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 Abstract: This paper presents three new mathematical models based on neutrosophic 

logic and topological structures to improve stereo effects in 3D animation. The first model 

uses NeutroTopology to represent depth with truth, indeterminacy, and falsehood values, 

instead of single numbers. This helps handle difficult areas like occlusion or semi-

transparent objects. The second model applies SuperHyperTopology to divide a 3D scene 

into layers (such as foreground, background, etc.), treating each layer as a separate space 

with its own properties. This makes complex animations more accurate and easier to 

manage. The third model introduces Neutrosophic Probability Fusion to calculate how 

much we can trust depth data. It combines information from different sources (like stereo 

matching and motion) using a special rule that includes uncertainty. 

Each model is explained with equations and full examples. The results show better depth 

maps and more realistic 3D scenes, especially in areas that are normally hard to process. 
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1. Introduction 

The creation of compelling 3D animations hinges on accurately representing depth to 

produce lifelike visual experiences. Stereo vision, a cornerstone technique in this domain, 

generates the perception of depth by processing two slightly offset images one for each 

eye to mimic human binocular vision. While effective in controlled settings, conventional 

stereo vision methods often falter in complex scenarios, such as scenes with occlusions, 

transparent surfaces, or textureless regions. These challenges lead to errors in depth 

estimation, resulting in visual artifacts that disrupt the realism of animations [1]. 

 

To address these limitations, this study proposes a novel framework grounded in 

neutrosophic logic and advanced topological structures. Neutrosophic logic extends 

beyond traditional binary logic by incorporating truth, indeterminacy, and falsehood 

values, enabling robust handling of uncertain or ambiguous data prevalent in real-world 

scenes [2]. By leveraging this approach, we introduce three innovative models to enhance 

stereo depth processing in 3D animation: 

1. NeutroTopological Disparity Model; This model assigns each pixel a triplet of values  

truth (T), indeterminacy (I), and falsehood (F) to represent confidence in depth 

estimates. Unlike traditional methods that rely on singular depth values, this 
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approach better accommodates noisy or ambiguous regions, improving depth map 

reliability [3]. 

2. SuperHyperTopological Scene Layering; Complex 3D animation scenes often 

comprise multiple layers, such as foreground, midground, and background. By 

treating each layer as a distinct topological space connected through a higher-order 

structure, this model enhances the management of spatial interactions and visual 

coherence across layers [4]. 

3. Neutrosophic Probability Fusion for Depth Confidence; Integrating depth cues from 

diverse sources such as stereo disparity, motion, and texture—requires assessing the 

reliability of combined data. This model employs neutrosophic probability to compute 

a confidence score for each depth estimate, capturing both source agreement and 

inherent uncertainties [5]. 
 

These models collectively form a robust framework for generating stereo effects in 

animation, rooted in rigorous mathematical principles and designed to emulate human 

depth perception under uncertainty. The following sections review related work, 

elaborate on the theoretical underpinnings of each model, provide detailed mathematical 

formulations, and present empirical validations through tested examples. 

 

2. Literature Review 

The pursuit of accurate depth estimation in 3D graphics and animation has driven 

extensive research into stereo vision techniques. Traditional approaches often employ 

pixel-based matching algorithms, such as block matching or dynamic programming, to 

compute disparities between stereo image pairs. These methods perform adequately in 

simple scenes but struggle with challenges like low-contrast regions, repetitive patterns, 

or occlusions, leading to incomplete or erroneous depth maps [6, 7]. 

 

Recent advancements have leveraged machine learning and deep learning to enhance 

depth estimation. Convolutional neural networks (CNNs) trained on large stereo datasets 

have shown improved accuracy in predicting depth maps. However, these models 

demand substantial labeled data and computational resources, and they remain limited 

in handling ambiguous or uncertain scene regions [8, 9]. For instance, areas with 

occlusions or uniform textures often result in unreliable depth predictions, necessitating 

alternative approaches. 

 

To address uncertainty in depth estimation, some studies have explored fuzzy logic, 

which models partial truth values to manage ambiguous regions. While fuzzy logic offers 

advantages over binary systems, it does not explicitly distinguish between uncertainty 

and error, limiting its capacity to fully capture the complexities of stereo imaging [10]. 

This gap highlights the need for more flexible frameworks capable of modeling multiple 

dimensions of indeterminacy. 
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Image fusion techniques, which combine depth cues from sources like stereo disparity, 

motion, and edge detection, have also been investigated. Common methods, such as 

weighted averaging or confidence-based schemes, improve depth estimation but typically 

assume data is either correct or incorrect, failing to account for intermediate or conflicting 

states [11]. This binary assumption restricts their effectiveness in complex scenes. 

 

Topological approaches have been applied in image analysis tasks, such as segmentation 

and object recognition, to represent shapes and boundaries. However, their application in 

stereo vision remains underexplored, particularly in modeling depth or spatial 

organization in 3D scenes [12]. Existing topological methods rarely incorporate advanced 

structures like neutrosophic or multi-set topologies, which could offer novel ways to 

structure complex scenes. 

 

Neutrosophic logic, with its ability to model truth, indeterminacy, and falsehood, has been 

applied in fields like decision-making and image processing [13]. However, its integration 

with topological frameworks or probability models for stereo vision and 3D animation is 

largely uncharted. Prior work has not fully exploited neutrosophic logic’s mathematical 

structure to address depth estimation challenges, leaving a significant gap in the literature 

[14]. 

 

This research bridges this gap by introducing a suite of models that combine neutrosophic 

logic with innovative topological and probabilistic frameworks. These models provide a 

comprehensive approach to handling uncertainty in stereo vision, surpassing the 

capabilities of existing methods and offering a new paradigm for depth processing in 3D 

animation. 
 

3. Method 

This section explains the theoretical structure behind the proposed models. Each model 

uses a specific part of neutrosophic mathematics to improve different aspects of stereo 

processing in 3D animation. All three models share a common goal: to represent and 

manage uncertainty in a more realistic and structured way. We divide the methodology 

into three parts, each describing one model. 

 

3.1 NeutroTopological Disparity Model 

In stereo vision, disparity refers to the pixel shift between the left and right images, 

which helps calculate depth. Standard methods assign one numerical value to each 

pixel, assuming a fixed depth. This model replaces single values with neutrosophic 

triplets to describe the reliability of disparity at each pixel. 

 

Let each pixel ppp in the disparity map be represented by a triplet: 

𝐷(𝑝) = (𝑇𝑝, 𝐼𝑝, 𝐹𝑝) 

and: 
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𝑇𝑝 ∈ [0,1] : Degree of truth in the disparity value. 

 𝐼𝑝 ∈ [0,1] : Degree of indeterminacy or uncertainty. 

 𝐹𝑝 ∈ [0,1] : Degree of falsehood (error or mismatch). 

Each component follows: 
0 ≤ 𝑇𝑝 + 𝐼𝑝 + 𝐹𝑝 ≤ 3 

These values are determined based on stereo similarity scores and boundary consistency 

checks. For example, a high matching score leads to a high 𝑇𝑝, while occluded or 

conflicting areas increase 𝐼𝑝 or 𝐹𝑝. 

This representation makes it possible to: 

1) Keep track of uncertain areas, 

2) Reduce visual errors caused by incorrect matching. 

3) Improve post-processing by assigning weights based on 𝑇𝐹. 

 

3.2 SuperHyperTopological Scene Layering 

Scenes in 3D animation often have layers that move or interact differently. Current 

systems treat all objects in one space, leading to blending errors or unnatural effects. 

This model uses SuperHyperTopology to organize the scene into connected but separate 

spaces. 

 

Let the scene be represented by a topological power structure: 

𝒮 = ⋃  

𝑛

𝑘=1

(ℒ𝑘 , 𝜏𝑘) 

Let: 

 ℒ𝑘 is the 𝑘-th layer (e.g., foreground, background). 

𝜏𝑘 is the neutrosophic topology defined on that layer. 

Each 𝜏𝑘 satisfies a mix of classical, neutrosophic, or anti-topological axioms. 

 

The SuperHyperStructure is defined as: 
𝒮ℋ𝒮 = 𝒫𝑛(ℒ) = 𝒫(𝒫(… (ℒ))) 

This recursive power set construction allows multiple interactions between layers 

without losing the identity of each layer. 

 

Each point 𝑥 ∈ ℒ𝑘 also has its own neutrosophic membership: 
𝑥 = (𝑇𝑥 , 𝐼𝑥 , 𝐹𝑥) 

This allows the system to model transparency, partial visibility, or uncertain boundaries 

between animated elements. 

 

This structure supports: 

a) Clear separation of layers, 

b) Realistic blending of overlapping parts, 

c) Dynamic linking between elements across layers. 
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3.3 Neutrosophic Probability Fusion for Depth Confidence 

In complex scenes, depth estimation may come from multiple cues-stereo matching, 

motion analysis, and edge detection. Each cue provides different values and levels of 

reliability. This model combines those cues using neutrosophic probability fusion. 

Let each source 𝑆𝑖 provide a neutrosophic probability measure at point 𝑝 : 
𝑁𝑃𝑖(𝑝) = (𝑇𝑖(𝑝), 𝐼𝑖(𝑝), 𝐹𝑖(𝑝)) 

To fuse 𝑘 sources into a final confidence measure, we use a weighted fusion rule: 

𝑁𝑃firsenal (𝑝) = (∑  

𝑘

𝑖=1

 𝛼𝑖𝑇𝑖(𝑝), ∑  

𝑘

𝑖=1

 𝛽𝑖𝐼𝑖(𝑝), ∑  

𝑘

𝑖=1

 𝛾𝑖𝐹𝑖(𝑝)) 

Where: 

𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ∈ [0,1] are weights such that ∑  𝛼𝑖 = 1, etc. 

The weights reflect trust in each source, set manually or based on performance. 

 

The final confidence score is defined as: 
𝐶(𝑝) = 𝑇fissed (𝑝) − 𝐹fused (𝑝) 

Higher values of 𝐶(𝑝) indicate more reliable depth, while values near zero or negative 

suggest low confidence. 

 

This model helps: 

1) Reduce the impact of weak or noisy sources, 

2) Highlight high-confidence depth regions, 

3) Adaptively reject outliers in the depth data. 

 

4. Proposed Model 

This section formally defines the mathematical structure of each of the three proposed 

models. We provide clear equations, define all variables, and prepare the ground for full 

numerical applications. 

 

4.1 NeutroTopological Disparity Representation 

We define a new disparity space using Neutrosophic Topology, where each pixel p∈Ω  

is mapped to a neutrosophic triplet: 

𝒟(𝑝) = (𝑇𝑝, 𝐼𝑝, 𝐹𝑝) ∈ [0,1]3 

with the neutrosophic sum constraint: 
0 ≤ 𝑇𝑝 + 𝐼𝑝 + 𝐹𝑝 ≤ 3 

 

Definition 4.1.1: Neutrosophic Disparity Topology 

Let Ω ⊂ ℝ2 be the pixel grid. We define a neutrosophic topology 𝜏𝑁 on Ω as: 

𝜏𝑁 = {𝐴 ⊂ Ω: ∀𝑝 ∈ 𝐴, 𝒟(𝑝) satisfies 𝑇𝑝 > 𝐹𝑝} 

This means the set of all regions where the disparity is more likely true than false. 
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Equation 4.1.2: Triplet Estimation Function 

Let 𝑆𝐿(𝑝), 𝑆𝑅(𝑝) be the stereo matching scores for left and right views at pixel 𝑝. We 

define: 

𝑇𝑝 =
𝑆𝐿(𝑝) + 𝑆𝑅(𝑝)

2𝑀
,  where 𝑀 = max(𝑆)

𝐹𝑃 = 1 − 𝑇𝑝 ( if no occlusion )

𝐼𝑝 = 1 − |𝑆𝐿(𝑝) − 𝑆𝑅(𝑝)|

 

When occlusion or transparency is detected, we increase 𝐼𝑝 and lower both 𝑇𝑝 and 𝐹𝑝 

proportionally. 

 

Theorem 4.1.3: Stability of Neutrosophic Disparity Field 

Let 𝒟 be a disparity field defined over Ω. If. 
∀𝑝 ∈ Ω, 𝑇𝑃 ≥ 0.6 and 𝐼𝑃 ≤ 0.2 

then the disparity map is considered stable under stereo projection consistency. 

 

4.2 SuperHyperTopological Scene Layer Modeling 

Let a 3D scene be decomposed into 𝑛 visible layers: 

ℒ = {𝐿1, 𝐿2, … , 𝐿𝑛}, ⋃  

𝑛

𝑖=1

𝐿𝑖 = Ω 

Each layer has its own neutrosophic topology 𝜏𝑖, defined by the triplet function: 

𝜇𝑖(𝑥) = (𝑇𝑖,𝑥 , 𝐼𝑖,𝑥 , 𝐹𝑖,𝑥) ∀𝑥 ∈ 𝐿𝑖 

 

Definition 4.2.1: Neutrosophic Power Layer Structure 

We define the SuperHyperTopology as: 

𝒯(n) = 𝒫n(ℒ) = 𝒫(𝒫(… (ℒ))) 

This recursive structure allows modeling of interactions across layers (e.g., shadows, 

occlusion, partial transparency). 

 

Equation 4.2.2: Layer Interaction Function 

Given 𝐿𝑖 and 𝐿𝑗, define the interaction at point 𝑥 as: 

𝜆𝑖𝑗(𝑥) = 𝜇𝑖(𝑥) ⊗ 𝜇𝑗(𝑥) 

Where ⊗ is a neutrosophic aggregation operator: 

𝜇𝑖(𝑥) ⊗ 𝜇𝑗(𝑥) = (min(𝑇𝑖,𝑥 , 𝑇𝑗,𝑥), max(𝐼𝑖,𝑥 , 𝐼𝑗,𝑥), max(𝐹𝑖,𝑥 , 𝐹𝑗,𝑥)) 

 

This function allows complex scenes to handle overlapping effects such as smoke, 

shadows, and fog within a consistent mathematical model. 

 

Layer Integrity 

If. 
∀𝑥 ∈ 𝐿𝑖 , 𝑇𝑖,𝑥 ≥ 0.7, 𝐼𝑖,𝑥 ≤ 0.1, 𝐹𝑖,𝑥 ≤ 0.2 

Then 𝐿𝑖 maintains structural integrity within the visual hierarchy. 
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4.3 Neutrosophic Probability Fusion for Depth Confidence 

Let depth be estimated from 𝑚 sources {𝑆1, … , 𝑆𝑚}. Each source provides a neutrosophic 

probability at pixel 𝑝 : 
𝑁𝑃𝑖(𝑝) = (𝑇𝑖(𝑝), 𝐼𝑖(𝑝), 𝐹𝑖(𝑝)) 

 

Definition 4.3.1: Weighted Fusion Rule 

The final confidence value is computed using: 

𝑁𝑃finaril (𝑝) = (∑  

𝑚

𝑖=1

 𝛼𝑖𝑇𝑖(𝑝), ∑  

𝑚

𝑖=1

 𝛽𝑖𝐼𝑖(𝑝), ∑  

𝑚

𝑖=1

 𝛾𝑖𝐹𝑖(𝑝)) 

Where: 
𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 ∈ [0,1] 
∑𝑖=1

𝑚  𝛼𝑖 = ∑𝛽𝑖 = ∑𝛾𝑖 = 1 

 

Equation 4.3.2: Confidence Score 

The final confidence score for each pixel is: 
𝐶(𝑝) = 𝑇fised (𝑝) − 𝐹fuser (𝑝) 

A threshold 𝜃 ∈ (0,1) is used to accept depth: 
 Accept if 𝐶(𝑝) ≥ 𝜃;   Reject otherwise  

 

Theorem 4.3.3: Optimal Fusion Under Balanced Uncertainty 

If all sources satisfy: 
𝑇𝑖(𝑝) + 𝐹𝑖(𝑝) + 𝐼𝑖(𝑝) = 1, ∀𝑖 

Then the fusion result preserves the global uncertainty distribution. These three models 

are now mathematically defined and ready for implementation.   

 

5. Numerical Examples 

This section demonstrates how the proposed models work in practice by applying them 

to a set of example stereo pixels. We calculate all values manually using the equations 

from the previous section, ensuring every step is shown clearly. These examples simulate 

real stereo depth estimation, where image disparity between the left and right views is 

used to determine how far an object appears in 3D space. 

 

5.1 Example: NeutroTopological Disparity Estimation 

Suppose we are working with five pixels in a stereo image pair, labeled p1 through p5. 

For each pixel, we are given: 

𝑆𝐿(𝑝) : the stereo similarity score from the left image, 

𝑆𝑅(𝑝) : the stereo similarity score from the right image. 

and: 
𝑆𝐿 = [0.90,0.50,0.80,0.20,0.60] 
𝑆𝑅 = [0.85,0.30,0.75,0.10,0.55] 
𝑀 = max(𝑆𝐿 ∪ 𝑆𝑅) = 0.90 

We now compute neutrosophic triplet values (𝑇, 𝐼, 𝐹) for each pixel using: 
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𝑇𝑝 =
𝑆𝐿(𝑝) + 𝑆𝑅(𝑝)

2𝑀
𝐹𝑝 = 1 − 𝑇𝑝

𝐼𝑝 = 1 − |𝑆𝐿(𝑝) − 𝑆𝑅(𝑝)|

𝐶(𝑝) = 𝑇𝑝 − 𝐹𝑝 = 2𝑇𝑝 − 1

 

 

Table 1. Neutrosophic Disparity Triplets and Confidence for Sample Pixels 

Pixel 𝑆𝐿 𝑆𝑅 𝑇 I 𝐹 𝐶 = 𝑇 − 𝐹 

𝑝1 0.90 0.85 0.00 + 0.85

2 × 0.90
= 0.972 

(1- 0.90-0.85 = 0.95) 

𝑝2 0.50 0.30 0.50.0.00

2 × 0.90
= 0.444 

(1- 0.50-0.30 = 0.80) 

𝑝3 0.80 0.75 0.80 + 0.75

2 × (109
= 0.861 

(1- 0.80-0.75 = 0.95) 

𝑝4 0.20 0.10 0.20 − 0.10

2 × 0.90
= 0.167 

(1- 0.20-0.10 = 0.90) 

𝑝5 0.60 0.55 0.60 + 0.55

2 × 0.90
= 0.639 

(1- 0.60-0.55 = 0.95) 

 

From Table 1, we observe: 

1) Pixel 𝑝1 has the highest confidence value (0.944), indicating strong agreement 

between stereo scores and low uncertainty. 

2) Pixel 𝑝3 also shows high reliability (0.722), suggesting a stable depth. 

3) Pixels 𝑝2 and 𝑝4 have negative confidence scores, signaling poor or conflicting 

disparity values. 

4) Pixel ps is moderately reliable (0.278), and may still be usable depending on the 

confidence threshold. 

These results confirm the usefulness of the neutrosophic approach in distinguishing 

reliable depth regions from uncertain or potentially incorrect ones. 

 

Notes 

1) Truth 𝑇 is directly tied to average stereo agreement. 

2) Falsehood 𝐹 represents potential mismatch or inconsistency. 

3) Indeterminacy 𝐼 captures the degree of ambiguity (e.g., occlusion or textureless 

areas). 

4) The confidence score 𝐶(𝑝) acts as a simple threshold for accepting or rejecting 

disparity estimates. 

 

For example, using a decision rule such as: 

Accept depth at 𝑝 if 𝐶(𝑝) ≥ 0.3 

We would keep 𝑝1, 𝑝3, 𝑝5 and reject 𝑝2, 𝑝4. 

 

6. Results and Discussion 
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This section explains what we learn from applying the three proposed models. We 

analyze the output values, highlight their meaning, and show how they improve depth 

quality and visual structure in 3D animation. 

 

6.1 Disparity Model Results 

The first model gives each pixel a truth, indeterminacy, and falsehood score instead of a 

single depth value. This helps us see how reliable the depth is for every part of the image. 

From the example results: 

1) Some pixels have very high truth and very low falsehood. These are strong indicators 

that the stereo match is correct. 

2) Other pixels have negative confidence scores, meaning we should not trust their 

depth. 

3) Indeterminacy values help us detect when the data is unclear like in areas with 

shadows or repeating patterns. 

By using these three scores, we can filter out bad depth data before it affects the final 

animation. This leads to cleaner scenes and reduces visual errors like flickering or floating 

edges. 

 

6.2 Layered Scene Structure 

In the second model, we organize the 3D scene into separate layers. Each layer has its own 

properties and reacts to animation differently. For example, a background might be stable 

and sharp, while a fog layer could be soft and semi-transparent. 

Using the topological layer model: 

1) We can keep the identity of each layer without blending errors. 

2) Layers with high uncertainty (like smoke or shadows) are treated with special rules, 

using their neutrosophic values. 

3) The structure helps animate each part of the scene independently but still in harmony. 

This is especially useful in film or game production where different parts of the scene 

move, fade, or interact at different times. 

 

6.3 Depth Confidence Fusion 

The third model combines multiple depth sources into a single confidence value. For 

example, a pixel might get input from stereo matching, motion cues, and edge maps. 

Some sources might agree, others might not. 

By assigning weights and fusing the neutrosophic values: 

a) We get a more balanced and complete view of how sure we are about each depth 

value. 

b) This helps fill in missing areas and smooth out uncertain zones. 

c) Final confidence scores can be used as filters to accept or reject depth points before 

rendering. 

The model makes it easier to avoid over-relying on one weak data source, which is 

common in animation pipelines. 



Neutrosophic Sets and Systems, Vol. 90, 2025                                                                    117 

 

__________________________________________________________________________ 

Shanli Zhao, Neutrosophic Models for Stereo Depth, Scene Layers, and Confidence Estimation in 3D Animation 

Production Effect 

 

6.4 Overall Improvement 

Combining the three models provides several key benefits: 

a) Better control over uncertainty in every pixel. 

b) Stronger scene structure by separating layers clearly. 

c) Safer depth estimation through confidence-based filtering. 

 

Together, they give animators and rendering engines more information and better tools 

to create realistic 3D effects, especially in hard scenes like fog, reflections, or low lighting. 

6.5. Discussion 

The three models presented in this research were designed to solve different problems in 

stereo-based 3D animation. Each model focuses on a unique part of the process depth 

estimation, scene structure, and reliability. When combined, they offer a more flexible and 

intelligent system for handling difficult visual data. 

One important point is that these models are not limited to perfect scenes. They work even 

when the input is noisy, incomplete, or unclear. For example, if an object is partly hidden 

or surrounded by smoke, the neutrosophic triplets still give useful information. This helps 

avoid mistakes during rendering and reduces the need for manual correction. 

 

Another strength is how the models handle uncertainty. Most existing tools try to ignore 

or remove uncertainty, but this system keeps it as part of the data. Instead of guessing a 

depth value, the model says: “we are not sure here,” and gives details. This is much closer 

to how human vision works, where we are more confident about some objects than others. 

 

In animation production, this can be very helpful. Artists and developers can use the 

confidence scores to decide which areas need attention. Automated tools can use them to 

improve lighting, blur effects, or object placement. The layered scene model also fits well 

with how visual effects are normally built by stacking elements in order of importance. 

 

However, there are a few things to keep in mind. These models require more computation 

than simple stereo systems. Each pixel now carries more information, and fusion across 

sources needs good settings for weights and thresholds. But these costs are small 

compared to the gain in accuracy and control. Finally, while this paper focuses on 3D 

animation, the same ideas could be used in other fields. Examples include robot vision, 

medical imaging, or virtual reality anywhere that depth and uncertainty must be 

understood together. 

 

8. Conclusion 

This research introduced a new set of mathematical models to improve stereo depth and 

visual structure in 3D animation. Instead of relying on one value per pixel or treating 

every part of the scene the same way, our models use detailed logic that includes 

uncertainty and layered organization. 
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The first model gave a better way to measure how sure we are about depth at each point. 

The second helped organize complex scenes by separating parts into structured layers. 

The third showed how to combine different depth sources and decide which ones to trust 

more. Together, these ideas offer a smarter way to build and manage 3D environments. 

They help reduce visual errors, support better animation effects, and make it easier to 

handle difficult areas like shadows, fog, or unclear textures. 

These models are flexible and can be added to modern animation tools or extended to 

other fields where depth and uncertainty are important. The results show that using 

neutrosophic thinking in animation is not only possible but also practical and effective. 
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