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Abstract: This study enhances the precision of predicting daily Saudi stock market closing prices 

and returns by integrating the Maximum Overlapping Discrete Wavelet Transform (MODWT) 

spectral model with the Wang-Mendel (WM) method, the latter known for generating interpretable 

fuzzy rules and its financial applications like the Wang transform for risk pricing. WM forms the 

foundation for Neutrosophic Logic, which expands it by adding indeterminacy (I) and falsity (F) to 

truth (T) for advanced uncertainty modeling. Utilizing five wavelet basis functions and daily 

Tadawul closing prices (August 2017 - September 2022), inputs for Model (1) predicting returns 

(SMR) were selected as Real Estate Investment Trusts return(REIT), Real Estate Management & 

Development returns (REMD), and Brent oil returns (ROIL), while Model (2) predicting closing prices 

(NSM) used Real Estate Management & Development closing prices (NREMD) and Brent oil closing 

prices (NOIL), following variable selection via multiple regression, multicollinearity (tolerance, VIF), 

fixed/random effects, unit root, and Granger causality tests, with min-max normalization applied. 

Results show MODWT-d4 with ARIMA(1,0,0) (non-zero mean) for Model (1) and MODWT-d4 with 

ARIMA(5,1,0) for Model (2) outperformed other wavelets on the 80% training data based on lower 

error; furthermore, the MODWT-C6-WM hybrid model surpassed traditional models in forecasting 

the remaining 20% for returns (Model 1), while the MODWT-La8-WM hybrid excelled for price 

forecasting (Model 2).   
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1. Introduction 

The Saudi Stock Exchange (Tadawul) has experienced remarkable expansion in recent years. 

In 2020, it ranked among the world's top 10 exchanges by market capitalization, securing ninth place 

globally among 67 financial markets and third place among emerging markets (WFE 2020). This 

prominent market features high liquidity and is regulated by the Capital Market Authority (CMA). 

Established in 1988, the Tadawul All Share Index (TASI) serves as its primary benchmark [1]. 

Financial analysts predict Tadawul will continue its growth trajectory, driven by increasing 

foreign investment. External investors are drawn to the market despite its inherent volatility and 

potential risks, largely due to the prospect of significant capital gains. While recent political and 

global economic uncertainty has heightened market fluctuations—raising investor concerns—this 

environment also presents opportunities for higher returns. Although Tadawul remains 

comparatively volatile, the potential rewards may outweigh the risks for investors willing to take 

calculated positions. Foreign investors maintain a positive outlook on the Saudi economy and 

Tadawul's future. This optimism stems from the Kingdom's diversified financial assets, expanding 

investment opportunities in sectors like telecommunications and banking, a stable regulatory 

framework, and the attractiveness of non-dollar-denominated assets amid a weaker US dollar. 

Overall, Saudi Arabia's influential economic position, combined with its regulatory stability, 

underpins Tadawul's appeal [2,3]. 

The stock markets of the Gulf Cooperation Council (GCC) countries are significantly 

influenced by key factors including geopolitical risk, crude oil price fluctuations, and the COVID-19 

pandemic. Research has consistently explored these relationships. [4], examining stock return 

predictability from 2007 to 2019, identified geopolitical risk and crude oil returns as crucial 

determinants. Their findings indicate that heightened geopolitical risk reduces stock returns, while 

rising oil prices enhance returns. The distinct impact of the COVID-19 pandemic on GCC stock 

markets was specifically addressed by [5]. Furthermore, [6] analyzed the oil-stock market nexus from 

2004 to 2019, employing Rademacher oil price decomposition and quantile regression. Their results 

confirm a significant short- and long-term relationship, demonstrating that oil prices exert a 

substantial influence on GCC stock returns. Expanding the analysis to sectoral impacts, [7]  

investigated the effects of oil price volatility and geopolitical risk on GCC stock sectors. Their study 

revealed significant impacts on both the energy and financial sectors, with oil volatility exhibiting a 

particularly pronounced effect during periods of high market returns. 

Wavelet Transform (WT) is a mathematical technique widely employed in signal processing 

and time-frequency decomposition to break down non-stationary signals into constituent frequency 

components [8,9]. When applied to stock price data, WT decomposes it across multiple scales and 

frequencies, enabling a granular analysis of volatility patterns. This method effectively captures 

complex volatility structures and enhances forecasting of future market trends. By providing a more 

precise representation of market behavior, WT empowers investors and analysts to enhance 

investment decision-making. The utilization of WT in finance, particularly for stock market analysis, 

has garnered significant attention. A key application area is volatility analysis – measuring the 
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magnitude of price fluctuations over time – which is critical for investors and analysts to assess 

potential risks and returns [10]. 

The prediction of stock movements in Saudi Arabia's Tadawul exchange employs diverse 

models with varying inputs and sample sizes, where advanced techniques like machine learning and 

time series analysis show significant promise. Notable approaches include: a hybrid Long Short-Term 

Memory (LSTM) model integrated with Discrete Wavelet Transform (DWT) and ARIMA, achieving 

97.54% accuracy using historical closing prices [11]; ARIMA applied to Tadawul All Share Index 

(TASI) data, though outperformed by LSTM[12]; a hybrid MODWT-Adaptive Network-based Fuzzy 

Inference System (ANFIS) incorporating oil prices and repo rates [13]; GARCH-family models 

(GARCH(1,1), EGARCH(1,1), GRJ-GARCH(1,1)) for volatility estimation [14]; and a Dynamic 

Evolving Neural Fuzzy Inference System (DENFIS) combined with MODWT using lagged prices and 

oil data [8]. Despite demonstrating effectiveness, inherent market volatility necessitates ongoing 

model refinement to enhance predictive accuracy. 

The Wang-Mendel (WM) methodology, developed for generating interpretable and accurate 

fuzzy rule-based systems in complex data environments, has evolved significantly since its inception, 

finding notable application in finance, particularly through the widely used Wang transform for 

pricing financial instruments under risk [15]. In this study, we present a novel approach building on 

this foundation, predicting stock market closing prices and returns of the Tadawul All Share Index 

(TASI) using a hybrid methodology that combines maximal overlap discrete wavelet transform 

(MODWT) functions with the WM model. Our proposed approach leverages the WM methodology's 

ability to handle uncertainty and provide interpretable results for financial forecasting by first using 

MODWT to decompose stock market data into multiple scales and frequency bands, which are then 

fed as input to the WM model.  While the WM methodology shows promise, its effectiveness can be 

limited by data complexity and variable selection [16] . Our approach is an innovative and powerful 

tool that can provide investors and financial analysts with reliable predictions of stock market 

volatility.  

Neutrosophic uncertainty extends traditional fuzzy logic by explicitly incorporating 

indeterminacy (I) as a fundamental component alongside truth (T) and falsity (F), offering a more 

nuanced framework for modeling real-world uncertainty. Introduced by [17], neutrosophic logic 

generalizes several predecessor theories: (1) fuzzy sets [18], which represent partial membership but 

lack explicit indeterminacy; (2) intuitionistic fuzzy sets [19], which track membership and non-

membership yet still conflate uncertainty with conflict; and (3) paraconsistent logic, which tolerates 

contradictions but does not quantify ignorance [20]. Unlike these models, neutrosophic logic operates 

on three independent dimensions (T, I, F ∈ ]⁻0, 1⁺[), enabling the distinct representation of ambiguity 

(e.g., incomplete data), conflict (e.g., contradictory evidence), and classical uncertainty (e.g., 

probabilistic likelihood) [17]. For instance, in financial markets, investor sentiment might exhibit high 

truth (T = 0.8, strong bullish indicators), moderate falsity (F = 0.3, some bearish signals), and notable 

indeterminacy (I = 0.4, reflecting unresolved geopolitical factors)—a scenario poorly captured by 

fuzzy or intuitionistic methods.   
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The paper is structured as follows: Section 2 offers a review of the related literature on 

predicting stock market volatility. Section 3 provides a detailed explanation of the methodology and 

mathematical approach. Section 4 describes the data used in the study, while Section 5 presents 

experimental results and compares them with existing models. Section 6 outlines the limitations of 

this study and suggests future research directions. The paper is concluded in Section 7. 

 

2. Literature Review 

Predicting the stock market is crucial for investors and financial analysts to optimize 

investment decisions and risk management strategies. The development of various models and 

techniques has significantly enhanced forecasting capabilities. One foundational approach is the 

Autoregressive Conditional Heteroskedasticity (ARCH) model introduced by [21], which estimates 

the conditional variance of returns using past squared residuals [22]. ARCH models effectively 

capture volatility clustering—the phenomenon where periods of high volatility tend to cluster 

together. [22] extended this framework with the Generalized ARCH (GARCH) model, incorporating 

both lagged conditional variances and lagged squared residuals to improve accuracy, particularly in 

modeling long-term volatility persistence. Demonstrating the continued evolution of such methods, 

[23] employed a Time-Varying Parameter Vector Autoregression (TVP-VAR) model, based on 

Diebold and Yilmaz’s technique, to analyze daily data (2013–2020) and investigate volatility 

spillovers and dynamic linkages between crude oil, gold, and Chinese stock markets. 

Artificial Neural Networks (ANNs) are a popular technique widely applied to stock price 

prediction. [24] demonstrated their potential early by developing a hybrid ANN-fuzzy logic system 

that achieved a notable 86.17% prediction accuracy; however, the timeframe referenced ("last 20 

years") relative to their publication date requires clarification. More recently, the Random Forest (RF) 

model has gained significant attention. [25] utilized RF to investigate the predictive power of industry 

returns—constructed according to the Global Industry Classification Standard using data from 1972 

to 2016—on overall stock market movements. This study found the RF model delivered superior 

accuracy and out-of-sample prediction performance compared to linear regression and neural 

networks. Advancing volatility forecasting specifically, [10] introduced a novel hybrid approach 

integrating the Exponential GARCH (EGARCH) model with a selected Maximal Overlap Discrete 

Wavelet Transform (MODWT) function, aiming to enhance stock market volatility prediction 

accuracy. 

To enhance stock market volatility forecasting accuracy, [26]  introduced the Trend 

Deterministic Data Preparation (TDDP) method, designed to remove trend components from data 

before input into machine learning (ML) models. Applying TDDP alongside algorithms including 

Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and decision trees to 10 years 

of daily Bombay Stock Exchange (BSE) data (2001-2010), they found TDDP significantly improved 

model accuracy and prediction consistency, with ANNs demonstrating superior performance among 

individual algorithms. Building on this, [27] employed an ensemble approach combining ANNs, 

decision trees, SVMs, and K-Nearest Neighbors (KNN) on the same BSE dataset. This ensemble 
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outperformed all individual models, achieving the highest prediction accuracy; notably, ANNs and 

SVMs were the strongest base models, and their combination with others yielded further gains. Both 

Patel studies acknowledged that external factors (e.g., political events, market trend shifts) not 

incorporated into their models could impact accuracy. More recently, [28,29] proposed a hybrid 

model integrating the Fuzzy Inference Rules by Descent Method (FIR.DM), the heuristic gradient 

descent (FS.HGD) and hybrid neural fuzzy inference system (HyFIS) with MODWT functions for 

predicting Tadawul All Share Index (TASI) volatility, demonstrating its superiority over standard 

models like ARIMA and traditional models.  

[8] developed a hybrid MODWT-Haar-DENFIS model to forecast volatility (LSCP) in the 

Saudi stock market (Tadawul), using 4,609 daily observations (2006-2024) capturing multiple crises. 

Their model decomposed volatility via MODWT with the Haar wavelet and fed the low-frequency 

components alongside key inputs—lagged closing price (LCP), logarithmic oil price (Loil), cost of 

living (LCL), and interbank rate (IB)—into a DENFIS system. This hybrid approach significantly 

outperformed benchmarks (ARIMA, standalone DENFIS, other MODWT-DENFIS models), 

achieving the lowest test errors (RMSE: 2.40, MAPE: 41.99%). Analysis identified LCP as having a 

negative impact and Loil a positive impact on volatility, while LCL and IB showed mixed effects; the 

study concluded wavelet-integrated neuro-fuzzy systems greatly enhance forecasting in emerging 

markets. 

 

3. Methods and Mathematical Models 

This section outlines the methodology of the hybrid forecasting model integrating Wang and 

Mendel's (WM) Fuzzy Logic System with Wavelet decomposition. The process begins with dataset 

normalization using the Min-Max model to standardize input variables, including REIT (Real Estate 

Investment Trusts), REMD (Real Estate Management and Development), and OIL prices. The TASI 

(Tadawul All Share Index) daily closing prices serve as the output variable.  

To address localized variations such as transient events and anomalies, the dataset 

undergoes decomposition via the Maximal Overlap Discrete Wavelet Transform (MODWT). This 

splits the data into two components: detail coefficients (high-frequency features), which capture 

short-term fluctuations and main dataset characteristics, and approximate coefficients (low-

frequency features), representing smoothed trends and serving as the output variable. In the 

subsequent stage, external economic variables (REIT, REMD, OIL) are incorporated as inputs into the 

WM Fuzzy Logic System, which handles uncertainties and nonlinearities in the data. The hybrid 

framework combines wavelet-processed features with fuzzy logic to enhance forecasting robustness. 

Finally, accuracy criteria tests are applied to evaluate model performance and select the optimal 

hybrid model. Figure 1 visually encapsulates this workflow, emphasizing the synergy between 

wavelet-based feature extraction, fuzzy logic processing, and empirical validation to achieve reliable 

financial forecasting. 
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Figure 1. The flowchart of hybrid WM with Wavlet model 

3.1. Wavelet transform 

Time series analysis is a powerful tool for understanding trends, discovering hidden patterns, 

and predicting future events. In 1807, Joseph Fourier demonstrated that any 2π function could be 

expressed as a sum of sinusoidal components with appropriate coefficients. The Fourier transform is 

a well-known signal analysis method that decomposes a signal into its component sine and cosine 

functions as shown in (1), 

where  an =
1

π
∫ f(t)cos nt dt

π

−π
 and  bn =

1

π
∫ f(t)sin nt dt.

π

−π
 The  an and  bn are the sine and 

cosine Fourier coefficients, respectively with n ∈ Z, f ∈ L1
r [−π, π], (t or r) ∈ R. These sine and cosine 

coefficients were modified to reconstruct the signals known as deterministic [30]. 

 In recent decades, WT has emerged as a powerful alternative to traditional time series analysis 

techniques such as Fourier analysis. WT is a mathematical tool that can effectively detect features in 

a signal while minimising the effects of noise by adjusting to fit data in both the time and frequency 

domains [8]. There are three types of WT: MODWT, discrete WT (DWT), and continuous WT (CWT), 

which share similar characteristics. The primary distinction between DWT and MODWT is the former 

can only be used with a limited number of observations, while the latter may be used with any 

quantity of data. WT is an extension of the Fourier transform[8,10]. It is divided into two types: the 

mother wavelet ϕ(t), which defines the high-frequency components or detailed coefficients, and the 

f(t) =
a0

2
+ ∑ ancos nt +n∈N ∑ bnsin ntn∈N , (1) 
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father wavelet φ(t) , which represents the low-frequency components or smooth coefficients as 

indicated in (2) and (3), respectively [9] . 

where  Sj,k and  dj,k denote smooth and detailed coefficients, respectively,  J  denotes  the  

maximum  scale sustainable by the number of data points and the  two types of  wavelets 

 

Smooth coefficients capture the most important features of the original data, while detailed 

coefficients reveal the main variations in the data. The father wavelets and mother wavelets need to 

meet the requirements of ∫ ϕ(t)dt = 1 and ∫ φ(t) dt = 0.  The MODWT provides several useful 

transform functions, including Haar, Daubechies (d4), Coiflet (C6), least asymmetric (LA8), and best-

localized  (bl14)[29]. 

3 .2  Fuzzy Inference (Mamdani Model) 

The Mamdani Model (MM) and Neutrosophic Logic both address uncertainty but operate 

differently: MM uses fuzzy sets with single membership values (μ ∈ [0,1]) for rule-based inference, 

ideal for control systems, while Neutrosophic Logic generalizes this approach with a triplet ⟨T, I, F⟩ 

(where T, I, F ∈ ]⁻0, 1⁺[) to explicitly quantify truth, indeterminacy, and falsity independently, making 

it better suited for high-ambiguity domains like finance or healthcare. While MM relies on 

defuzzification for crisp outputs, Neutrosophic Logic preserves granular uncertainty through all 

stages of reasoning.  

The Mamdani model (MM) is a widely used fuzzy logic-based inference system developed 

by Lotfi Zadeh in the 1970s. Due to its simplicity, the MM has found numerous applications in fields 

such as artificial intelligence, engineering, and medical diagnosis. [31] introduced the principles of 

fuzzy set theory and proposed a fuzzy inference system that employed linguistic fuzzy variables for 

both input and output. The fuzzy set theory provides tools for effectively representing linguistic 

concepts, variables, and rules, making it a natural model for representing human expert knowledge. 

In the same paper, a four-step procedure was proposed for computing fuzzy inference systems, 

which involved fuzzification, inference, aggregation, and defuzzification. 

The MM of fuzzy logic was first introduced in studies by [32,33]. It is a linguistic variable-

based inference system in which both the antecedent and consequent parts of the rules consist of 

linguistic variables, hence applicable to multi-input and single-output systems. For instance, we can 

define a fuzzy IF-THEN rule as follows for the input linguistic variables Zn = {Z1, … , Zn} and Wn =

{W1 , . . . , Wn}, with output lingusitic variable Y_n = {Y1, … , Yn} IF Z1  is W1  and … and Zn  is Wn 

THEN Y is {Y1, . . . , Yn}. 

  

Sj,k = ∫ ϕ
j,kf(t)dt, (2) 

dj,k = ∫ φ
j,kf(t)dt, (3) 

ϕ
j,k = 2

(
−j

2
)
ϕ (t −

2jk

2j
), (4) 

φ
j,k = 2

(
−j
2 )

φ (t −
2jk

2j
). (5) 
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Figure 2. FRBS and Mamdani model. 

The flow chart illustrates the integrated learning and prediction phases of a Fuzzy Rule-

Based System (FRBS) using the Mamdani model (MM), where the learning phase (implicitly 

embedded in the Database [DB] and Rulebase [RB]) first processes training data through structure 

identification to define input/output variables, linguistic terms (e.g., "Low"/"Medium"/"High"), and 

initial rule structures, followed by parameter estimation to optimize membership function shapes 

and rule weights—executed simultaneously or sequentially—to build the knowledge base (DB 

storing fuzzy set definitions and membership parameters, RB housing fuzzy IF-THEN rules); this 

foundation enables the prediction phase, depicted in Figure 2's standard MM architecture, where 

new crisp Input undergoes Fuzzification (using DB to convert data to linguistic values), leverages the 

Knowledge Base (DB/RB) within the Inference Engine (applying RB's rules via Mamdani's MIN-MAX 

operations for reasoning and fuzzy output generation), and culminates in Defuzzification to 

transform aggregated fuzzy outputs into actionable crisp Predicted Values [34-36]. 

Learning approaches for FRBSs that utilize a space partitioning approach employ the 

segmentation of the variable domain. They subsequently leverage this partitioning to derive 

membership function parameters and utilize these spatial division methodologies to construct FRBSs. 

The Wang-Mendel methodology ("WM"), introduced by Wang and Mendel (1992) using the 

Mamdani framework, involves four learning stages: Step 1: Uniformly segment the input and output 

domains of provided numerical data into fuzzy regions constituting the database. Here, fuzzy regions 

denote intervals corresponding to linguistic descriptors. The span of these regions depends on the 

quantity of linguistic terms. Consider a temperature scale from 1 to 5. Defining linguistic terms "cold", 

"neutral", and "hot" with region breadth 2 yields intervals [1,3], [2,4], [3,5]. Triangular membership 

functions are constructed using vertex points: for [1,3], points a=1, b=2 (peak where membership = 1), 
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and c=3. Step 2: Formulate fuzzy IF-THEN rules encompassing training instances using Step 1's 

database. Compute membership degrees for all training values. For each data point and variable, 

assign the linguistic term achieving highest membership. Repeat across all training cases to establish 

comprehensive rules. Step 3: Assign a weight to each rule by multiplicatively combining antecedent 

and consequent membership degrees (product operator). Step 4: Establish the definitive rulebase by 

eliminating duplicate rules, retaining higher-weighted versions when conflicts occur. The resulting 

system follows the Mamdani inference framework. 

 

3.3 Wang and Mendel's technique (WM) 

Wang and Mendel's technique (WM), introduced in their seminal 1992 paper, is a 

foundational data-driven method for generating fuzzy rule-based systems (FRBS) directly from 

numerical data. Pioneering the automated extraction of fuzzy rules, WM addressed the critical 

bottleneck of manual knowledge acquisition, particularly for Mamdani-type FRBS where both 

antecedents and consequents are fuzzy sets, making it especially useful for regression tasks (function 

approximation). Its simplicity, noise tolerance, and ability to handle high-dimensional problems 

made it revolutionary. This spurred widespread applications in control systems (e.g., power grid 

stabilization), time-series prediction (e.g., financial forecasting), and pattern recognition. WM's 

significant legacy includes derivatives like WM+ (extended for regression) and its influence on hybrid 

neuro-fuzzy systems, cementing its enduring role in modern computational intelligence [37-40]  

 

Below is a step-by-step explanation of the WM method, including system space partitioning, 

equations, and its application to regression. 

 

Step 1: System Space Partitioning, involves dividing the input-output space into overlapping 

fuzzy regions defined by linguistic terms (e.g., "Low", "Medium", "High"). This process begins by 

normalizing the domain intervals of all input variables (x₁, x₂, …,xn) and the output variable (y) to a 

predefined range, typically [0, 1], to ensure consistent scaling. Subsequently, each normalized input 

and output variable is partitioned into these fuzzy regions by assigning appropriate membership 

functions (MFs) – such as triangular, trapezoidal, or Gaussian shapes – which mathematically define 

the degree of belonging for any value within each linguistic set and inherently create overlaps 

between adjacent regions. 

Step 2: Generate Fuzzy Rules from Data Pairs 

In the first stage, for each input-output data pair (x1
(k)

, x2
(k)

, . . . xn
(k)

, y(k)) , compute the 

membership degree of each variable to its ifuzzy sets. For instance, find the fuzzy set Aij with the 

highest membership for xi
(k)

 as following: 

 

 

μ Aij
(xi

(k)
) = maxj μ Aij

(xi
(k)

) (6) 
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Repeat for the output y(k), identifing its best  matching fuzzy set Bj.  

 

In the second stage, construct a fuzzy rule, involve map the input fuzzy sets to the output 

fuzzy set  

IF x₁ is A1j  AND  x2 is A2j AND. . . . xn is Anj, THEN y is Bj.  

where A1j , A2j,…, Anj, Bj are the regions with max membership for (x1
(k)

, x2
(k)

, . . . xn
(k)

, y(k)). 

 

 

Step 3: Assign a Degree to Each Rule. In this stage, the rule strength is assigned to each fuzzy 

rule by calculating the product of the membership degrees of the input values in their respective 

antecedent fuzzy sets, representing the combined degree to which the rule's conditions are satisfied 

by the current inputs. 

 

In this stage, repeat for the output y(k), identifying its best matching fuzzy set Bj. If multiple 

rules have the same antecedents but different consequents, retain the rule with the highest strength. 

Step 4: Fuzzy Inference (Mamdani Model) 

For a new input x∗ = (x1
∗ , x2

∗ , . . . xn
∗ ), compute membership degrees to each fuzzy set. 

In the first stage,  compute the firing strength αj for each rule as following: 

 

In the second satge, apply the firing strength to the consequent fuzzy set Bj : 

 

Then combine all clipped/scaled consequents using the max operator: 

 

 

Step 5: Defuzzification: Convert the aggregated fuzzy output to a crisp value y∗: 

 

- Centroid Method: 

 

Strength(k) = ∏ μ Aij
(xi

(k)
) . μ Bj

(y(k))

n

i=1

 
(7) 

 

αj = min(μ Aij
(x1

∗), μ Aij
(x2

∗), . . . , μ Aij
(xn

∗ )) 

Or 

αj = ∏ μ Aij
(xi

∗)

n

i=1

 

(8) 

μB′j
(y) = min(αj, μBj

(y))      (clipping) 

μB′j
(y) = αj, μBj

(y)                (scaling) 
(9) 

μ agg(y) = maxj μ B′j
(y) (10) 
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-Weighted Average (simplified): If singletons are used for consequents: 

 

 

where  cj is the centroid of Bj. 

 

For regression, the FRBS approximates a function f:Rn→R. The WM method constructs rules 

that map inputs to outputs using fuzzy logic, effectively capturing non-linear relationships. The 

Wang-Mendel method operates in two sequential phases: during training, the WM algorithm 

generates fuzzy rules directly from numerical training data and stores them in the rule base; 

subsequently, in the testing phase, the system computes the output y∗ for any test input x∗ using 

Mamdani inference, which aggregates fired rules through fuzzy operations (fuzzification, rule 

evaluation, aggregation, and defuzzification) to produce crisp outputs. 

 

3.4  Error criteria test 

We evaluate the accuracy of our method using mean absolute percentage error (MAPE), 

mean error (ME), MAE, and root mean squared error (RMSE). The MAPE, also known as the mean 

absolute percentage deviation, is a statistical measure of prediction accuracy expressed as a 

percentage. It is defined as 

where Xt  is the actual value, Ft  is the forecasted value and n  is the sample size. The 

absolute value in (13) is summed for every forecasted point in time and divided by the number of 

fitted points. MAE and ME are respectively defined as follows: 

 

L 

 

 

E 

t (t = 1,..., n) denote the number of input variables. The mean square error (MSE) is defined 

as 

y∗ =
∫ y. μ agg(y) dy

∫ μ agg(y) dy
 (11) 

y∗ =
∑ αj. cj

M
j=1

∑ αj
M
j=1

 (12) 

MAPE =
1

n
∑ |

Xt−Ft

Xt
|n

t=1 , (13) 

MAE =
1

n
∑ |Xt − Ft|n

t=1 , (14) 

ME =
1

n
∑ (Xt − Ft)n

t=1 , (15) 
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The RMSE, also known as the root mean squared deviation, is a frequently used measure of 

the estimators' differences. It measures the average error produced by the model in predicting the 

outcome of an observation. It is defined as 

 

4. Data Description 

This study utilizes a dataset of 1,410 daily closing prices for the Tadawul All Share Index 

(TASI), sourced from the Saudi Exchange (Tadawul) and spanning 1 August 2017 to 1 September 

2022, to analyze Saudi equity market dynamics across distinct economic phases—capturing pre-

pandemic stability under oil-driven conditions (Aug 2017–Feb 2020), the acute COVID-19 crisis with 

its historic 23% single-day crash (Mar 2020), extreme volatility, and the post-pandemic recovery 

(2021–Sep 2022) driven by oil rebounds and Vision 2030 diversification—enabling assessment of 

black-swan resilience, sectoral vulnerabilities, and data-driven investment strategies in a 

transformative era. 

This study's statistical summary (Table 1) encompasses 1,410 daily observations of Tadawul 

market indices and oil prices: the TASI ranged from a COVID-19 pandemic low of 5,959.69 to a 

recovery peak of 13,820.35, averaging 8,808.20 amid high volatility (Std. Dev. 1,837.41); the REIT (real 

estate trusts) varied between 3,501.77 and 6,824.32 (mean 4,379.84, Std. Dev. 686.68); the REMD (real 

estate development) fluctuated from 2,294.42 to 5,039.92 (mean 3,522.42, Std. Dev. 656.43); while Brent 

crude oil exhibited extreme volatility (Std. Dev. 18.85), plunging to $19.33 during the 2020 demand 

collapse and surging to $127.98 in the 2022 supply crisis, averaging $65.93 and underscoring its 

pivotal role in the Saudi market's dynamics. 

Table 1. A Statistical summary of TASI, REIT, REMD and Oil closing prices in Tadawul . 

 N Mean Std. Dev. Minimum Maximum 

      

TASI 1410 8808.197 1837.413 5959.690 13820.350 

REIT 1410 4379.837 686.676 3501.770 6824.320 

REMD 1410 3522.420 656.427 2294.420 5039.920 

OIL 1410 65.927 18.851 19.330 127.980 

 

5. Empirical Results and Discussion 

A hybrid model integrating Wang and Mendel's technique with MODWT was proposed to 

forecast Tadawul stock market closing prices from 2017 to 2022, utilizing wavelets like Haar, d4, LA8, 

C6, and bl14 within the MODWT framework. This method involves three core steps: decomposition, 

MSE =
1

n
∑(yt − Ft)2

n

t=1

 (16) 

RMSE = √MSE (17) 
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which breaks down the price signal into wavelet coefficients across different scales and positions; 

filtering, which extracts relevant information from these coefficients using filter banks; and 

reconstruction, which synthesizes the filtered coefficients back into an approximation of the original 

signal. MODWT categorizes the data into detail series (capturing high-frequency fluctuations) and 

approximation series (capturing the trend), specifically designed to handle the large fluctuations 

typical in financial data, and the model's performance was assessed using an accuracy indicator. 

The proposed hybrid MODWT-WM models represent a novel method for predicting Saudi 

stock market returns (SMR) and closing prices (NSM), utilizing Tadawul stock data and oil prices 

from Investing.com. The methodology involves four key steps: firstly, collecting the financial time 

series data; secondly, normalizing both input and output variables (SMR, NSM) using Min-Max 

scaling; thirdly, decomposing the SMR and NSM data using five distinct MODWT functions (Haar, 

d4, LA8, C6, bl14) to separate them into low-fluctuating approximation coefficients and high-

fluctuating detail coefficients, with the approximation coefficients serving as the primary outputs for 

forecasting; and finally, applying a robust modeling approach (WM) to establish the relationship 

between the input financial variables and these SMR/NSM approximation coefficients for each 

MODWT function, resulting in the hybrid MODWT-WM models designed for accurate and reliable 

forecasting. 

A comparative study then evaluates the best-performing MODWT-WM hybrid models 

against alternative MODWT functions and the traditional WM model, using an 80/20 data split where 

80% of the original Saudi stock market and oil price data trains the models and selects the most 

effective one, while the remaining 20% tests its performance. This proposed hybrid model offers an 

innovative approach by combining MODWT decomposition (using approximation coefficients of 

SMR and NSM), relevant input financial variables, and hybrid modeling, resulting in significantly 

more accurate and reliable forecasts than traditional methods. The study conclusively highlights the 

superiority of the MODWT-WM models over both the alternative functions and the standalone WM 

model, demonstrating their strong potential for broader financial forecasting applications. 

 

5.1. Selecting variables 

 

5.1.1 Multicollinearity test 

Table 2 shows The correlation between input and output variables for model 1 and model 2. 

In model (1), the SMR exhibits a strong positive correlation (0.690 ≥ 50%) with REMD return, 

indicating REMD movements significantly influence Tadawul's overall market performance; it shows 

a weak positive correlation (0.335 < 50%) with REIT returns, suggesting a limited relationship; and 

demonstrates an extremely weak positive correlation (0.086 < 50%) with Brent Oil price returns 

(ROIL), implying negligible linear influence from oil prices. Critically, all correlations between 

independent variables are weak (below the 50% threshold): REIT and REMD show a weak positive 

correlation (0.318 < 50%), while both REIT-ROIL (0.020 < 50%) and REMD-ROIL (0.026 < 50%) exhibit 

near-zero correlations, confirming no significant multicollinearity exists between these predictors as 

all inter-variable correlations fall substantially below the 50% benchmark.  
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In model (2),  NSM exhibits a strong positive correlation (0.690 ≥ 50%) with the Real Estate 

Management and Development Index (REMD) closing prices, indicating that Tadawul's overall 

market performance moves significantly in tandem with the real estate sector; it shows a weak 

positive correlation (0.335 < 50%) with Real Estate Investment Trust (REIT) closing prices, suggesting 

a limited relationship; and demonstrates an extremely weak positive correlation (0.086 < 50%) with 

normalized Brent Oil prices (ROIL), revealing negligible linear influence from oil markets. Crucially, 

correlations between independent variables are all below the 50% threshold: REMD and ROIL show 

a near-zero correlation (0.026 < 50%), while REIT and ROIL (0.020 < 50%) and REIT and REMD (0.318 

< 50%) similarly display weak linkages, confirming no significant multicollinearity exists between 

predictors as all inter-variable correlations fall substantially below the 50% benchmark for strength. 

Collinearity diagnostics confirm the absence of significant multicollinearity in both models, 

with all tolerance values substantially exceeding the critical threshold of 0.1 and all VIF values falling 

well below the conservative limit of 10. In Model (1), the independent variables (REIT, REMD, ROIL) 

show robust metrics (REIT: Tolerance=0.899/VIF=1.113; REMD: Tolerance=0.899/VIF=1.113; ROIL: 

Tolerance=0.999/VIF=1.001), while Model (2) exhibits near-ideal results for its normalized predictors 

(NREMD and NOIL: Tolerance=0.999/VIF=1.001 for both). These metrics—where tolerance measures 

unique variable variance and VIF quantifies coefficient variance inflation—collectively indicate 

minimal shared variance between predictors across both models. Crucially, Model (1) demonstrates 

no concerning inter-variable correlations among its three inputs, while Model (2) confirms virtually 

independent predictors. Since collinearity compromises regression stability, these results validate 

both models' reliability for both Tadawul return/closing price (SMR/NSM) analysis, ensuring 

unbiased coefficient estimates and robust predictive power without collinearity-induced instability. 

 

Table 2. The correlation between input and output variables for model 1 and model 2 

Models  SMR REIT REMD ROIL 

Collinearity  

statistics 

 SMR 1.000 0.335 0.690 0.086 Tolerance VIF 

Model (1) REIT  1.000 0.318 0.020 0.899 1.113 

 REMD   1.000 0.026 0.899 1.113 

 ROIL    1.000 0.999 1.001 

        

  NSM NREMD NOIL  Tolerance VIF 

Model (2) NSM 1.000 -0.283 0.790    

 NREMD  1.000 -0.023  0.999 1.001 

 NOIL   1.000  0.999 1.001 

 

5.1.2 Multiregression models 

In model (1) for table 3, The OLS regression model for SMR demonstrates strong overall 

significance (F(3,1406) = 459.9, p < 0.01) and explains approximately 49.5% of SMR variance (R² = 
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0.4953, Adj. R² = 0.4942). The intercept (constant) of 0.11925 (t = 7.083, p < 0.01) indicates the baseline 

SMR when all independent variables are zero. Among predictors, REMD show the strongest positive 

influence (B = 0.58861, SE = 0.01817, t = 32.393, p < 0.01), where a 1% increase in REMD corresponds 

to a 0.59% rise in SMR. The REIT also significantly predict SMR (B = 0.15377, SE = 0.02401, t = 6.404, p 

< 0.01), with a 1% REIT increase associated with a 0.15% SMR gain. The ROIL exhibit a smaller but 

still significant positive effect (B = 0.07476, SE = 0.02128, t = 3.512, p < 0.01), where a 1% oil price return 

increase relates to a 0.07% SMR increase. All coefficients are statistically significant at the 1% level, 

confirming each variable's distinct contribution to modeling Tadawul market returns. 

The fixed effect regression model demonstrates excellent explanatory power for SMR, 

showing highly significant overall fit (F(3,1401) = 460.253, p < 0.01) and explaining approximately 

49.6% of SMR variance (R² = 0.49636, Adj. R² = 0.49349). All three independent variables exhibit 

statistically significant positive relationships with SMR at the 1% level: REIT show a coefficient of 

0.15501 (SE = 0.02403, t = 6.45), indicating a 1% increase in REIT returns corresponds to a 0.155% rise 

in SMR; REMD demonstrate the strongest effect with a coefficient of 0.58935 (SE = 0.01819, t = 32.41), 

where a 1% REMD increase predicts a 0.589% SMR gain; while ROIL have the smallest but still 

significant influence (B = 0.07461, SE = 0.0213, t = 3.50), suggesting a 1% oil price return increase 

associates with a 0.075% SMR increase. These results confirm REMD as the dominant driver of 

Tadawul market returns, with REIT and ROIL providing additional significant explanatory power in 

the fixed effects specification. 

The random effects model demonstrates strong explanatory power for SMR, with a highly 

significant overall fit (χ²(3) = 1379.77, p < 0.01) and explaining approximately 49.5% of SMR variance 

(R² = 0.49529, Adj. R² = 0.49421). The intercept (constant) of 0.11925 (SE = 0.01684, t = 7.083, p < 0.01) 

indicates the baseline SMR when all predictors are zero. All independent variables show statistically 

significant positive effects at the 1% level: REIT exhibit a coefficient of 0.15377 (SE = 0.02401, t = 6.404), 

meaning a 1% increase in REIT returns corresponds to a 0.154% rise in SMR; REMD display the 

strongest influence with a coefficient of 0.58861 (SE = 0.01817, t = 32.393), where a 1% REMD increase 

predicts a 0.589% SMR gain; while ROIL have a modest but significant effect (B = 0.07476, SE = 0.02129, 

t = 3.512), indicating a 1% oil price return increase associates with a 0.075% SMR increase. These 

results confirm REMD as the dominant driver of market returns in the random effects specification. 

In model (2) for table 4, the OLS model demonstrates exceptionally strong explanatory power 

for NSM, with a highly significant overall fit (F(2,1407) = 1595, p < 0.01) and explaining 69.4% of NSM 

variance (R² = 0.6939, Adj. R² = 0.6935). The intercept (constant) is 0.02600 (SE = 0.01100, t = 2.278, p < 

0.05), indicating a small but significant baseline closing price when predictors are zero. Critically, 

NOIL exhibit a powerful positive relationship (B = 1.05600, SE = 0.02000, t = 53.112, p < 0.01), where a 

1-unit increase in normalized oil prices corresponds to a 1.056-unit surge in NSM. Conversely, the 

NREMD shows a significant negative effect (B = -0.26000, SE = 0.01400, t = -18.010, p < 0.01), implying 

a 1-unit increase in normalized real estate prices associates with a 0.260-unit decline in Tadawul's 

market closing prices. These opposing forces highlight oil prices as the dominant driver of NSM, 

while real estate sector performance exerts a substantial but inverse influence on overall market 

valuations. 
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Table 3. The OLS, fixed effect , and random effect of model (1) 

Tests Variables 
B Std. error t-test F /Chisq-test Adj. R-

square 

R-square 

OLS 
(Constant

) 0.11925 0.01684 7.08300*** 
F:459.9*** on 3 and 

1406 DF 

0.4942  0.4953 

 REIT 0.15377 0.02401 6.40400***   

 REMD 0.58861 0.01817 32.39300***   

 ROIL 0.07476 0.02128 3.51200***   

        

Fixed effect REIT 0.15501  0.02403  6.44980 *** 
F:460.253*** on 3 

and 1401 DF 

0.49349 0.49636 

 REMD 0.58935  0.01819  32.40810 ***   

 ROIL 0.07461  0.02130  3.50350 ***   

        

Random 

effect 

(Constant

) 0.11925  0.01684  7.08300***  
Chisq: 1379.77*** 

on 3 DF 

0.49421 0.49529 

 REIT 0.15377  0.02401  6.40420***    

 REMD 0.58861  0.01817  32.39250***    

 ROIL 0.07476  0.02129  3.51230***    

Signif. codes:  ‘***’ 0.01  ‘**’ 0.05 ‘*’ 0.1  

The fixed effects model demonstrates strong explanatory power for NSM, with a highly 

significant overall fit (F(2,1402) = 721.392, p < 0.01) and explaining approximately 50.7% of NSM 

variance (R² = 0.50717, Adj. R² = 0.50471). Both normalized independent variables show statistically 

significant positive relationships at the 1% level: a one-unit increase in the NREMD corresponds to a 

0.32381-unit rise in NSM (SE = 0.015, t = 21.583, p < 0.01), while a one-unit increase in NOIL predicts 

a stronger 0.56036-unit increase in NSM (SE = 0.02108, t = 26.581, p < 0.01). These results highlight oil 

prices as the dominant positive driver of market closing prices, with real estate sector performance 

also contributing significantly but with approximately half the magnitude of oil's influence. The 

absence of a reported constant term suggests the fixed effects specification effectively accounts for 

entity-specific intercepts in modeling Tadawul's closing price dynamics. 

The random effects regression demonstrates strong explanatory power for NSM, with a 

highly significant overall fit (χ²(2) = 1429, p < 0.01) and explaining approximately 50.5% of NSM 

variance (R² = 0.50508, Adj. R² = 0.50438). While the constant term is statistically insignificant (B = -

0.00752, SE = 0.04184, t = -0.18), both normalized predictors show highly significant positive 

relationships at the 1% level: a one-unit increase in NREMD corresponds to a 0.31837-unit rise in 

NSM (SE = 0.01507, t = 21.13), and a one-unit increase in NOIL predicts a stronger 0.56713-unit 

increase in NSM (SE = 0.02115, t = 26.81). These results confirm NOIL as the dominant driver of market 

closing prices with nearly 80% greater impact than NREMD (0.567 vs 0.318 units), reinforcing oil 

prices' critical role in Tadawul's valuation dynamics within the random effects framework. Random 

effect and fixed effect models use years as panal data.  

Table 4. The OLS, fixed effect , and random effect of model (2) 
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Tests Variables 
B Std. error t-test F /Chisq-test Adj. R-

square 

R-square 

OLS (Constant) 0.02600  0.01100  2.27800** 
1595*** on 2 and 

1407 DF 

0.6935  0.6939 

 NREMD -0.26000  0.01400  -18.01000 ***   

 NOIL 1.05600  0.02000  53.11200 ***   

        

Fixed effect 
NREMD 0.32381  0.01500  21.58300***  

721.392 on 2 and 

1402 DF 
 0.50471 0.50717 

 NOIL 0.56036  0.02108  26.58100 ***    

        

        

Random 

effect (Constant) -0.00752  0.04184  -0.17970  
Chisq: 1429 on 2 

DF 
0.50438  0.50508 

 NREMD 0.31837  0.01507  21.13090***     

 NOIL 0.56713  0.02115  26.81230***     

Signif. codes:  ‘***’ 0.01  ‘**’ 0.05 ‘*’ 0.1  

 

5.1.3  Stationary and Causality Tests 

For the Dickey-Fuller (ADF) test, the null hypothesis (H0) states that the time series has a 

unit root (non-stationary); at a 5% significance level, if the p-value ≤ 0.05, reject H0 (concluding the 

series is stationary), otherwise fail to reject H0 (indicating non-stationarity). For the Granger 

Causality test, the null hypothesis (H0) asserts that X does not Granger-cause Y; at 5% significance, 

reject H0 (concluding X Granger-causes Y) if the p-value ≤ 0.05, otherwise fail to reject H0 (finding no 

Granger causality from X to Y). Both tests use p-value ≤ 0.05 as the criterion for rejecting the null 

hypothesis[41]. 

In table 5, for the Dickey-Fuller (ADF) tests, all series (REIT, REMD, ROIL) overwhelmingly 

reject the null hypothesis of a unit root (non-stationarity) at the 1% level, as evidenced by their highly 

significant p-values (< 2e-16) and large negative t-statistics (-25.870, -24.654, -26.486); thus, all are 

stationary in model (1). For the Granger Causality tests, the null hypothesis that each variable (REIT, 

REMD, ROIL) does not cause SMR is rejected: REIT→SMR (p=0.0035<5%), REMD→SMR 

(p=0.0359<5%), and ROIL→SMR (p=7.954e-09<1%) all show statistically significant p-values below 

0.05, confirming REIT, REMD, and ROIL each Granger-cause SMR in model (1). 

In model (2), for the ADF tests, NREMD fails to reject the null hypothesis of non-stationarity 

(t-stat = -0.385, p-value = 0.701 > 5%), indicating NREMD is non-stationary, while NOIL rejects the 

null hypothesis (t-stat = -2.253, p-value = 0.0244 ≤ 5%), confirming NOIL is stationary. For Granger 

causality, NREMD does not Granger-cause NSM (p-value = 0.3316 > 5%), but NOIL significantly 

Granger-causes NSM (p-value = 0.0002 ≤ 1%), demonstrating predictive causality from NOIL to NSM. 

 

Table 5.  Dickey Fueler Test (ADF)-Unit Root test and Granger Causality Tests 
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Models Null Hupothesis Dickey Fueler Test (ADF)-

Unit Root test at lag1 

Granger Causality Tests 

  t-stat.  P-value F-statistcs P-value 

Model (1) REIT=>SMR -25.870 <2e-16***  5.6561 0.0035** 

 REMD=>SMR  -24.654  <2e-16*** 3.3299 0.0359** 

 ROIL=>SMR -26.486 <2e-16*** 18.7740 7.954e-09*** 

      

      

Model (2) 

NREMD=>NSM -0.385  0.7010 1.1042 0.3316 

 NOIL=>NSM -2.253  0.0244**  8.5007 0.0002*** 

Signif. codes:  ‘***’ 0.01  ‘**’ 0.05 ‘*’ 0.1  

5.3 Results of WM for model  

Table 6 presents the wavelet transform (WT) function results for the output variable 

(SMR/NSM) using an 80% training dataset, comparing the performance of various WT functions 

paired with ARIMA models. Model accuracy was evaluated using four error metrics: ME, RMSE, 

MAE, and MASE. The Haar wavelet paired with ARIMA(5,0,0) exhibits minimal bias (ME: 0.0000243) 

and moderate predictive accuracy (RMSE: 0.0715, MAE: 0.0466), but its MASE (0.2814). The d4 

wavelet with ARIMA(1,0,0) achieves the lowest ME (0.0000212) and lowest MAE (0.0459), with 

competitive RMSE (0.0705) and exceptional MASE (0.0174). The LA8 wavelet with ARIMA(1,0,0) 

shows slight bias (ME: 0.0000334) and mid-range errors (RMSE: 0.0707, MAE: 0.0471, MASE: 0.1911). 

The bl14 wavelet with ARIMA(4,0,4) is the weakest performer, with the highest ME (0.0001622), worst 

RMSE (0.0784), worst MAE (0.0556), and poorest MASE (0.2424). The C6 wavelet with ARIMA(1,0,0) 

delivers the best RMSE (0.0700) and second-best MAE (0.0468), but its MASE (0.1561) is significantly 

higher than the d4 variant. Optimal Selection, the d4 wavelet with ARIMA(1,0,0) is superior, 

combining the lowest MAE, near-best RMSE, and unmatched MASE (indicating near-perfect 

scalability), while maintaining minimal bias and model simplicity in model (1). 

In model (2), The Haar wavelet with ARIMA(5,1,0) achieves the strongest performance: 

minimal bias (ME: 0.000109), lowest errors across RMSE (0.0139), MAE (0.0074), and MASE (0.0703). 

The d4 wavelet with ARIMA(5,1,0) shows similar low bias (ME: 0.000069) but higher errors (RMSE: 

0.0153, MAE: 0.0079, MASE: 0.1566). The LA8 wavelet with ARIMA(0,1,3) with drift and C6 wavelet 

with ARIMA(0,1,2) with drift exhibit moderate bias (ME: 0.000067/0.000427) but significantly 

elevated errors (RMSE: 0.0309/0.0318, MAE: 0.0151/0.0158, MASE: 0.7326/0.7337). The bl14 wavelet 

with ARIMA(1,1,0) with drift, despite near-zero bias (ME: 0.000002), yields the weakest results: 

highest RMSE (0.0435), MAE (0.0222), and MASE (0.8539). 
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Table 6. Comparative analysis of WT functions for time series forecasting (SMR/NSM) on 80% dataset 

In table 7, The standalone WM model performs worst, showing the highest ME 

(0.4889), highest RMSE (0.5144), and highest MAE (0.4889). Among MODWT variants, MODWT-

LA8-WM achieves the lowest RMSE (0.5071) and lowest MAE (0.4777), while MODWT-Haar-

WM yields the lowest ME (0.4775). Other models cluster closely in performance: MODWT-d4-WM 

(RMSE: 0.5082), MODWT-bl14-WM (RMSE: 0.5072), and MODWT-C6-WM (RMSE: 0.5072). 

The WM+ARIMA direct hybrid underperforms all MODWT methods (RMSE: 0.5123). MODWT-

LA8-WM is optimal, delivering the lowest overall prediction error (RMSE: 0.5071 and 

MPE/MAPE:193.39188). 

Table 7. Comparative Analysis of WT functions with WM model on 20% dataset. 

Models WT-functions ARIMA (p,d,q) ME RMSE MAE MPE MAPE 

Model (1) WM  0.017484448 0.05595585 0.04232359 3.1415715 7.693322 

 
MODWT-Haar-

WM 

ARIMA(5,0,0) 

with non-zero 

mean 0.04703219 0.08347616 0.07013046 9.8435865 14.20015 

 MODWT-d4-WM 

ARIMA(1,0,3) 

with non-zero 

mean 0.045624002 0.08243784 0.06872849 9.4343836 13.790122 

Models 
WT 

function 
ARIMA (p,d,q) 

ME RMSE MAE MASE 

Model (1) 

SMR 

Haar 
ARIMA(5,0,0) with 

non-zero mean 0.0000243 0.0714972 0.0465899 0.28139942  

d4 
ARIMA(1,0,0) with 

non-zero mean 0.0000212 0.0705075 0.0458996 0.01742848  

LA8 
ARIMA(1,0,0) with 

non-zero mean 0.0000334 0.0706689 0.0471436 0.19109392  

bl14 
ARIMA(4,0,4) with 

non-zero mean 0.0001622 0.0784477 0.0555830 0.24244136  

C6 
ARIMA(1,0,0) with 

non-zero mean 0.0000332 0.0700261 0.0468008 0.15605790  

       

Model (2) 

NSM 

Haar 
ARIMA(5,1,0) 0.00010941  0.01391046  0.00742997  0.07030864 

d4 
ARIMA(5,1,0) 0.00006860  0.01531472  0.00792509  0.15660277 

LA8 
ARIMA(0,1,3) with drift 0.00006674  0.03087276  0.01510803  0.73263673 

bl14 
ARIMA(1,1,0) with drift 0.00000218  0.04350793  0.02217769  0.85389322 

C6 
ARIMA(0,1,2) with drift 0.00042735  0.03178395  0.01580071  0.73373673 
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MODWT-LA8-

WM 

ARIMA(1,0,0) 

with non-zero 

mean 0.045934525 0.07563944 0.06198297 9.1679558 12.49258 

 
MODWT-bl14-

WM 

ARIMA(1,0,0) 

with non-zero 

mean 0.037286744 0.06841368 0.0562723 7.3111347 11.143294 

 MODWT-C6-WM 

ARIMA(1,0,0) 

with non-zero 

mean 0.004739437 0.05704839 0.04196709 0.9043283 7.762031 

 
WM+ARIMA 

direct 

ARIMA(1,0,1) 

with non-zero 

mean 0.027161288 0.06007143 0.04555499 4.8171896 8.042239 

        

Model (2) WM  0.4888634 0.5143932 0.4888634 201.42239 201.42239 

 
MODWT-Haar-

WM ARIMA(5,1,0) 0.477505 0.5076291 0.477505 194.24748 194.24748 

 MODWT-d4-WM ARIMA(5,1,0) 0.478008 0.5081521 0.478008 194.94025 194.94025 

 
MODWT-LA8-

WM 

ARIMA(0,1,4) 

with drift 0.4777372 0.5071005 0.4777372 193.39188 193.39188 

 
MODWT-bl14-

WM 

ARIMA(1,1,0) 

with drift 0.4779889 0.5072267 0.4779889 193.49367 193.49367 

 MODWT-C6-WM 
ARIMA(1,1,0) 

with drift 0.47779 0.5071562 0.47779 193.46531 193.46531 

 
WM+ARIMA 

direct ARIMA(1,1,1)  0.4821028 0.512321 0.4821028 200.59867 200.59867 

In Figure 3, In model (1), the visualization integrates MODWT (C6) decomposition and 

ARIMA modeling: the top-left plot displays T³V₁, representing the approximation coefficients 

(smooth component) at decomposition level 3, which captures medium-term trends through low-

frequency oscillations along the time axis (0–1000). Adjacent to it, the top-right plot shows T²W₁, 

depicting detail coefficients (wavelet component) at level 2, where sharp peaks indicate high-

frequency fluctuations and transient events. Dominating the center section, T²V1 plots squared 

approximation coefficients at the coarsest level (C6), quantifying trend energy (variance) with y-

values (0.0–0.8)—peaks signal high-volatility phases (requiring ARIMA adjustment), while valleys 

reflect stable periods. 

In model (2), the visualization integrates MODWT (LA8) decomposition with ARIMA(0,1,4) 

with drift modeling: the T³V₁ plot displays level-3 approximation coefficients, capturing the 

medium-term trend with amplitude fluctuations (0.0–0.6) over time indices 0–1000—where valleys 

(∼0.0) reflect stable phases and peaks (∼0.6) signal trend shifts necessitating differencing—while 

the T⁴W₁ plot shows level-4 detail coefficients, exposing persistent volatility clusters (e.g., spikes 

at *t*=400/800) that disrupt long-term dynamics; the ARIMA(0,1,4) with drift processes the T³V₁-

reconstructed series, where first-order differencing (I=1) stabilizes non-stationary trends in T³V₁, four 
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moving-average terms (MA(4)) model short-term disturbances linked to T⁴W₁'s volatility spikes, and 

the drift (μ) quantifies the persistent linear trend observed in T³V₁'s baseline, synthesizing multi-scale 

decomposition for robust forecasting. 

 

  

Model(2)-MODWT(La8) Model(1)-MODWT (C6) 

Figure 3.  MODWT of La8 and C6 

6. Limitations and Future Work 

This study has several limitations warranting further investigation. First, the restricted input 

variables for predicting returns (SMR: REIT/REMD/ROIL returns) and closing prices (NSM: 

REMD/NOIL prices) may overlook other influential factors; future research should incorporate 

additional variables (such as macroeconomic variables, or sector-specific metrics) to enhance 

predictive power. Second, analysis was confined to Saudi Arabia's Tadawul market; expanding 

validation to international exchanges (e.g., U.S., European, Asian, and MENA markets) would test 

model generalizability. Third, the 2017–2022 daily data timeframe limits exposure to diverse market 

regimes; extending the study period to include multiple economic cycles would strengthen 

robustness. Future work should also explore hybridizing the MODWT-WM framework with deep 

learning architectures and real-time implementation for trading systems. 

 

7. Conclusions 

This study significantly advances the forecasting of Saudi stock market returns (SMR) and 

closing prices (NSM) through a novel hybrid MODWT-WM framework. Rigorous diagnostics 

confirmed effectively no multicollinearity among predictors for both models, ensuring robust 

variable selection. Regression analyses revealed distinct drivers: Model (1) (SMR) showed strong 

positive effects from real estate sector returns (REMD, REIT) and Brent oil returns (ROIL), with 
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REMD exhibiting the dominant influence. Model (2) (NSM) demonstrated a powerful positive 

relationship with oil prices (NOIL) and a significant negative effect from real estate prices (NREMD) 

in OLS, though fixed/random effects models aligned on positive contributions from both. The hybrid 

approach outperformed traditional methods, with wavelet-fuzzy integration (MODWT-C6-WM for 

returns, MODWT-La8-WM for prices) achieving superior predictive accuracy. These results 

underscore the efficacy of combining spectral decomposition with interpretable fuzzy rules to 

navigate Tadawul’s non-linear dynamics, offering stakeholders actionable insights for strategic 

decision-making amid volatility. Future work should expand variable scope and integrate deep 

learning architectures. Critically, while the Wang-Mendel method relies on classical fuzzy logic for 

rule extraction, its inability to disentangle indeterminacy from randomness (e.g., in Tadawul stock 

volatility analysis) underscores the potential for neutrosophic enhancements—a direction will 

explore in future research sections. 
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