of neutrosophic chain com-

plexes. A neutrosophic homotopy Σ : (µ, ξ, γ)G → (η, θ, ν)H between φ and ψ is a neutrosophic

morphism of degree +1 such that ψ − φ = ∂ ◦
∑

+
∑
◦ ∂.

We say that φ, ψ are a neutrosophic homotopic, if there exists a neutrosophic homotopy
∑

between them.

A morphism of neutrosophic chain complexes f : (µ, ξ, γ)G → (η, θ, ν)H is called a chain ho-

motopy equivalence if there exist a morphism of neutrosophic chain complexes g : (η, θ, ν)H →
(µ, ξ, γ)G such that f ◦g and g◦f are neutrosophic homotopic to the identity maps on (µ, ξ, γ)G

and (η, θ, ν)H (see also [13, Definition 1.4.4] for details about the maps outside the neutro-

sophic context).

The following definition is inspired by [13, Definition 1.1.2].

Definition 3.20. A morphism of neutrosophic chain complexes f : (µ, ξ, γ)G → (η, θ, ν)H is

called a quasi-isomorphism if the induced maps Hn((µ, ξ, γ)G) 7→ Hn((η, θ, ν)H), between the

neutrospohic homology M-groups, are all isomorphisms.
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Built upon the above, the results gathered in the following theorem can be argued straight-

forwardly by some known results in the context of homological algebra and can be easily

extended in the neutrosophic setting introduced in this work.

Theorem 3.21. The neutrosophic homotopy relation between neutrosophic chain complexes

is an equivalence relation. Moreover:

• If φ, ψ : (µ, ξ, γ)G → (η, θ, ν)H are a neutrosophic homotopic maps of neutrosophic

chain complexes, then they induced the same map Hn((µ, ξ, γ)G) 7→ Hn((η, θ, ν)H)

between the neutrospohic homology M-groups.

• If f : (µ, ξ, γ)G → (η, θ, ν)H is chain homotopy equivalence, then f is a quasi-

isomorphism.

Considering the usual framework for inverse system of neutrosophic M -groups and the map

d({xα}) = {xα − pα′α(xα′)}α≺α′ , let us consider the following a neutrosophic cochain complex

0→ (µA, ξA, γA)∏Gα

d−→ (µA, ξA, γA)∏Gα
→ 0.

Neutrosophic co-homology M -groups of this complex are kerd and cokerd.

Lemma 3.22. lim←−(µα, ξα, γα)Gα = kerd and lim←−
(1)(µα, ξα, γα)Gα = cokerd.

Proof. Straightforward.

We consider the set of natural numbers as an index set of inverse systems.

Theorem 3.23. Let the following sequence (G1, µ1, ξ1, γ1)G1

p21←− (G2, µ2, ξ2, γ2)G2

p32←− · · · be
an inverse sequence of neutrosophic M -groups. For each infinite subsequence of this sequence,

the derivative functors lim←−
(1) are isomorphic, that is, lim←−

(1) does not change.

Proof. Let S = {i1 < i2 < i3 < · · · } be an infinite subsequence of natural numbers. From

Lemma 3.22, lim←−
(1) is defined by the following homomorphism of neutrosophic M -groups as

appropriate subsequence S

d
′
:

(∧
s∈S

µs,
∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

→

(∧
s∈S

µs,
∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

.

with d
′
({xiℓ}ℓ) = {xiℓ − p

iℓ+1

iℓ
(xiℓ+1

)}ℓ. In order to simplify the notations, in what follows we

denote i1 = i, i2 = j and i3 = k.

We may define f0, f1 :
∏
s∈S

Gs →
∏
n∈N

Gn homomorphisms of M -groups with this formula:

f0(xi, xj , xk, · · · ) = (pi1(xi), p
i
2(xi), · · · , pii−1(xi), xi, p

j
i+1(xj), · · · , p

j
j−1(xj), xj , · · · )
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f1(xi, xj , xk, · · · ) = (0, 0, · · · , xi, 0, · · · , xj , 0, · · · , xk, 0, · · · ). Also,( ∧
n∈N

µn

)
(pi1(xi), p

i
2(xi), · · · , pii−1(xi), xi, p

j
i+1(xj), · · · , p

j
j−1(xj), xj , · · · )

= µ1(p
i
1(xi)) ∧ · · · ∧ µi−1(pii−1(xi)) ∧ µi(xi) ∧ µi+1(p

j
i+1(xj)) ∧ · · · ∧ µj(xj) ∧ · · ·

≥ [µi(xi) ∧ · · · ∧ µi(xi) ∧ µi(xi)] ∧ [µj(xj) ∧ · · · ∧ µj(xj)] ∧ · · ·
= µi(xi) ∧ µj(xj) ∧ · · ·
=

∧
s∈S

µs(xs),

( ∧
n∈N

ξn

)
(pi1(xi), p

i
2(xi), · · · , pii−1(xi), xi, p

j
i+1(xj), · · · , p

j
j−1(xj), xj , · · · )

= ξ1(p
i
1(xi)) ∧ · · · ∧ ξi−1(pii−1(xi)) ∧ ξi(xi) ∧ ξi+1(p

j
i+1(xj)) ∧ · · · ∧ ξj(xj) ∧ · · ·

≥ [ξi(xi) ∧ · · · ∧ ξi(xi) ∧ ξi(xi)] ∧ [ξj(xj) ∧ · · · ∧ ξj(xj)] ∧ · · ·
= ξi(xi) ∧ ξj(xj) ∧ · · ·
=

∧
s∈S

ξs(xs),

( ∨
n∈N

γn

)
(pi1(xi), p

i
2(xi), · · · , pii−1(xi), xi, p

j
i+1(xj), · · · , p

j
j−1(xj), xj , · · · )

= γ1(p
i
1(xi)) ∨ · · · ∨ γi−1(pii−1(xi)) ∨ γi(xi) ∨ γi+1(p

j
i+1(xj)) ∨ · · · ∨ γj(xj) ∨ · · ·

≥ [γi(xi) ∨ · · · ∨ γi(xi) ∨ γi(xi)] ∨ [γj(xj) ∨ · · · ∨ γj(xj)] ∨ · · ·
= γi(xi) ∨ γj(xj) ∨ · · ·
=

∨
s∈S

γs(xs)

( ∧
n∈N

µn

)
(0, 0, · · · , xi, 0, · · · , xj , 0, · · · ) = µ1(0) ∧ · · · ∧ µi(xi) ∧ µi+1(0) ∧ · · · ∧ µj(xj) ∧ · · ·

= µi(xi) ∧ µj(xj) ∧ · · ·
=

∧
s∈S

µs(xs)

( ∧
n∈N

ξn

)
(0, 0, · · · , xi, 0, · · · , xj , 0, · · · ) = ξ1(0) ∧ · · · ∧ ξi(xi) ∧ ξi+1(0) ∧ · · · ∧ ξj(xj) ∧ · · ·

= ξi(xi) ∧ ξj(xj) ∧ · · ·
=

∧
s∈S

ξs(xs)

( ∨
n∈N

γn

)
(0, 0, · · · , xi, 0, · · · , xj , 0, · · · ) = γ1(0) ∨ · · · ∨ γi(xi) ∨ γi+1(0) ∨ · · · ∨ γj(xj) ∨ · · ·

= γi(xi) ∨ γj(xj) ∨ · · ·
=

∨
s∈S

γs(xs).
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Then f0, f1 :

( ∧
s∈S

µs,
∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

→
( ∧

n∈N
µn,

∧
n∈N

ξn,
∨
n∈N

γn

)
∏
n∈N

Gn

are homomor-

phisms of neutrosophic M -groups. It is clear that the following diagram is commutative:( ∧
s∈S

µs,
∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

( ∧
n∈N

µn,
∧
n∈N

ξn,
∨
n∈N

γn

)
∏
n∈N

Gn

( ∧
s∈S

µs,
∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

( ∧
n∈N

µn,
∧
n∈N

ξn,
∨
n∈N

γn

)
∏
n∈N

Gn

f0

d
′

d

f1

That is, {f0, f1} are morphisms of neutrosophic cochain complexes. Now, let us define g0, g1 :∏
n∈N

Gn →
∏
s∈S

Gs homomorphisms with this formula:

g0(x1, x2, x3, · · · ) = (xi, xj , xk, · · · )

g1(x1, x2, x3, · · · ) = (xi+p
i+1
i (xi+1)+ · · ·+pj−1i (xj−1), xj+p

j+1
j (xj+1)+ · · ·+pk−1j (xk−1), · · · ).

Let us denote L = N \ {1, . . . , i− 1}. The following inequalities holds:( ∧
s∈S

µs

)
(xi, xj , xk, · · · ) = µi(xi) ∧ µj(xj) ∧ · · · ≥

∧
n∈N

µn(xn)( ∧
s∈S

ξs

)
(xi, xj , xk, · · · ) = ξi(xi) ∧ ξj(xj) ∧ · · · ≥

∧
n∈N

ξn(xn)( ∨
s∈S

γs

)
(xi, xj , xk, · · · ) = γi(xi) ∨ γj(xj) ∨ · · · ≤

∨
n∈N

γn(xn),( ∧
s∈S

µs

)
(xi + pi+1

i (xi+1) + · · ·+ pj−1i (xj−1), xj + · · ·+ pk−1j (xk−1), · · · )

= µi(xi + pi+1
i (xi+1) + · · ·+ pj−1i (xj−1)) ∧ µj(xj + · · ·+ pk−1j (xk−1)) ∧ · · ·

≥ min{µi(xi), µi(pi+1
i (xi+1)), · · · , µi(pj−1i (xj−1))} ∧min{µj(xj), · · · , µj(pk−1j (xk−1))} ∧ · · ·

≥ min{µi(xi), µi+1(xi+1), · · · , µj−1(xj−1)} ∧min{µj(xj), µj+1(xj+1), · · · , µk−1(xk−1)} ∧ · · ·
=

∧
m∈L

µm(xm)

≥
∧
n∈N

µn(xn)( ∧
s∈S

ξs

)
(xi + pi+1

i (xi+1) + · · ·+ pj−1i (xj−1), xj + · · ·+ pk−1j (xk−1), · · · )

= ξi(xi + pi+1
i (xi+1) + · · ·+ pj−1i (xj−1)) ∧ ξj(xj + · · ·+ pk−1j (xk−1)) ∧ · · ·

≥ min{ξi(xi), ξi(pi+1
i (xi+1)), · · · , ξi(pj−1i (xj−1))} ∧min{ξj(xj), · · · , ξj(pk−1j (xk−1))} ∧ · · ·

≥ min{ξi(xi), ξi+1(xi+1), · · · , ξj−1(xj−1)} ∧min{ξj(xj), ξj+1(xj+1), · · · , ξk−1(xk−1)} ∧ · · ·
=

∧
m∈L

ξm(xm)

≥
∧
n∈N

ξn(xn)
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( ∨
s∈S

γs

)
(xi + pi+1

i (xi+1) + · · ·+ pj−1i (xj−1), xj + · · ·+ pk−1j (xk−1), · · · )

≤ max{γi(xi), γi(pi+1
i (xi+1)), · · · , γi(pj−1i (xj−1))} ∨max{γj(xj), · · · , γj(pk−1j (xk−1))}∨ · · ·

≤ max{γi(xi), γi+1(xi+1), · · · , γj−1(xj−1)} ∨max{γj(xj), γj+1(xj+1), · · · , γk−1(xk−1)}∨ · · ·
=

∨
m∈L

γm(xm)

≤
∨
n∈N

γn(xn).

Thus, g0, g1 :

( ∧
n∈N

µn,
∧
n∈N

ξn,
∨
n∈N

γn

)
∏
n∈N

Gn

→
( ∧

s∈S
µs,

∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

are homomor-

phisms of neutrosophic M -groups. We give

D :
∏
n∈N

Gn →
∏
n∈N

Gn

homomorphism of M -groups with this formula: D(x1, x2, x3, · · · ) = (x1 + p21(x2) + · · · +
pi−11 (xi−1), x2+p

3
2(x3)+· · ·+p

i−1
2 (xi−1), · · · , xi−1, 0, xi+1+p

i+2
i+1(xi+2)+· · ·+pj−1i+1 (xj−1), xi+2+

· · ·+ pj−1i+2 (xj−1), . . . , xj−1,0, · · · ).
We have the following:( ∧

n∈N
µn

)
(x1 + p21(x2) + · · ·+ pi−11 (xi−1), x2 + p32(x3) + · · ·+ pi−12 (xi−1), · · · , xi−1, 0, · · · )

= µ1(x1 + p21(x2) + · · ·+ pi−11 (xi−1)) ∧ µ2(x2 + p32(x3) + · · ·+ pi−12 (xi−1)) ∧ · · ·
∧µi−1(xi−1) ∧ µi(0) ∧ µi+1(xi+1 + pi+2

i+1(xi+2) + · · ·+ pj−1i+1 (xj−1)) ∧ · · ·
≥ min{µ1(x1), µ1(p21(x2)), · · · , µ1(p

i−1
1 (xi−1))}∧

min{µ2(x2), µ2(p32(x3)), · · · , µ2(p
i−1
2 (xi − 1))} ∧ µi−1(xi−1)∧

min{µi+1(xi+1), µi+1(p
i+2
i+1(xi+2)), · · · , µi+1(p

j−1
i+1 (xj−1))} ∧ · · ·

≥ min{µ1(x1), µ2(x2), · · · , µi−1(xi−1)} ∧min{µ2(x2), µ3(x3), · · · , µi−1(xi−1)}∧
µi−1(xi−1) ∧ µi+1(xi+1) ∧ · · ·

=
i−1∧
k=1

µk(xk) ∧
i−1∧
k=2

µk(xk) ∧ · · ·

=
∧
n∈N

µn(xn),
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( ∧
n∈N

ξn

)
(x1 + p21(x2) + · · ·+ pi−11 (xi−1), x2 + p32(x3) + · · ·+ pi−12 (xi−1), · · · , xi−1, 0, · · · )

= ξ1(x1 + p21(x2) + · · ·+ pi−11 (xi−1)) ∧ ξ2(x2) + p32(x3) + · · ·+ pi−12 (xi−1)) ∧ · · ·
∧ξi−1(xi−1) ∧ ξi(0) ∧ ξi+1(xi+1 + pi+2

i+1(xi+2) + · · ·+ pj−1i+1 (xj−1)) ∧ · · ·
≥ min{ξ1(x1), ξ1(p21(x2)), · · · , ξ1(p

i−1
1 (xi−1))}∧

min{ξ2(x2), ξ2(p32(x3)), · · · , ξ2(p
i−1
2 (xi − 1))} ∧ ξi−1(xi−1)∧

min{ξi+1(xi+1), ξi+1(p
i+2
i+1(xi+2)), · · · , ξi+1(p

j−1
i+1 (xj−1))} ∧ · · ·

≥ min{ξ1(x1), ξ2(x2), · · · , ξi−1(xi−1)} ∧min{ξ2(x2), ξ3(x3), · · · , ξi−1(xi−1)}∧
ξi−1(xi−1) ∧ ξi+1(xi+1) ∧ · · ·

=
i−1∧
k=1

ξk(xk) ∧
i−1∧
k=2

ξk(xk) ∧ · · ·

=
∧
n∈N

ξn(xn),( ∨
n∈N

γn

)
(x1 + p21(x2) + · · ·+ pi−11 (xi−1), x2 + p32(x3) + · · ·+ pi−12 (xi−1), · · · , xi−1, 0, · · · )

= γ1(x1 + p21(x2) + · · ·+ pi−11 (xi−1)) ∨ µ2(x2) + p32(x3) + · · ·+ pi−12 (xi−1)) ∨ · · · )
∨ · · · ∨ γi−1(xi−1) ∨ γi(0) ∨ γi+1(xi+1 + pi+2

i+1(xi + 2) + · · ·+ pj−1i+1 (xj−1)) ∨ · · ·
≥ max{γ1(x1), γ1(p21(x2)), · · · , γ1(p

i−1
1 (xi−1))}∨

max{γ2(x2), γ2(p32(x3)), · · · , γ2(p
i−1
2 (xi − 1))} ∨ γi−1(xi−1)∨

max{γi+1(xi+1), γi+1(p
i+2
i+1(xi+2)), · · · , γi+1(p

j−1
i+1 (xj−1))} ∨ · · ·

≥ max{γ1(x1), γ2(x2), · · · , γi−1(xi−1)}∨
max{γ2(x2), γ3(x3), · · · , γi−1(xi−1)} ∨ γi−1(xi−1) ∨ γi+1(xi+1) ∨ · · ·

=
i−1∨
k=1

γk(xk) ∨
i−1∨
k=2

γk(xk) ∨ · · ·

=
∨
n∈N

γn(xn),

D :

( ∧
n∈N

µn,
∧

n∈N
ξn,

∨
n∈N

γn

)
∏
n∈N

Gn

→
( ∧

n∈N
µn,

∧
n∈N

ξn,
∨
n∈N

γn

)
∏
n∈N

Gn

is a homomorphism of

neutrosophic M -groups.

Now consider the following neutrosophic cochain complexes

C : 0→

(∧
n∈N

µn,
∧
n∈N

ξn,
∨
n∈N

γn

)
∏
n∈N

Gn

d−→

(∧
n∈N

µn,
∧
n∈N

ξn,
∨
n∈N

γn

)
∏
n∈N

Gn

→ 0

D : 0→

(∧
s∈S

µs,
∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

d
′

−→

(∧
s∈S

µs,
∧
s∈S

ξs,
∨
s∈S

γs

)
∏
s∈S

Gs

→ 0

By computation, it is shown that the map f : C → D given by f = {f0, f1} is a chain

homotopy equivalence. In particular, considering g : D → C , given by g = {g0, g1}, then
f ◦ g and f ◦ g are neutrosophic homotopic to the identity maps, where D is a neutrosophic
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homotopy. More in detail, one can compute D ◦ d = id − f0 ◦ g0, d ◦ D = id − f1 ◦ g1,
id− g0 ◦ f0 = 0, id− g1 ◦ f1 = 0. Therefore, C and D are quasi-isomorphic and the theorem is

proved, since lim←−
(1) is the first homology M -group of the above neutrosophic chain complexes.

Remark 3.24. Given an inverse system {(µn, ξn, γn)Gn , p
n+1
n }n∈N, since lim←−(µn, ξn, γn)Gn =

kerd and pn+1
n (xn+1) = xn are satisfied for each {xn} ∈ lim←−Gn,

µn(xn) = µn(p
n+1
n (xn+1)) ≥ µn+1(xn+1),

ξn(xn) = ξn(p
n+1
n (xn+1)) ≥ ξn+1(xn+1),

γn(xn) = γn(p
n+1
n (xn+1)) ≤ γn+1(xn+1)

that is, for each {xn} ∈ kerd, {µn(xn)} is a decreasing sequence, {ξn(xn)} is a decreasing

sequence, {γn(xn)} is an increasing sequence.

Theorem 3.25. Let {(µn, ξn, γn)Gn)}, {(µ′n, ξ′n, γ′n)G′
n
)} and {(µ′′n, ξ′′n, γ′′n)G′′

n
)} be inverse sys-

tem of neutrosophic M -groups. Suppose the diagram below is a short exact sequence of inverse

system of neutrosophic M -groups and one of the following occurs,

(1) lim←−(µ
′′
n, ξ
′′
n, γ
′′
n)G′′

n
= 0

(2) For every {x′′n} ∈ kerd = lim←−(µ
′′
n, ξ
′′
n, γ
′′
n)G′′

n
, it holds lim

n→∞
µ′′n(x

′′
n) = 0, lim

n→∞
ξ′′n(x

′′
n) = 0,

lim
n→∞

γ′′n(x
′′
n) = 1.

Then the sequence 0→ lim←−(µ
′
n, ξ
′
n, γ
′
n)G′

n
→ lim←−(µn, ξn, γn)Gn → lim←−(µ

′′
n, ξ
′′
n, γ
′′
n)G′′

n

→ lim←−
(1)(µ′n, ξ

′
n, γ
′
n)G′

n
→ lim←−

(1)(µn, ξn, γn)Gn → lim←−
(1)(µ′′n, ξ

′′
n, γ
′′
n)G′′

n
→ 0 is exact.

↓ ↓ ↓
0 → (µ′2, ξ

′
2, γ
′
2)G′

2
→ (µ2, ξ2, γ2)G2 → (µ′′2, ξ

′′
2 , γ
′′
2 )G′′

2
→ 0

↓ ↓ ↓
0 → (µ′1, ξ

′
1, γ
′
1)G′

1
→ (µ1, ξ1, γ1)G1 → (µ′′1, ξ

′′
1 , γ
′′
1 )G′′

1
→ 0

Proof. For an inverse system of neutrosophic M -groups {(µn, ξn, γn)Gn}n∈N,

C = 0
0−→ (µA, ξA, γA) ∏

n∈N
Gn

d−→ (µA, ξA, γA) ∏
n∈N

Gn

0−→ 0
0−→ · · ·

is a cochain complex of neutrosophic M -groups.

H0(C) = lim←−((µn, ξn, γn)Gn)Gn , H
1(C) = lim←−

(1)((µn, ξn, γn)Gn)Gn , H
k(C) = 0, k ≥ 2 (5)

are neutrosophic cohomology M -groups of this complex. Similarly, for the inverse system of

M -groups {(µ′n, ξ′n, γ′n)G′
n
)} and {(µ′′n, ξ′′n, γ′′n)G′′

n
)}, we can establish the following neutrosophic
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cochain complexes

C ′ = 0
0−→ (µ′A, ξ

′
A, γ

′
A)

∏
n∈N

G′
n

d−→ (µ′A, ξ
′
A, γ

′
A)

∏
n∈N

G′
n

0−→ 0
0−→ · · ·

C ′′ = 0
0−→ (µ′′A, ξ

′′
A, γ

′′
A)

∏
n∈N

G′′
n

d−→ (µ′′A, ξ
′′
A, γ

′′
A)

∏
n∈N

G′′
n

0−→ 0
0−→ · · ·

With abuse of notation, we denote with d the map as in (4) for each inverse system introduced.

It is clear that cohomology M -groups of this complexes have the form of (5). From the

condition of this theorem, the following sequence

0→ C ′ → C → C ′′ → 0

is a short exact sequence of cochain complexes of neutrosophic M -groups. From the previous

exact sequence, we can define the following sequence of cohomology M -groups (see also [13,

Theorem 1.3.1])

0→ H0(C ′)→ H0(C)→ H0(C ′′)
∂−→ H1(C ′)→ H1(C)→ H1(C ′′)→ · · ·

However, in this context, this sequence is not exact, because we do not know if ∂ is an homo-

morphism of neutrosophic M -groups. But in this case H0(C ′′) = ker d = lim←−(µ
′′
n, ξ
′′
n, γ
′′
n)G′′

n
.

So, if lim←−(µ
′′
n, ξ
′′
n, γ
′′
n)G′′

n
= 0 the result trivially holds since the homomorphism 0

∂−→ H1(C ′)

is trivially neutrosophic. While, if lim
n→∞

µ′′n(x
′′
n) = 0, lim

n→∞
ξ′′n(x

′′
n) = 0 and lim

n→∞
γ′′n(x

′′
n) = 1,

by construction we have that the grade functions (µ′′, ξ′′, γ′′) of the neutrosophic M -group

(µ′′, ξ′′, γ′′)H0(C′′) are trivial, that is we have µ′′({xn}) = ξ′′({xn}) = 0 and γ′′({xn}) = 1 for

all {xn} ∈ lim←−(µ
′′
n, ξ
′′
n, γ
′′
n)G′′

n
(see Definition 3.9). This assures that ∂ is a homomorphism of

neutrosophic M -groups. Therefore, the sequence of neutrosophic homology M -groups

0→ H0(C ′)→ H0(C)→ H0(C ′′)
∂−→ H1(C ′)→ H1(C)→ H1(C ′′)→ · · ·

is exact. By using (5), we obtain the following exact sequence of neutrosophic M -groups

0→ lim←−(µ
′
n, ξ
′
n, γ
′
n)G′

n
→ lim←−(µn, ξn, γn)Gn → lim←−(µ

′′
n, ξ
′′
n, γ
′′
n)G′′

n

→ lim←−
(1)(µ′n, ξ

′
n, γ
′
n)G′

n
→ lim←−

(1)(µn, ξn, γn)Gn → lim←−
(1)(µ′′n, ξ

′′
n, γ
′′
n)G′′

n
→ 0

Let us investigate necessary conditions in order the derivative functor lim←−
(1) to be equal to

zero.

Theorem 3.26. Given the following inverse system of neutrosophic M -groups

(µ1, ξ1, γ1)G1

φ1←− (µ2, ξ2, γ2)G2

φ2←− · · · (6)

if every homomorphisms φn is a neutrosophic epimorphism, then lim←−
(1) (µn, ξn, γn)Gn = 0.
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Proof. The proof is obvious, since under the hypothesis the map

d :
∞∏
n=1

(µn, ξn, γn)Gn →
∞∏
n=1

(µn, ξn, γn)Gn

is a neutrosophic epimorphism.

Definition 3.27. Given inverse system of neutrosophic M -groups in (6), for every integer n,

if there exists m ≥ n such that

Im((µi, ξi, γi)Gi → (µn, ξn, γn)Gn) = Im((µm, ξm, γm)Gm → (µn, ξn, γn)Gn) for all i ≥ m,

then it is said that the inverse system in (6) satisfies the Mittag-Leffler condition.

Theorem 3.28. If the inverse system in (6) satisfies the Mittag-Leffler condition, then

lim←−
(1)(µn, ξn, γn)Gn = 0.

Proof. Let us denote G′n = Imφi
n, for large i. By the condition of the theorem, the homomor-

phism φn|G′
n+1

carries the M -group G′n+1 to G′n. Then, φn|G′
n+1

is an epimorphism. Thus, for

large i, the homomorphisms

φn : (µn|G′
n+1

, ξn|G′
n+1

, γn|G′
n+1

)G′
n+1
→ (µn|G′

n
, ξn|G′

n
, γn|G′

n
)G′

n

are epimorphisms. Therefore, by Theorem 3.26, we have lim←−
(1)(µ′n, ξ

′
n, γ
′
n)G′

n
= 0. Here µ′n =

µn|G′
n
, ξ′n = ξn|G′

n
, γ′n = γn|G′

n
. Let us consider the following sequence of the inverse system of

neutrosophic quotient M -groups

(µ̃1, ξ̃1, γ̃1)G1/G′
1
← (µ̃2, ξ̃2, γ̃2)G2/G′

2
← · · · . (7)

For every n, there exists m > n such that the homomorphism Gm|G′m → Gn|G′n is a zero

homomorphism. Then, lim←−(µ̃n, ξ̃n, γ̃n)Gn/G′
n
= 0, that is the limit of inverse system in (7) is

equal to 0. Therefore, lim←−
(1)(µ̃n, ξ̃n, γ̃n)Gn/G′

n
= 0 as well. Then, let us consider the following

short exact sequence of inverse systems in the category of N-Mg.

0→ {(µ′n, ξ′n, γ′n)G′
n
} → {(µn, ξn, γn)Gn} → {(µ̃n, ξ̃n, γ̃n)Gn/G′

n
} → 0. (8)

Granting that lim←−(µ̃n, ξ̃n, γ̃n)Gn/G′
n
= 0, we can apply Theorem 3.25 to the sequence (8), we

obtain the following exact sequence

0→ lim←−(µ
′
n, ξ
′
n, γ
′
n)G′

n
→ lim←−(µn, ξn, γn)Gn → lim←−(µn, ξn, γn)Gn/G′

n
→

lim←−
(1)(µ′n, ξ

′
n, γ
′
n)G′

n
→ lim←−

(1)(µn, ξn, γn)Gn → lim←−
(1){(µ̃n, ξ̃n, γ̃n)Gn/G′

n
} → 0.

(9)

Since lim←−
(1)(µ′n, ξ

′
n, γ
′
n)G′

n
= 0, lim←−

(1){(µ̃n, ξ̃n, γ̃n)Gn/G′
n
} = 0 and lim←−{(µ̃n, ξ̃n, γ̃n)Gn/G′

n
} = 0,

respectively, sequence (9) would look like

0→ lim←−(µ
′
n, ξ
′
n, γ
′
n)G′

n
→ lim←−(µn, ξn, γn)Gn →0→ 0→ lim←−

(1)(µn, ξn, γn)Gn → 0→ 0.
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This proves that lim←−
(1)(µn, ξn, γn)Gn = 0.

4. Direct system of neutrosophic M-groups

Building on the classical theory of direct limits for groups and modules, we consider systems

of neutrosophic M -groups linked by extending morphisms. The inductive limit then produces

an M -group capturing the cumulative behavior of truth, indeterminacy, and falsehood com-

ponents.

We are going to investigate direct systems of neutrosophic M -groups. Let

(µ, ξ, γ)G =
{
(µα, ξα, γα)Gα , p

α′α
}
α∈∆

(10)

be direct system of neutrosophic M -groups, (µB, ξB, γB)⊕
α
Gα the neutrosophic M -group as

defined in Lemma 3.7.

Recall that lim−→α
Gα can be expressed as ⊕

α
Gα/K where K is generated by the set {πα(xα)−

πα′(pα,α
′
(xα)) | α ∈ ∆, xα ∈ Gα}, where πα : Gα → ⊕

α
Gα are the canonical projections.

Let π : ⊕
α
Gα → lim−→α

Gα be the canonical epimorphism. Then we have the neutrosophic

M -group
(
(µB)π, (ξB)π, (γB)π

)
lim−→α

Gα
as defined in Lemma 3.7.

Theorem 4.1. Every direct system in the representation (10) has a limit in the category N-Mg

and this limit is equal to the neutrosophic M -group
(
(µB)π, (ξB)π, (γB)π

)
lim−→α

Gα
.

Proof. It suffices to demonstrate that, there exists a unique homomorphism of neutrosophic

M -groups ψ :
(
(µB)π, (ξB)π, (γB)π

)
lim−→α

Gα
→ (η, θ, ν)H which makes the following diagram is

commutative:

(µα, ξα, γα)Gα (η, θ, ν)H

(
(µB)π, (ξB)π, (γB)π

)
lim−→α

Gα

πα
ψ

φα

where φ = {φ, (µα, ξα, γα)Gα → (η, θ, ν)H}α∈∆ is a family of homomorphisms of neutrosophic

M -groups which makes the following diagram is commutative:

(µα, ξα, γα)Gα (η, θ, ν)H

(µα′ , ξα′ , γα′)Gα′

pα,α
′

φα′

φα

and also iα : (µα, ξα, γα)Gα → (µB, ξB, γB)⊕
α
Gα are usual injections and πα = π ◦ iα. For
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every x ∈ lim−→α
Gα, there exists xα ∈ Gα such that πα(xα) = x. If πα′(xα′) = x for each

xα′ ∈ Gα′ , then φα′(xα′) is equal to φα(xα). We define the homomorphism ψ : lim−→α
Gα → H

by ψ(x) = φα(xα). Now, we can check if ψ is a homomorphism of neutrosophic M -groups.

For each x ∈ lim−→α
Gα, let π ◦ iα(xα) = x. Here,

(µB)π(x) = sup(∨
α
µα)(x) = sup{∨

α
µα(xα) : πα(xα) = x}

(ξB)π(x) = sup(∨
α
ξα)(x) = sup{∨

α
ξα(xα) : πα(xα) = x}

(γB)π(x) = inf(∧
α
γα)(x) = inf{∧

α
γα(xα) : πα(xα) = x}.

Therefore, η(ψ(x)) = η(φα(xα)) ≥ µα(xα), θ(ψ(x)) = θ(φα(xα)) ≥ ξα(xα), ν(ψ(x)) =

η(φα(xα)) ≤ γα(xα). Since this inequality is satisfied for each xα which satisfies πα(xα) = x,

we write the inequality as η(ψ(x)) ≥ (µB)π(x), θ(ψ(x)) ≥ (ξB)π(x), ν(ψ(x)) ≤ (γB)π(x).

From the definition of ψ, it is obvious that the above diagram is commutative and the unique-

ness of ψ follows from the uniqueness of ψ, which is a consequence of the definition of direct

limit.

We can easily show that lim−→ is a functor from the category of direct systems of neutrosophic

M -groups to the category of neutrosophic M -groups. Let

G =
{
(µα, ξα, γα)Gα , p

α′α
}
α∈∆

G
′
=
{
(µ′α, ξ

′
α, γ

′
α)G′

α
, pα

′α
}
α∈∆

G
′′
=
{
(µ′′α, ξ

′′
α, γ

′′
α)G′′

α
, pα

′α
}
α∈∆

be direct systems of neutrosophic M -groups, and the sequence

G
′ f−→ G

g−→ G
′′

(11)

be an exact sequence of this systems.

Theorem 4.2. Direct limit of exact sequence in (11) lim−→α
(µ′α, ξ

′
α, γ

′
α)G′

α
→ lim−→α

(µα, ξα, γα)Gα →

lim−→α
(µ′′α, ξ

′′
α, γ

′′
α)G′′

α
is exact.

Proof. Let the sequence in (11) be exact. Then, the ordinary sequence of M -groups

{G′α} → {Gα} → {G′′α} is an exact sequence, for every α ∈ ∆. Hence, the following se-

quence {G′α}α
{fα}−−−→ {Gα}α

{gα}−−−→ {G′′α}α is exact sequence of the direct system of ordinary

M -groups. Then the limit of this exact sequence

lim−→α
G′α

lim−→α
fα

−−−−→ lim−→α
Gα

lim−→α
gα

−−−−→ lim−→α
G′′α (12)
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is also exact. For the following sequence of neutrosophic M -groups

(
(µ′B)π, (ξ′B)π, (γ′B)π

)
lim−→α

G′
α

lim−→α
fα

−−−−→
(
(µB)π, (ξB)π, (γB)π

)
lim−→α

Gα

lim−→α
gα

−−−−→
(
(µ′′B)π, (ξ′′B)π, (γ′′B)π

)
lim−→α

G′′
α

(µB)π|Im lim−→α
fα = (µB)π|ker lim−→α

gα

(ξB)π|Im lim−→α
fα = (ξB)π|ker lim−→α

gα

(γB)π|Im lim−→α
fα = (γB)π|ker lim−→α

gα

are true, because sequence in (12) is exact.

Corollary 4.3. The direct limit functor preserves monomorphism and epimorphism in the

category of neutrosophic M -groups.

Now, we consider direct system of chain complexes. Let I be directed set

and for every i ∈ I, let C(i) =
{
(µ

(i)
n , ξ

(i)
n , γ

(i)
n )

G
(i)
n
, ∂n : (µn(i), ξn(i), γn(i))Gn(i) →

(µn−1(i), ξn−1(i), γn−1(i))Gn−1(i)

}
n
be chain complexes of neutrosophic M -groups and for ev-

ery i ≺ j, let f ij : C(i) → C(j) be a morphism of chain complexes and let {C(i), f ij} be a

direct system of these chain complexes.

Theorem 4.4. The limit of homology M -groups of direct system of chain complexes of neu-

trosophic M -groups is isomorphic to the homology M -groups of the limit of this direct system,

that is, Hn

(
lim−→α

C(i)

)
≃ lim−→α

Hn(C(i)).

Proof. The proof of this theorem is provided by using Corollary 4.3. Hence,

lim−→
i

Hn(C(i)) = lim−→
i

(
µ̃n(i), ξ̃n(i), γ̃n(i)

)
ker∂n(i)|Im ∂n+1(i)

≈ lim−→
i

(
µn|ker∂n(i), ξn|ker∂n(i), γn|ker∂n(i)

)
ker∂n(i)

| lim−→
i

(
µn|ker∂n(i), ξn|ker∂n(i), γn|ker∂n(i)

)
ker∂n(i)

≈ ker lim−→
i

∂n(i)| lim−→
i

∂n(i)

= Hn

(
lim−→
i

C(i)

)
.
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5. Conclusions

In this paper we have established a comprehensive framework for inverse and direct sys-

tems in the category of neutrosophic M -groups, proving that under natural conditions both

projective and inductive limits exist and preserve exact sequences. By introducing an adapted

version of the Mittag–Leffler condition for neutrosophic morphisms, we showed that exactness

is maintained in inverse limits, while for direct systems we identified precise criteria ensuring

that the accumulation of truth, indeterminacy and falsehood through extending maps does

not break short exact sequences. Our explicit examples demonstrate how these construc-

tions recover the classical behavior when the indeterminacy component is trivial and, more

interestingly, exhibit genuinely new phenomena arising from the free interaction of the three

neutrosophic degrees.

Looking forward, several concrete extensions of our work suggest themselves. First, the

constructions of inverse limits in Section 3 (cf. Theorem 3.10) and of direct limits in Section 4

(cf. Theorem 4.2) could be implemented within some computer algebra environments, to au-

tomate the assembly of large or parametrized families of neutrosophic M -groups. Second, the

core notions and exactness results for neutrosophicM -groups (see Definitions 2.4 and 2.7), and

the exactness criteria in Sections 3 and 4) admit immediate analogues for neutrosophic rings

and modules, thereby extending classical algebraic categories while preserving the independent

truth–indeterminacy–falsehood framework.
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