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Abstract. Graph theory studies the mathematical structures of vertices and edges to model relationships and
connectivity. Hypergraphs extend this framework by allowing hyperedges to connect arbitrarily many vertices at
once [1], and Super-HyperGraphs further generalize hypergraphs via iterated powerset constructions to capture
hierarchical linkages among edges [2, 3]. Bipolar fuzzy directed graphs assign positive and negative member-
ship degrees to directed edges and vertices, and bipolar fuzzy directed hypergraphs extend this assignment to
multi-vertex hyperedges. In this paper, we extend directed Super-HyperGraphs by incorporating bipolar fuzzy
membership and introduce the Bipolar Fuzzy Directed n-Super-HyperGraph, whose structural properties we
investigate.
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1. Introduction

1.1. From Graphs to Hypergraphs and Super-HyperGraphs

Network structures are often captured by a graph, where entities appear as vertices and
binary links as edges. To model interactions among groups larger than two, a hypergraph
allows each hyperedge to connect any nonempty subset of vertices [4]. Extending this further, a
Super-HyperGraph is obtained by repeatedly applying the powerset operation, thus uncovering
nested layers of connectivity that reflect hierarchical relationships [5–9].

Graphs and hypergraphs have proven invaluable across domains such as artificial intel-
ligence, network science, data mining, chemistry, and physics [10]. By introducing multiple
lYutakals of edges, Super-HyperGraphs provide a natural framework for representing complex,
multi-scale systems.
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Model Notation Edge/Hyperedge Specification Construction Princi-
ple

Graph G = (V,E) E ⊆ {{u, v} | u, v ∈ V, u 6= v} Simple edges join two
vertices.

Hypergraph H = (V,E) E ⊆ POW(V ) \ {∅} Hyperedges span any
nonempty vertex sub-
set.

Super-HyperGraph SupHyG(n) = (V0, V, E) V,E ⊆ POWn(V0) n-fold powerset rYu-
takaals nested connec-
tivity.

Table 1. Key distinctions among graph-based models

1.2. Directed, Bi-directed, and Multi-directed Variants

Many real-world networks feature intrinsically oriented relations. A directed graph assigns
an arrow to each edge [11–13]. This idea extends to directed hypergraphs [14] and further to
directed Super-HyperGraphs [15].

In a bi-directed graph, each endpoint of an edge carries its own direction indicator [16, 17].
Multi-directed graphs allow multiple, possibly conflicting, directed edges between the same
vertex pair [18]. These enriched models capture more intricate flow or influence patterns than
simple directed networks.

1.3. Incorporating Uncertainty: Fuzzy, Neutrosophic, and Bipolar Fuzzy Extensions

To represent imprecise or ambiguous connections, the fuzzy directed graph uses membership
grades on each arc [19,20]. The neutrosophic directed graph further assigns three values—truth,
indeterminacy, falsity—to each link for nuanced uncertainty modeling [21,22].

Analogous concepts apply to hypergraphs. A fuzzy directed hypergraph equips each hyperarc
with a membership function over multiple vertices [23,24]. Similarly, single-valued neutrosophic
directed hypergraphs attach a triple of neutrosophic degrees to Yutakary hyperarc, capturing
partial truth, indeterminacy, and falsity in group interactions [25,26].

More recently, bipolar fuzzy directed graphs and bipolar fuzzy directed hypergraphs have been
proposed, allowing both positive and negative membership values for nodes and edges. These
provide richer representations of supportive versus opposing influences in directed networks.
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1.4. Contributions of This Work

In this paper we introduce a novel framework, Bipolar Fuzzy Directed Super-HyperGraphs,
which combines the hierarchical edge-layering of Super-HyperGraphs with the dual-valued
uncertainty of bipolar fuzzy models. We give its formal definition, investigate its key properties,
and demonstrate potential applications in decision making and network analysis. In Table 2 we
present a concise comparison of bipolar fuzzy directed models. This table further illustrates
how our approach can more clearly and intuitively capture uncertain, hierarchical network
structures in real-world scenarios.

Model Domain Key Constraint

Bipolar Fuzzy Directed
Graph

V, E ⊆ V × V µ+ ≤ minσ+, µ− ≥ maxσ−

Bipolar Fuzzy Directed
Hypergraph

V, E ⊆ P(V )× P(V ) supp+(tail) ∩ supp+(head) = ∅

Bipolar Fuzzy Directed
n -Superhypergraph

V ⊆ Pn(S), E ⊆ Pn(S)×Pn(S) same as graph, on n -supervertices

Table 2. Concise comparison of bipolar fuzzy directed models

2. Preliminaries

We start by introducing the notation and basic concepts used throughout this paper. Unless
noted otherwise, all graphs are simple, finite, and undirected. For more in-depth treatments
of specific topics, see the cited references.

2.1. Super-HyperGraph

A hypergraph extends the classical graph by allowing each hyperedge to join any nonempty
subset of vertices simultaneously [1,4]. Building on this, a Super-HyperGraph employs repeated
powerset operations to capture nested, hierarchical connections among hyperedges—a subject
of increasing interest in recent literature [3, 27–29]. Applications include molecular modeling,
complex-network analysis, and signal processing [15, 30]. In what follows, n always denotes a
nonnegative integer.

Definition 2.1 (Base Set). A base set S is the foundational domain for all subsequent con-
structions:

S = {x | x belongs to the chosen universe}.

Yutakary element of any iterated powerset POWk(S) remains an element of S.
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Definition 2.2 (Powerset). The powerset of S, written POW(S), is the set of all subsets of
S, including the empty set and S itself:

POW(S) =
{
A | A ⊆ S

}
.

Definition 2.3 (Hypergraph). A hypergraph H = (V (H), E(H)) comprises

• a finite vertex set V (H), and
• a collection E(H) of nonempty subsets of V (H), called hyperedges [1, 31].

Hypergraphs naturally model interactions among any number of vertices.

Definition 2.4 (n-th Powerset). The n-th powerset of X, denoted POWn(X), is defined
recursively [32–34]:

POW1(X) = POW(X), POWn+1(X) = POW
(
POWn(X)

)
, n ≥ 1.

The nonempty version POW∗
n(X) is obtained by removing the empty set at each iteration.

Definition 2.5 (n-Super-HyperGraph). [5, 35] Let V0 be a finite base set. Define

POW0(V0) = V0, POWk+1(V0) = POW
(
POWk(V0)

)
.

An n-Super-HyperGraph is a pair

SupHyG(n) = (V,E), V, E ⊆ POWn(V0),

where each element of V is called an n-supervertex and each element of E an n-superedge.

Example 2.6 (Cross-Department Collaboration as a 2-Super-HyperGraph). Let the base set
of individuals be

V0 = {Taro, Bob, Mamoru, Dave, Yutaka, Tae}.

Compute the first and second iterated powersets:

POW1(V0) =
{
Team | Team ⊆ V0

}
, POW2(V0) =

{
G | G ⊆ POW1(V0)

}
.

Choose three first-lYutakal clusters (project teams):

T1 = {Taro, Bob, Mamoru}, T2 = {Dave, Yutaka}, T3 = {Tae}.

These lie in POW1(V0). Now form two second-lYutakal clusters (departments) as subsets of
teams:

DX = {T1, T2}, DY = {T2, T3},

so each D∗ ∈ POW2(V0). Finally, define the super-hypergraph by

V = {DX , DY } ⊆ POW2(V0), E =
{
{DX , DY }

}
⊆ POW2(V0).
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Here the single hyperedge {DX , DY } represents a cross-department project in which both
departments DX and DY collaborate. Thus

SupHyG(2) = (V, E)

is a 2-Super-HyperGraph encoding the two-tier structure of teams and departments, together
with their inter-department collaborations.

2.2. Directed Super-HyperGraph

Directed HyperGraphs and Directed Super-HyperGraphs are graph classes that extend
HyperGraphs and Super-HyperGraphs, respectively, in a manner analogous to Directed
Graphs(cf. [36, 37]) . Below, we present their formal definitions and illustrative examples.

Definition 2.7 (Directed Hypergraph). (cf. [36, 37]) A directed hypergraph is a pair

H = (V, E),

where

• V is a finite set of vertices.
• E is a finite set of hyperarcs, each hyperarc e ∈ E being an ordered pair

e =
(
T (e), H(e)

)
∈ POW(V )× POW(V ),

with
T (e) ⊆ V, T (e) 6= ∅, H(e) ⊆ V, H(e) 6= ∅.

Intuitively, each e = (T (e),H(e)) carries “flow” from all vertices in T (e) (the tail) to all vertices
in H(e) (the head).

Definition 2.8 (Directed n-Super-HyperGraph). (cf. [5,15,38]) Let S be a nonempty base set
and let n ≥ 0 be an integer. Define iterated powersets by

POW0(S) = S, POWk+1(S) = POW
(
POWk(S)

)
(k ≥ 0).

A directed n-Super-HyperGraph is a pair

DSupHyG(n) = (V, E),

where
V ⊆ POWn(S), E ⊆ POWn(S)× POWn(S),

and each directed n-superedge e ∈ E is an ordered pair

e =
(
Tail(e), Head(e)

)
, Tail(e), Head(e) ⊆ POWn(S),

typically both nonempty. Such an e carries “flow” from the entire set Tail(e) of n-supervertices
into Head(e).
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Example 2.9 (Cloud Data Replication as a Directed 2–Super-HyperGraph). Consider a cloud-
based data replication system with four server nodes:

S = {A1, A2, B1, B2}, n = 2.

We form the iterated powersets:

POW0(S) = S, POW1(S) = POW(S), POW2(S) = POW
(
POW(S)

)
.

Choose two first-lYutakal clusters (data-centers) in POW1(S):

DC1 = {A1,A2}, DC2 = {B1,B2}.

Then form two second-lYutakal clusters (tiers) in POW2(S):

TierPrimary = {DC1, DC2}, TierBackup = {DC2}.

Thus the vertex set V ⊆ POW2(S) is

V =
{
TierPrimary, TierBackup

}
.

Model the replication flow as a single directed 2–superedge:

e =
(
TierPrimary, TierBackup

)
, E = { e} ⊆ POW2(S)× POW2(S).

Here e carries “flow” from Yutakary primary data-center (DC1,DC2) into the backup data-
center (DC2). Hence

DSupHyG(2) =
(
V, E

)
is a valid directed 2–Super-HyperGraph representing the two-lYutakal replication hierarchy in
this cloud system.

2.3. Fuzzy Directed n-Super-HyperGraph

We define the Fuzzy Directed n-Super-HyperGraph as an extension of the classical Fuzzy
Directed Hypergraph by incorporating the hierarchical structure of n-Super-HyperGraphs.

Definition 2.10 (Fuzzy Directed n-Super-HyperGraph). Let S be a nonempty base set and
let n ≥ 0 be an integer. Define iterated powersets by

POW0(S) = S, POWk+1(S) = POW
(
POWk(S)

)
(k ≥ 0).

A directed n-Super-HyperGraph is a pair DSupHyG(n) = (V,E) with

V ⊆ POWn(S), E ⊆ POWn(S)× POWn(S),

where each e ∈ E is of the form
(
Tail(e),Head(e)

)
. A fuzzy directed n-Super-HyperGraph is

then the quadruple (
V, E, σ, µ

)
,
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where

• σ : V → [0, 1] assigns to each n-supervertex v a membership degree σ(v).
• µ : E → [0, 1] assigns to each directed n-superedge e a membership degree µ(e).

These satisfy the edge-appurtenance constraint

µ(e) ≤ min
x∈Tail(e)∪Head(e)

σ(x), ∀ e ∈ E.

Example 2.11 (Supply-Chain Network as a Fuzzy Directed 1-Super-HyperGraph). Consider
a simplified supply-chain consisting of suppliers, factories, and distribution centers:

S = {SupplierA, SupplierB, FactoryX, FactoryY, DC1, DC2}, n = 1.

Since n = 1, we have
POW1(S) = POW(S),

and we choose three 1-supervertices representing facility clusters:

V1 = {SupplierA, SupplierB}, V2 = {FactoryX,FactoryY}, V3 = {DC1,DC2}.

Thus
V = {V1, V2, V3} ⊆ POW1(S).

We model two directed 1-superedges corresponding to material flows:

e1 = (V1, V2), e2 = (V2, V3), E = { e1, e2} ⊆ POW1(S)× POW1(S).

Assign fuzzy membership degrees:

σ(V1) = 0.90, σ(V2) = 0.85,σ(V3) = 0.80,

µ(e1) = 0.80, µ(e2) = 0.75.

We verify the edge-appurtenance constraint for each ei:

µ(e1) = 0.80 ≤ min{σ(V1), σ(V2)} = min{0.90, 0.85} = 0.85,

µ(e2) = 0.75 ≤ min{σ(V2), σ(V3)} = min{0.85, 0.80} = 0.80.

Since both inequalities hold, (V,E, σ, µ) is a valid fuzzy directed 1-Super-HyperGraph that
models the two-stage flow from suppliers to factories to distribution centers.

Example 2.12 (Corporate Divisional Communication Network as a Fuzzy Directed 2-Super-
HyperGraph). Consider a mid-sized company organized into teams, departments, and divi-
sions. We model the two-lYutakal hierarchy of communication as a fuzzy directed 2-Super-
HyperGraph.

S = {SN, SS, MO, MF, ST, CS}, n = 2,

where
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• SN, SS are the two Sales teams (North and South),
• MO,MF are the two Marketing teams (Online and Field),
• ST,CS are the two Support teams (Tech and Customer).

First-lYutakal clusters (departments) in POW1(S) are:

DSales = {SN, SS}, DMarketing = {MO,MF}, DSupport = {ST,CS}.

Second-lYutakal clusters (divisions) in POW2(S) are:

DivA = {DSales, DMarketing}, DivB = {DSupport}.

Thus

V = {DivA, DivB} ⊆ POW2(S).

We define two directed 2-superedges for routine reporting and feedback:

e1 =
(
DivA, DivB

)
, e2 =

(
DivB, DivA

)
, E = {e1, e2} ⊆ POW2(S)× POW2(S).

Assign fuzzy membership degrees reflecting communication effectiveness:

σ(DivA) = 0.90, σ(DivB) = 0.85,

µ(e1) = 0.85, µ(e2) = 0.80.

We verify the edge-appurtenance constraint:

µ(e1) = 0.85 ≤ min{σ(DivA), σ(DivB)} = min{0.90, 0.85} = 0.85,

µ(e2) = 0.80 ≤ min{σ(DivB), σ(DivA)} = min{0.85, 0.90} = 0.85.

Since both inequalities hold, (V,E, σ, µ) is a valid fuzzy directed 2-Super-HyperGraph modeling
the two-lYutakal reporting and feedback flows between divisions.

2.4. Bipolar Fuzzy Directed Hypergraphs

Bipolar fuzzy directed graphs assign positive and negative membership to directed edges
and vertices; hypergraphs extend this to multi-vertex hyperedges.

Definition 2.13 (Bipolar Fuzzy Set). [39–41] Let T be a nonempty finite set. A bipolar fuzzy
subset X of T is specified by a pair of membership functions

µ+
X : T → [0, 1], µ−

X : T → [−1, 0],

and is denoted

X =
{
(v, µ+

X(v), µ−
X(v)) | v ∈ T

}
.

Here µ+
X(v) and µ−

X(v) measure, respectively, the degree to which v belongs positively or
negatively to X.
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Definition 2.14 (Bipolar Fuzzy Directed Hyperedge). A bipolar fuzzy directed hyperedge over
a vertex set T is an ordered pair

e =
(
t(e), h(e)

)
,

where t(e) (the tail) and h(e) (the head) are bipolar fuzzy subsets of T satisfying

supp t(e) ∩ supph(e) = ∅.

Definition 2.15 (Bipolar Fuzzy Directed Hypergraph). (cf. [42]) A bipolar fuzzy directed
hypergraph is a pair

G =
(
T, U

)
,

where

• T is a finite, nonempty set of vertices,
• U is a finite collection of bipolar fuzzy directed hyperedges on T .

Each e ∈ U is a directed hyperedge (t(e), h(e)) as above.

Example 2.16 (Humanitarian Aid Distribution Network as a Bipolar Fuzzy Directed Hyper-
graph). Consider a simplified humanitarian-aid distribution network. We have six facilities:

T = {WA, WB, DC1, DC2, CX, CY},

where

• WA, WB are two central Warehouses;
• DC1, DC2 are two Distribution Centers;
• CX, CY are two Field Clinics.

We model two flows of supplies as bipolar fuzzy directed hyperedges:

U = { e1, e2}.

Here:
e1 :

(
t(e1), h(e1)

)
, t(e1) = {(WA, 0.90, −0.10), (WB, 0.80, −0.20)},

h(e1) = {(DC1, 0.85, −0.15), (DC2, 0.80, −0.20)},

e2 :
(
t(e2), h(e2)

)
, t(e2) = {(DC1, 0.90, −0.10), (DC2, 0.75, −0.25)},

h(e2) = {(CX, 0.80, −0.20), (CY, 0.70, −0.30)}.
In each ordered pair (v, µ+(v), µ−(v)), µ+ measures the reliability of facility v (higher is more
reliable) and µ− measures the operational risk (more negative is higher risk).

One checks immediately that for each ei:

supp t(ei) = { v : µ+(v) > 0 in t(ei) }, supph(ei) = { v : µ+(v) > 0 in h(ei) },

and
supp t(ei) ∩ supph(ei) = ∅.
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Hence (T,U) is a valid bipolar fuzzy directed hypergraph modeling two stages of the aid-
distribution process.

3. Main Results of this paper

As the principal contribution of this paper, we investigate the structural properties of Bipo-
lar Fuzzy Directed n-Super-HyperGraphs.

3.1. Bipolar Fuzzy Directed n-Super-HyperGraph

A Bipolar Fuzzy Directed n-Super-HyperGraph is a hierarchical directed hypergraph with
positive, negative membership on multi-lYutakal vertices and directed edges.

Definition 3.1 (Bipolar Fuzzy Directed n-Super-HyperGraph). Let S be a nonempty base
set and n ≥ 0. We write

POW0(S) = S, POWk+1(S) = POW(POWk(S)) (k ≥ 0).

A bipolar fuzzy directed n-Super-HyperGraph is a sextuple

BFDnSupHyG(n) =
(
V, E, σ+, σ−, µ+, µ−),

where

• V ⊆ POWn(S) is the set of n-supervertices.
• E ⊆ POWn(S)× POWn(S) is the set of directed n-superedges.
• σ+ : V → [0, 1] and σ− : V → [−1, 0] assign positive and negative membership to each

supervertex.
• µ+ : E → [0, 1] and µ− : E → [−1, 0] assign positive and negative membership to each

directed superedge.

These functions satisfy, for Yutakary e = (T (e),H(e)) ∈ E:

µ+(e) ≤ min
x∈T (e)∪H(e)

σ+(x), µ−(e) ≥ max
x∈T (e)∪H(e)

σ−(x),

and the supports of tail and head in each polarity are disjoint:

supp+(T (e)) ∩ supp+(H(e)) = ∅, supp−(T (e)) ∩ supp−(H(e)) = ∅.

Here supp+(X) = {x : σ+(x) > 0} and supp−(X) = {x : σ−(x) < 0}.

Example 3.2 (Supply Chain as a Bipolar Fuzzy Directed 1-Super-HyperGraph). Consider a
simplified supply-chain network consisting of raw-material suppliers, factories, and distribution
centers. We model this as a bipolar fuzzy directed 1-Super-HyperGraph.

S = {Supplier A, Supplier B, Factory X, Factory Y, DC1, DC2}, n = 1, POW1(S) = POW(S).
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We choose three 1-supervertices (clusters of facilities):

V1 = {Supplier A,Supplier B}, V2 = {Factory X,Factory Y}, V3 = {DC1,DC2}.

Thus

V = {V1, V2, V3} ⊆ POW(S).

Define two directed 1-superedges representing product flows:

e1 = (V1, V2), e2 = (V2, V3), E = { e1, e2} ⊆ POW(S)× POW(S).

Assign positive and negative membership degrees as follows:

• σ+(V1) = 0.90, σ−(V1) = −0.20 (suppliers are highly reliable but carry moderate risk)
• σ+(V2) = 0.85, σ−(V2) = −0.10 (factories are reliable with low operational risk)
• σ+(V3) = 0.80, σ−(V3) = −0.15 (distribution centers are somewhat reliable but face

logistical risk)
• µ+(e1) = 0.80, µ−(e1) = −0.10 (flow from suppliers to factories is strong with minor

concerns)
• µ+(e2) = 0.75, µ−(e2) = −0.12 (flow from factories to DCs is fairly strong with

moderate concerns)

One checks immediately that for each ei = (T (ei),H(ei)):

µ+(ei) ≤ min
x∈T (ei)∪H(ei)

σ+(x), µ−(ei) ≥ max
x∈T (ei)∪H(ei)

σ−(x),

and that the positive- and negative-support sets of each tail and head are disjoint, since
{V1, V2, V3} are pairwise distinct. Hence

(
V,E, σ+, σ−, µ+, µ−) is a valid Bipolar Fuzzy Di-

rected 1-Super-HyperGraph modeling this supply chain.

Example 3.3 (Smart-City Sensor Network as Bipolar Fuzzy Directed 2-Super-HyperGraph).
We model a simple smart-city deployment of IoT sensors on three floors of a building using a
bipolar fuzzy directed 2-Super-HyperGraph.

S = {A,B,C,D,E, F}, n = 2, POW1(S) =
{
T1, T2, T3

}
,

where

T1 = {A,B}, T2 = {C,D}, T3 = {E,F}.

We then form two 2-supervertices, each a set of teams of sensors:

G1 = {T1, T2}, G2 = {T3}, V = {G1, G2} ⊆ POW2(S).

A single directed 2-superedge represents the data flow from the lower-lYutakal floors to the
rooftop cluster:

e =
(
G1, G2

)
, E = {e} ⊆ POW2(S)× POW2(S).
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Assign bipolar fuzzy membership degrees reflecting performance (positive) and risk (nega-
tive):

σ+(G1) = 0.90, σ−(G1) = −0.20,

σ+(G2) = 0.80, σ−(G2) = −0.30,

µ+(e) = 0.75, µ−(e) = −0.15.

One checks:

µ+(e) = 0.75 ≤ min{0.90, 0.80} = 0.80, µ−(e) = −0.15 ≥ max{−0.20, −0.30} = −0.20,

and the positive- and negative-support sets are disjoint:

supp+(G1) = {T1, T2}, supp+(G2) = {T3}, {T1, T2} ∩ {T3} = ∅,

supp−(G1) = {T1, T2}, supp−(G2) = {T3}, {T1, T2} ∩ {T3} = ∅.

Hence
(
V,E, σ+, σ−, µ+, µ−) is a valid Bipolar Fuzzy Directed 2-Super-HyperGraph modeling

the smart-city sensor network.

Example 3.4 (Cloud-Computing Infrastructure as a Bipolar Fuzzy Directed 3-Super-
HyperGraph). Consider a global cloud-computing network, where individual servers are orga-
nized into racks, racks into data centers, and data centers into service regions. We model this
as a bipolar fuzzy directed 3-Super-HyperGraph.

S = {s1, s2, s3, s4, s5, s6, s7, s8}, n = 3.

First-lYutakal clusters (server racks) in POW1(S):

R1 = {s1, s2}, R2 = {s3, s4}, R3 = {s5, s6}, R4 = {s7, s8}.

Second-lYutakal clusters (data centers) in POW2(S):

DCA = {R1, R2}, DCB = {R3, R4}.

Third-lYutakal clusters (service regions) in POW3(S):

RegionEast = {DCA}, RegionWest = {DCB}.

Thus the set of 3-supervertices is

V =
{
RegionEast, RegionWest

}
⊆ POW3(S).

We represent the primary data-flow from East to West as a single directed 3-superedge:

e =
(
RegionEast, RegionWest

)
, E = { e} ⊆ POW3(S)× POW3(S).

Assign bipolar fuzzy membership degrees (performance vs. risk):

σ+(RegionEast) = 0.92, σ−(RegionEast) = −0.04,
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σ+(RegionWest) = 0.88, σ−(RegionWest) = −0.06,

µ+(e) = 0.85, µ−(e) = −0.03.

We verify the bipolar fuzzy constraints:

µ+(e) = 0.85 ≤ min{0.92, 0.88} = 0.88, µ−(e) = −0.03 ≥ max{−0.04, −0.06} = −0.04,

and the supports of tail and head are disjoint:

supp+(RegionEast) = {DCA}, supp+(RegionWest) = {DCB}, {DCA} ∩ {DCB} = ∅,

similarly for negative–membership supports. Hence(
V, E, σ+, σ−, µ+, µ−)

is a valid Bipolar Fuzzy Directed 3-Super-HyperGraph modeling the three-tier cloud-
computing infrastructure.

Theorem 3.5 (Generalization of Classical Structures). The Bipolar Fuzzy Directed n-Super-
HyperGraph BFDnSupHyG(n) simultaneously generalizes the following:

(1) Directed n-Super-HyperGraph: if σ+(v) = 1, σ−(v) = 0 for all v ∈ V , and
µ+(e) = 1, µ−(e) = 0 for all e ∈ E, then BFDnSupHyG(n) reduces to a crisp directed
n-Super-HyperGraph.

(2) Fuzzy Directed n-Super-HyperGraph: if σ−(v) = 0 and µ−(e) = 0, then it reduces
to a fuzzy directed n-Super-HyperGraph

(
V,E, σ+, µ+

)
.

(3) Bipolar Fuzzy Directed Hypergraph: when n = 0, we recover the classical bipolar
fuzzy directed hypergraph on S.

Proof. We verify each specialization:

1. (Crisp case) Set σ+(v) = 1, σ−(v) = 0 for Yutakary v ∈ V , and µ+(e) = 1, µ−(e) = 0

for Yutakary e ∈ E. Then the membership constraints become µ+(e) ≤ 1 and µ−(e) ≥
0, which hold tautologically, and all vertices and edges are “fully present.” Thus the
structure is exactly a directed n-Super-HyperGraph

(
V,E

)
.

2. (Fuzzy case) Further impose σ−(v) = 0, µ−(e) = 0. Then only the positive functions
σ+, µ+ remain nontrivial, and the definition coincides with that of a fuzzy directed
n-Super-HyperGraph

(
V,E, σ+, µ+

)
(Definition 2.10).

3. (Hypergraph case) Take n = 0. Then POW0(S) = S, so V ⊆ S and E ⊆ S × S. The
resulting sextuple

(
V,E, σ+, σ−, µ+, µ−) is precisely the definition of a bipolar fuzzy

directed hypergraph on S (see Definition Bipolar Fuzzy Directed Hypergraph).

In each case the defining inequalities reduce to those of the classical structure, showing that
BFDnSupHyG(n) is a common generalization.
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Theorem 3.6 (Membership Interval Inclusion). Let
BFDnSupHyG(n) = (V,E, σ+, σ−, µ+, µ−) be a bipolar fuzzy directed n-Super-HyperGraph
as in the Definition. Then for Yutakary directed n-superedge e = (T (e),H(e)) ∈ E,[

µ−(e), µ+(e)
]
⊆

⋂
x∈T (e)∪H(e)

[
σ−(x), σ+(x)

]
.

Proof. By Definition 3.1, we have

µ+(e) ≤ min
x∈T (e)∪H(e)

σ+(x) and µ−(e) ≥ max
x∈T (e)∪H(e)

σ−(x).

Hence for each x ∈ T (e) ∪H(e) the following two inequalities hold simultaneously:

σ−(x) ≤ µ−(e) and µ+(e) ≤ σ+(x).

It follows that

µ−(e) ≥ σ−(x) =⇒ µ−(e) ∈
[
σ−(x), σ+(x)

]
,

and

µ+(e) ≤ σ+(x) =⇒ µ+(e) ∈
[
σ−(x), σ+(x)

]
.

Since this holds for all x ∈ T (e) ∪H(e), we conclude µ−(e) and µ+(e) lie in the intersection
of the vertex intervals, proving the claim.

Theorem 3.7 (Induced Subhypergraph). Let BFDnSupHyG(n) = (V,E, σ+, σ−, µ+, µ−) and
let V ′ ⊆ V be any nonempty subset of supervertices. Define

E′ =
{
e ∈ E : T (e) ∪H(e) ⊆ V ′}.

Then BFDnSupHyG′ = (V ′, E′, σ+ |V ′ , σ− |V ′ , µ+ |E′ , µ− |E′) is again a bipolar fuzzy directed
n-Super-HyperGraph.

Proof. We check each requirement of Definition 3.1 in the restricted structure:

• V ′ ⊆ POWn(S) and E′ ⊆ POWn(S)× POWn(S) by construction.
• σ+ |V ′ and σ− |V ′ are well-defined maps V ′ → [0, 1] and V ′ → [−1, 0], respectively.
• µ+ |E′ and µ− |E′ are well-defined maps E′ → [0, 1] and E′ → [−1, 0].
• For any e ∈ E′, since e ∈ E, the original inequalities µ+(e) ≤ minx∈T (e)∪H(e) σ

+(x)

and µ−(e) ≥ maxx∈T (e)∪H(e) σ
−(x) hold. Restricting the domains does not affect their

validity.
• Similarly, the disjointness of supports supp+(T (e)) ∩ supp+(H(e)) = ∅ and
supp−(T (e)) ∩ supp−(H(e)) = ∅ continues to hold, as these conditions refer only to
vertices in T (e) ∪H(e) ⊆ V ′.
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Thus all axioms are inherited by the induced substructure, proving it is a valid Bipolar Fuzzy
Directed n-Super-HyperGraph.

Theorem 3.8 (Edge Composition Closure). Let BFDnSupHyG(n) = (V,E, σ+, σ−, µ+, µ−).
Suppose e1, e2 ∈ E satisfy

supp+(H(e1)) ∩ supp+(T (e2)) = ∅, supp−(H(e1)) ∩ supp−(T (e2)) = ∅.

Define the composed edge

e3 =
(
T (e1), H(e2)

)
,

and assign new membership functions

µ+
C(e3) = min

{
µ+(e1), µ

+(e2)
}
, µ−

C(e3) = max
{
µ−(e1), µ

−(e2)
}
,

while keeping σ± unchanged on V . Then
(
V,E∪{e3}, σ+, σ−, µ+

C , µ
−
C

)
again satisfies all axioms

of a Bipolar Fuzzy Directed n-Super-HyperGraph.

Proof. We must verify the four defining properties for the new edge e3:
(1) Tail and Head membership bounds. By hypothesis,

µ+(ei) ≤ min
x∈T (ei)∪H(ei)

σ+(x), µ−(ei) ≥ max
x∈T (ei)∪H(ei)

σ−(x), i = 1, 2.

Hence

µ+
C(e3) = min{µ+(e1), µ

+(e2)} ≤ min
{

min
x∈T (e1)∪H(e1)

σ+(x), min
y∈T (e2)∪H(e2)

σ+(y)
}
.

Noting T (e3) = T (e1) and H(e3) = H(e2), we deduce

µ+
C(e3) ≤ min

z∈T (e3)∪H(e3)
σ+(z).

An analogous argument using maxima shows

µ−
C(e3) = max{µ−(e1), µ

−(e2)} ≥ max
z∈T (e3)∪H(e3)

σ−(z).

(2) Disjointness of positive supports. Since supp+(H(e1)) ∩ supp+(T (e2)) = ∅, and T (e3) =

T (e1), H(e3) = H(e2), we have

supp+(T (e3)) ∩ supp+(H(e3)) = supp+(T (e1)) ∩ supp+(H(e2)) = ∅.

(3) Disjointness of negative supports. Similarly,

supp−(T (e3)) ∩ supp−(H(e3)) = supp−(T (e1)) ∩ supp−(H(e2)) = ∅.
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(4) Domain and range. Obviously e3 ∈ POWn(S) × POWn(S), so adding e3 does not violate
E ⊆ POWn(S)× POWn(S).

Thus all requirements remain satisfied upon adding e3, proving the composition closure.

Theorem 3.9 (Order–LYutakal Re-
striction). Let BFDnSupHyG(n) = (Vn, En, σ

+
n , σ

−
n , µ

+
n , µ

−
n ). For any integer 0 ≤ m ≤ n,

define

Vm = Vn ∩ POWm(S), Em = En ∩
(
POWm(S)× POWm(S)

)
,

with membership functions restricted accordingly: σ±
m = σ±

n |Vm, µ±
m = µ±

n |Em. Then
BFDnSupHyG(m) = (Vm, Em, σ+

m, σ−
m, µ+

m, µ−
m) is a bipolar fuzzy directed m-Super-HyperGraph.

Proof. The proof is analogous to that of Theorem 3.7. Since POWm(S) ⊆ POWn(S), the
restricted sets Vm and Em lie in the correct domains. All membership inequalities and support-
disjointness conditions are inherited verbatim by restriction, because they depend only on the
values of σ±

n , µ
±
n on members of Vm and Em. Thus the axioms persist at lYutakal m.

Theorem 3.10 (Fuzzy Specialization). If in BFDnSupHyG(n) one has σ−(v) = 0 for all v ∈ V

and µ−(e) = 0 for all e ∈ E, then the structure reduces to a fuzzy directed n-Super-HyperGraph(
V,E, σ+, µ+

)
.

Proof. Under the assumption σ− ≡ 0 and µ− ≡ 0, the negative-membership constraints be-
come trivial: µ−(e) ≥ maxσ−(x) reduces to 0 ≥ 0. The positive-membership constraints
µ+(e) ≤ minσ+(x) remain exactly those of Definition 2.10. All disjointness conditions on
supp− are vacuous, and supp+-disjointness is retained. Hence the structure is precisely a
fuzzy directed n-Super-HyperGraph.

Theorem 3.11 (Zero-order Specialization). If n = 0 in BFDnSupHyG(n) =

(V,E, σ+, σ−, µ+, µ−), then V ⊆ S and E ⊆ S × S, and the structure coincides with the
classical bipolar fuzzy directed hypergraph on S.

Proof. By definition POW0(S) = S. Thus all “supervertices’’ lie in S and all “superedges’’ in
S×S. The axioms of Definition 3.1 then specialize exactly to those of a bipolar fuzzy directed
hypergraph (see Definition “Bipolar Fuzzy Directed Hypergraph’’). No further verification is
needed.
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4. Conclusion and Future Work

This paper has presented a new graph-based framework—Bipolar Fuzzy Super-HyperGraphs.
For future work, we plan to extend these constructions by incorporating Neutrosophic Sets [43],
hyperneutrosophic sets [44, 45], bipolar neutrosophic sets [46], and Plithogenic Sets [47]. We
also aim to explore related generalizations based on bidirected graphs [48] and multidirected
graphs [18].
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