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Abstract: For multivalued mappings, Fixed point theorems are examined in this study within the 

context of Neutrosophic fuzzy metric spaces (NFMS), which are a further period of classical fuzzy 

metric spaces (FMS) that enable a more sophisticated depiction of indeterminacy, ambiguity, and 

uncertainty. We define and show three fixed point (fp) theorems under different contractive-type 

circumstances using the neutrosophic fuzzy Hausdorff metric by generalizing well-known fixed 

point results from full cone metric spaces. These findings complement and integrate previous 

research on multivalued contractions in fuzzy and cone metric contexts. A versatile and reliable 

method for examining the presence of fixed points for multivalued operators under neutrosophic 

uncertainty is offered by the introduced theorems. Additionally, illustrative examples are provided 

to show how the primary findings are applicable. 
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1. Introduction 

With a wide range of applications in dynamical systems, differential and integral equations, 

nonlinear functional analysis, and decision theory, fixed point theory is a key tool in contemporary 

analysis. Many extensions, such as those in fuzzy metric spaces [George & Veeramani, 1994 [1]], 

multivalued mappings [Nadler, 1969 [5]], and cone metric spaces [Huang & Zhang, 2007], have been 

motivated by classical conclusions like Banach's contraction principle.  Ghosh [6] prsented NFMS in 

2024. Researchers have created frameworks that more effectively manage the inherent uncertainty 

and indeterminacy of real-world problems thanks to the development of fuzzy set theory and 

Smarandache's introduction of neutrosophic logic. To model truth, falsity, and indeterminacy 

components simultaneously, neutrosophic fuzzy metric spaces which were first presented in recent 

combine fuzzy metrics with neutrosophic logic [1-16]. 

Numerous applications, including differential inclusions, game theory, and optimization, 

inherently include multivalued mappings. For such mappings in neutrosophic fuzzy metric spaces, 

fixed point (fp) theorems are still largely unexplored. This gap motivates us to propose and generalize 

fixed point findings for multivalued mappings under uncertainty that is neutrosophic. 
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2. Preliminaries  

Definition 2.1. [5] A t-norm stands a binary operation ∗: [0,1]2 → [0,1]  filling the following 

properties for all 𝑎, 𝑏, 𝑐 ∈ [0,1] 

1. Commutativity: 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

2. Associativity: 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 

3. Monotonicity: If 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑 then 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 

4. Identity: 𝑎 ∗ 1 = 𝑎 

A t-conorm ∆: [0,1]2 → [0,1] is defined similarly, with 𝑎∆0 = 𝑎 as the identity element.  

Definition 2.2 [2] Consider the non-empty set 𝑋. A NFMS is a quituple (𝑋, 𝑀, 𝑁,∗, ∆) where 

𝑀: 𝑋 × 𝑋 × (0, ∞) → [0,1] represents the truth-membership degree 

𝑁: 𝑋 × 𝑋 × (0, ∞) →  [0,1] represents the indetermincy-membership degree. 

∗ is a continous t-norm and ∆ is a continuous 𝑡-conorm 

These satisfy the following conditions for all 𝜉, Γ, ℶ ∈ 𝑋 and 𝑠, 𝑡 > 0  

1. 𝑀(𝜉, Γ, 𝑡) > 0 and 𝑀(𝜉, Γ, 𝑡) = 1 ⟺ 𝜉 = Γ 

2. 𝑀(𝜉, Γ, 𝑡) = 𝑀(Γ, 𝜉, 𝑡)  

3. 𝑀(𝜉, 𝑧, 𝑡 + 𝑠) ≥ 𝑀(𝜉, Γ, 𝑡) ∗ 𝑀(Γ, 𝑧, 𝑠) 

4. 𝑁(𝜉, Γ, 𝑡) < 1 and 𝑁(𝜉, Γ, 𝑡) = 0 ⇒ 𝜉 = Γ 

5. 𝑁(𝜉, Γ, 𝑡) = 𝑁(Γ, 𝜉, 𝑡)  

6. 𝑀(𝜉, ℶ, 𝑡 + 𝑠) ≥ 𝑀(𝜉, Γ, 𝑡)∆ 𝑀(Γ, ℶ, 𝑠) 

Definition 2.3: The convergence of a sequence  {𝜉𝑛} to ℩ in 𝑋 is defined as follows: for any 𝑡 > 0, 

lim
𝑛→∞

𝑀(𝜉𝑛, 𝜉, 𝑡) = 1 and lim
𝑛→∞

𝑁(𝜉𝑛, 𝜉, 𝑡) = 0 

Definition 2.4: A sequence {𝜉𝑛} in 𝑋 is considered Cauchy, if for every 𝑡 > 0 lim
𝑚,𝑛→∞

𝑀(𝜉𝑛, 𝜉𝑚, 𝑡) = 1 

and lim
𝑚,𝑛→∞

𝑁(𝜉𝑛, 𝜉𝑚, 𝑡) = 0 

Definition 2.5: If every Cauchy sequence converges,  the NFMS is complete 

Definition 2.6: Let CB(X) denote the collection of all non empty, closed, and bounded subsets of 𝑋. 

A multivalued mapping is a function 𝑇: 𝑋 → 𝐶𝐵(𝑋) that assigns a set 𝑇(𝜉) to each point  

 𝜉 ∈ 𝑋 

Definition 2.7: Let 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋). The Hausdorff neutrosphic fuzzy metric between 𝐴 and 𝐵 at time 

𝑡 > 0 is defined by  

𝐻𝑀(𝐴, 𝐵, 𝑡) = min { inf
𝑎∈𝐴

 sup
𝑏∈𝐵

 𝑀(𝑎, 𝑏, 𝑡), inf
𝑏∈𝐵

 sup
𝑎∈𝐴

 𝑀(𝑎, 𝑏, 𝑡) } 

And similarly for the interminancy metric 

𝐻𝑁(𝐴, 𝐵, 𝑡) = min {sup
𝑎∈𝐴

 inf
𝑏∈𝐵

 𝑁(𝑎, 𝑏, 𝑡), sup
𝑏∈𝐵

 inf
𝑎∈𝐴

 𝑁(𝑎, 𝑏, 𝑡) } 
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3. Main Results  

Theorme 3.1: Let (𝑋, 𝑀, 𝑁,∗, ∆)  be a complete NFMS and let 𝑇: 𝑋 → 𝐶𝐵(𝑋)  be a multivalued 

mapping  such that for all 𝜉, Γ ∈ 𝑋 and for each 𝑡 > 0 the following inequality holds. 

𝐻𝑀(𝑇𝜉, 𝑇Γ, 𝑡) ≥ 𝑀(𝜉, 𝑇𝜉, 𝑡)𝑎 ∗ 𝑀(Γ, 𝑇Γ, 𝑡)𝑎 ∗ 𝑀(𝜉, 𝑇Γ, 𝑡)𝑏 ∗ 𝑀(𝑇𝜉, Γ, 𝑡)𝑏 

Where 𝑎, 𝑏 ∈ [0,
1

2
) and 𝑎 + 𝑏 <

1

2
, Consequenty 𝑇 reprsents a fixed point, meaning that  

𝜉∗ ∈ 𝑋 such that 𝜉∗ ∈ 𝑇(𝜉∗) 

Proof: 

Assume that 𝜉0 ∈ 𝑋 be arbitrary. 

 𝑇(𝜉0) ∈ 𝐶𝐵(𝑋) there exists 𝜉1 ∈ 𝑇(𝜉0) 

Assume 𝜉𝑛 ∈ 𝑋 is given. Since 𝑇(𝜉𝑛) is nonempty, choose 𝜉𝑛+1 ∈ 𝑇(𝜉𝑛) 

This process defined a sequence {𝜉𝑛} ⊂ 𝑋 such that  

𝜉𝑛+1 ∈ 𝑇(𝜉𝑛), ∀𝑛 ∈ ℕ 

From the hypothesis, for each 𝑛 ∈ ℕ and 𝑡 > 0 we apply the inquality to 𝜉𝑛 and 𝜉𝑛+1 

𝐻𝑀(𝑇𝜉𝑛, 𝑇𝜉𝑛+1, 𝑡) ≥ 𝑀(𝜉𝑛, 𝑇𝜉𝑛+1, 𝑡)𝑎 ∗ 𝑀(𝜉𝑛+1, 𝑇𝜉𝑛+1, 𝑡)𝑎 ∗ 𝑀(𝜉𝑛, 𝑇𝜉𝑛+1, 𝑡)𝑏 ∗ 𝑀(𝑇𝜉𝑛, 𝜉𝑛+1, 𝑡)𝑏 

Since 𝜉𝑛+1 ∈ 𝑇(𝜉𝑛) and 𝜉𝑛+2 ∈ 𝑇(𝜉𝑛+1) 

We can estimate the Hausdorff distance 

𝐻𝑀(𝑇𝜉𝑛, 𝑇𝜉𝑛+1, 𝑡) ≤ 1 − 𝛿𝑛 

For some 𝛿𝑛 > 0, Then 

𝑀(𝜉𝑛, 𝜉𝑛+1, 𝑡) ≤ 1 − 𝛿𝑛 

We aim to prove that 𝛿𝑛 → 0 as 𝑛 → ∞ 

lim
𝑛→∞

𝑀(𝜉𝑛 , 𝜉𝑛+1, 𝑡) = 1 

The sequence is Cauchy in neutrosophic fuzzy metric space. 

By propterties of the t-norm and bounds 𝑎, 𝑏 ∈ [0,
1

2
)  there exists λ ∈ (0,1) 

𝑀(𝜉𝑛+1, 𝜉𝑛+2, 𝑡) ≥ 𝜆𝑀(𝜉𝑛, 𝜉𝑛+1, 𝑡) 

Which leads to a recursive inequality showing that 

𝑀(𝜉𝑛, 𝜉𝑛+𝑘, 𝑡) → 1 as 𝑛 → ∞ 

Thus {𝜍𝑛} is a Cauchy sequence in (𝑋, 𝑀, 𝑁,∗, ∆) is a CNFMS, there exists 𝜉∗ ∈ 𝑋 such that  

lim
𝑛→∞

𝑀(𝜉𝑛, 𝜉∗, 𝑡) = 1, ∀ 𝑡 > 0 

That is 𝜉𝑛 → 𝜉∗ in the neutrosophic fuzzy  

We know that 𝜉∗ ∈ 𝑇(𝜉∗) 

𝜉𝑛+1 ∈ 𝑇(𝜉𝑛)  

𝜉𝑛 → 𝜉∗ , 𝑇 maps into closed subsets of 𝑋 

𝐻𝑀(𝑇(𝜉𝑛), 𝑇(𝜉∗)) → 0 by the continuity of 𝑇 under 𝐻𝑀 

Hence form the continuity of the neutrosophic Hausdorff metric, for every 𝜀 > 0 there exists 𝑁 ∈ ℕ 

such that 𝐻𝑀(𝑇(𝜉𝑛), 𝑇(𝜉∗)) < 𝜀, ∀𝑛 ≥ 𝑁 

Since 𝜍𝑛+1 ∈ 𝑇(𝜍𝑛) and 𝑇(𝜍𝑛) approximates 𝑇(𝜉∗) the sequence {𝜉𝑛+1} converging to 𝑥∗ implies 

𝜉∗ ∈ 𝑇(𝜉∗) 

∴ Fixed point of 𝑇 is 𝜉∗. 
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Example: 

Let 𝑋 = [0,1] be the closed unit intveral.  

Define the neutrosophic fuzzy metric (𝑀, 𝑁) as follows 

For all 𝜉, Γ ∈ 𝑋 and 𝑡 > 0 

Define 𝑀(𝜉, Γ, 𝑡) =
𝑡

𝒕+|𝜉−Γ|
 , 𝑁(𝜉, Γ, 𝑡) = 1 − 𝑀(𝜉, Γ, 𝑡) 

Let the t-norm be ordinary multiplication 𝑎 ∗ 𝑏 = 𝑎𝑏 

And the s-norm 𝑎∆𝑏 = 𝑚𝑖𝑛{𝑎 + 𝑏, 1} 

Following choised satisfy the conditions for a neutrosophic metric space 

 𝑀(𝜉, 𝜉, 𝑡) = 1 

 𝑀(𝜉, Γ, 𝑡) = 𝑀(Γ, 𝜉, 𝑡) 

𝑀(𝜉, Γ, 𝑡) is non-decreasing in 𝑡 

The triangular inequality holds under the defined 𝑀 

Also (𝑋, 𝑀, 𝑁,∗, ∆) is complete under this metric 

Define a multivalued mapping 𝑇: 𝑋 → 𝐶𝐵(𝑋) as 

𝑇(𝜉) = {
[0,

𝜋

2
] , 𝑖𝑓 𝜉 > 0

{0}, 𝑖𝑓 𝜉 = 0
  

So 𝑇(𝜉) is a closed subinterval of [0,1] and 𝑇(𝜉) ∈ 𝐶𝐵(𝑋) for all 𝜉 ∈ 𝑋. 

Theorme 3.2: Let (𝑋, 𝑀, 𝑁,∗, ∆) be a CNFMS and  𝑇: 𝑋 → 𝐶𝐵(𝑋) be a multivalued mapping so that 

for all 𝜉, Γ ∈ 𝑋 and for each 𝑡 > 0 the subsequent inequality holds. 

𝐻𝑀(𝑇𝜉, 𝑇Γ, 𝑡) ≥ 𝑟 ∗ min{ 𝑀(𝜉, Γ, 𝑡), 𝑀(𝜉, 𝑇𝜉, 𝑡), 𝑀(Γ, 𝑇Γ, 𝑡)} 

For some constant 𝑟 ∈ (0,1). Consequenty 𝑇 reprsents a fixed point in 𝑋.  

Where 𝑎, 𝑏 ∈ [0,
1

2
) and 𝑎 + 𝑏 <

1

2
, then 𝑇 has a fixed point that is there exists 𝜉∗ ∈ 𝑋 such that 𝜉∗ ∈

𝑇(𝜉∗) 

Proof: 

Assume that 𝜉0 ∈ 𝑋 be arbitrary. 

Since 𝑇(𝜉0) ∈ 𝐶𝐵(𝑋) there exists 𝜉1 ∈ 𝑇(𝜍0) 

Assume 𝜉𝑛 ∈ 𝑋 is given. Since 𝑇(𝜉𝑛) is nonempty, choose 𝜉𝑛+1 ∈ 𝑇(𝜉𝑛) 

This process defined a sequence {𝜉𝑛} ⊂ 𝑋 such that  

𝜉𝑛+1 ∈ 𝑇(𝜉𝑛), ∀𝑛 ∈ ℕ 

Apply the given condition with 𝜉 = 𝜉𝑛, Γ = 𝜉𝑛+1, 𝑡 > 0 

𝐻𝑀(𝑇𝜉𝑛, 𝑇𝜉𝑛+1, 𝑡) ≥ 𝑟 ∗ min{ 𝑀(𝜉𝑛, 𝜉𝑛+1, 𝑡), 𝑀(𝜉𝑛, 𝑇𝜉𝑛, 𝑡), 𝑀(𝜉𝑛+1, 𝑇𝜉𝑛+1, 𝑡)} 

Since 𝜉𝑛+1 ∈ 𝑇(𝜉𝑛) 

𝑀(𝜉𝑛, 𝑇𝜉𝑛, 𝑡) ≥ 𝑀(𝜉𝑛, 𝜉𝑛+1, 𝑡) and 

 𝑀(𝜉𝑛+1, 𝑇𝜉𝑛+1, 𝑡) ≥ 𝑀(𝜉𝑛+1, 𝜉𝑛+2, 𝑡) 

 𝐻𝑀(𝑇𝜉𝑛, 𝑇𝜉𝑛+1, 𝑡) ≥ 𝑟 ∗ 𝑀(𝜉𝑛, 𝜉𝑛+1, 𝑡) 

But 𝜉𝑛+1 ∈ 𝑇(𝜉𝑛) and 𝜉𝑛+2 ∈ 𝑇(𝜉𝑛+1) then 

 𝑀(𝜉𝑛+1, 𝜉𝑛+2, 𝑡) ≥ 𝐻𝑀(𝑇𝜉𝑛, 𝑇𝜉𝑛+1, 𝑡) 

Combining  
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 𝑀(𝜉𝑛+1, 𝜉𝑛+2, 𝑡) ≥ 𝑟 ∗ 𝑀(𝜉𝑛, 𝜉𝑛+1, 𝑡) 

Continuing this process we get 

𝑀(𝜉𝑛+𝑘, 𝜉𝑛+𝑘+1, 𝑡) ≥ 𝑟𝑘 ∗ 𝑀(𝜉𝑛, 𝜉𝑛+1, 𝑡) 

To Prove {𝜉𝑛} is a Cauchy sequence  

For any 𝑛 > 𝑚 using the neutrosophic fuzzy triangle inequality 

𝑀(𝜉𝑚, 𝜉𝑛, 𝑡) ≥ 𝑀(𝜉𝑚, 𝜉𝑚+1, 𝑡1) ∗ 𝑀(𝜉𝑚, 𝜉𝑚+2, 𝑡2) ∗ … ∗ 𝑀(𝜉𝑛−1, 𝜉𝑛, 𝑡𝑘) 

Where ∑ 𝑡𝑖 = 𝑡 

Each term is the prodcut is bounded below by a power of 𝑟 

𝑀(𝜉𝑚, 𝜉𝑛, 𝑡) ≥ 𝑟𝑛−𝑚 ∗ 𝑀(𝜉0, 𝜉1, 𝑡) 

As 𝑛 − 𝑚 → ∞, 𝑟𝑛−𝑚 → 0 

So, 𝑀(𝜉𝑚, 𝜉𝑛, 𝑡) → 1 as 𝑚, 𝑛 → ∞ 

Thus, {𝜉𝑛} is a Cauchy sequence in the NFMS.  

Since (𝑋, 𝑀, 𝑁,∗, ∆) is complete, there exists 𝜉∗ ∈ 𝑋 such that  

lim
𝑛→∞

𝜉𝑛 = 𝜉∗ ⇒ 𝑀(𝜉𝑛, 𝜉∗, 𝑡) → 1 ∀𝑡 > 0 

Now we show that 𝜉∗ ∈ 𝑇(𝜉∗)   

We know that 𝜉∗ ∈ 𝑇(𝜉∗) 

𝜉𝑛+1 ∈ 𝑇(𝜉𝑛)  

𝜉𝑛 → 𝜉∗, 

The graph of  𝑇 is closed under the Hausdorff metric  𝐻𝑀 

Then by the continuity of the neutrosophic fuzzy Hausdorff metric and closedness of the value of 𝑇. 

We have 𝜉𝑛+1 → 𝜉∗ and 𝐻𝑀(𝑇𝜉𝑛, 𝑇𝜉∗) → 0 ⇒ 𝜉∗ ∈ 𝑇(𝜉∗) 

Hence 𝜉∗ is a fixed pint of 𝑇. 

 

4. Conclusions  

Two important FP theorems for multivalued mappings in the context of CNFMS have been 

proven in this work. By taking into consideration the fuzziness and indeterminacy present in 

neutrosophic contexts, as well as multivaluedness and set-valued Hausdorff distances, this result 

goes beyond traditional fixed point results. All of these findings contribute to the body of knowledge 

on fixed point theory in fuzzy and neutrosophic environments, especially when it comes to 

multivalued mappings. They provide opportunities for more study in dynamic systems, decision-

making models, and optimization issues where non-uniqueness of solutions, uncertainty, and 

indeterminacy are significant. 
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