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ABSTRACT: 

  Traffic congestion in urban areas presents a complex challenge due to the multi-level nature 

of transportation networks and the presence of uncertain, imprecise data. Existing models 

often fail to comprehensively address hierarchical decision-making under uncertainty. This 

paper fills this gap by proposing a novel interval neutrosophic goal programming model for 

the Trilevel Transportation Problem (TTP), which considers decision-making across three 

interconnected levels: highways, traffic hubs, and city streets. The proposed framework 

incorporates interval neutrosophic numbers to effectively represent uncertainty and 

indeterminacy in traffic data. We develop a structured goal programming approach to 

optimize traffic flow, minimize congestion, and improve travel efficiency. A detailed 

numerical example illustrates the applicability and superiority of the model compared to 

conventional methods. The results demonstrate that our model provides a more flexible and 

accurate solution for traffic planning under uncertain environments, offering valuable insights 

for urban transportation management and policy formulation. 

Keywords: Interval neutrosophic numbers, Trilevel Transportation Problem, Fractional 

Transportation Problem. 
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1. Introduction 

In the modern era, transportation systems play a crucial role in ensuring the efficient 

movement of people and goods, especially in densely populated and industrially developed 

regions. However, real-world transportation networks are inherently complex and are often 

influenced by numerous uncertain factors such as traffic congestion, infrastructure 

limitations, varying road conditions, and unpredictable human behaviour. These uncertainties 

pose significant challenges to the design and implementation of optimal transportation 

strategies. While classical mathematical models are effective in structured and deterministic 

environments, they often fall short in addressing the vagueness and indeterminacy prevalent 

in real-world traffic systems. 

To tackle these challenges, the concept of neutrosophic sets, introduced by Smarandache [1], 

has emerged as a powerful mathematical framework capable of handling indeterminate, 

inconsistent, and incomplete information. Neutrosophic logic generalizes classical and fuzzy 

logic by incorporating independent degrees of truth, indeterminacy, and falsity, offering a 

more flexible and comprehensive structure for modelling real-life problems characterized by 

ambiguity and incomplete knowledge. 

In recent years, neutrosophic theories have been successfully applied in various domains, 

including decision-making [2-16], disease prediction [17], and network optimization [18-20]. 

Particularly in graph theory, neutrosophic graphs have been effectively utilized to model 

uncertain relationships among entities [21, 22], leading to improved algorithms for solving 

problems such as shortest path, minimum spanning tree, and other critical network-related 

computations [23-29], medical diagnosis [30-32], hierarchical problems [33-36] . 

The integration of neutrosophic environments [37, 38] into transportation problem modelling 

[39-45] is a relatively recent but rapidly developing research area. Traditionally, 

transportation problems have been addressed using single-level or bilevel optimization 

frameworks. However, the increasing complexity of urban traffic systems necessitates more 

realistic and hierarchical models. This demand has led to the development of  bilevel 

transportation problem [46], trilevel transportation models [47], which consider the 

interactions among various decision-makers, such as urban planners, transportation 

authorities, and commuters. 

The model proposed in this study incorporates neutrosophic theory into a hierarchical 

decision-making framework to optimize traffic flow under uncertain conditions more 

effectively.   

A Trilevel Programming Problem (TLPP) [48] consists of three hierarchical decision levels: 

the upper, middle, and lower levels. Each level involves a distinct decision-maker focused on 

optimizing their own objectives. In this structure, the leader at the top level makes the initial 

decisions, followed by the intermediary at the middle level who optimizes their response 

accordingly, and finally, the follower at the bottom level adapts their choices based on the 

decisions made above. 

The concept of TLPP originates from game theory, particularly from Stackelberg’s model 

[49]), which focuses on hierarchical decision-making structures. While Bilevel Programming 

Problems (BLPPs) [50, 51] have been widely studied, the multilevel extensions [52-57] have 
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also garnered considerable attention. Lai [58] at first proposed hierarchical optimization 

method and obtained a satisfactory solution using the concept of tolerance membership 

functions based on fuzzy set theory in 1996. In fuzzy environments several studies for  BLPPs 

[59-67] and multi-level programming problems [68-72] have been studied. Candler and 

Townsley [73] introduced an enumeration method for solving linear BLPPs. Bialas and 

Karwan [74] extended the Kth-best method to handle more complex BLPPs. 

In the context of transportation, trilevel models have shown promise in addressing 

multifaceted decision-making challenges. Khandelwal and Puri [75] examined time 

minimization and capacitated fixed-charge transportation issues in a three-level framework. 

More recently, Kaushal et al. [76] proposed a TLPP in which the upper level involves a 

fractional transportation objective, the middle level handles a fixed-charge problem, and the 

lower level addresses a separate transportation-related goal such as cost minimization. 

The transition from two-level to three-level transportation problems enables a more 

comprehensive analysis of complex decision-making systems, particularly in areas such as 

supply chain management, logistics, and multi-echelon transportation networks. In this paper, 

we propose a novel Trilevel Transportation Problem (TTP) formulated within a neutrosophic 

environment to effectively capture the layered decision-making process involved in traffic 

management under uncertainty. 

2. Motivation and Research Gaps 

In this context, the motivation behind the present study stems from the necessity to develop 

a traffic management approach that can simultaneously address (i) the multi-level decision-

making hierarchy involved in real transportation systems, and (ii) the uncertainty and 

vagueness present in traffic data. The adoption of neutrosophic sets—which allow for the 

representation of truth, indeterminacy, and falsity degrees independently—offers a promising 

direction to overcome these challenges. 

The novelty of this work lies in the formulation of a Trilevel Transportation Problem (TTP) 

under a neutrosophic environment, where three decision-makers operate at different levels: 

highways (upper), traffic hubs (middle), and city roads (lower). Unlike prior works that rely 

on crisp or fuzzy values, the proposed model incorporates interval neutrosophic numbers 

within a goal programming framework, enabling a more realistic representation of uncertain 

parameters in traffic planning. 

This study addresses a significant research gap by integrating hierarchical decision-making 

with neutrosophic logic—a combination not adequately explored in existing literature. It 

contributes a new methodology that enhances the flexibility, adaptability, and accuracy of 

traffic management models under uncertain conditions. Through a comprehensive numerical 

illustration, the effectiveness of the proposed approach is demonstrated, offering practical 

relevance to urban traffic planners and decision-makers. 

 

3. Preliminaries 
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Definition 3.1:  Let c be the generic   element of C, and let C be a space of points. The 

definition of a neutrosophic set [1] is 

U = {〈𝑧: 𝛼1𝑈
(𝑐), 𝛼2𝑈

(𝑐), 𝛼3𝑈
(𝑐)〉𝑐 ∈ 𝐶} 

Where, 

α1U
= membership function of truth value  

α2U
=  membership function of indeterminacy value  

α3U
=  membership function of falsity   

α1U
, α2U

, α3U
: C → ]−0,1 +[ satisfy the condition, 

−0 ≤ α1U
(𝑐) + 𝛼2𝑈

(𝑐) + 𝛼3𝑈
(𝑐) ≤ 3+ 

Definition 3.2:  A notion in neutrosophic statistics, a neutrosophic number [77]is a number 

that has both a determinate and an indeterminate portion. It is written as 

 N = p + qJ. 

 where p= the determinate part  

           qJ = the indeterminate part.  

 

4. Notations 

A Neutrosophic number [77]:𝑏𝑛 = 𝑏 + �̃�𝐽    where, J∈ [𝐽′, 𝐽′′] 

𝑃𝑢 = {1,2, … , 𝑝1} = Number of sources, leader’s problem 

𝑃𝑣 = {𝑝1 + 1, … , 𝑝𝑜} = Number of sources, follower 1’s problem 

𝑃𝑤 = {𝑝𝑜 + 1, … , 𝑝} = Number of sources, follower 2’s problem 

𝑄𝑢 = {1,2, … , 𝑞1} = Number of destinations, leader’s problem 

Qv = {q1 + 1, … , qo} = Number of destinations, follower 1’s problem 

𝑄𝑤 = {𝑞𝑜 + 1, … , 𝑞} = Number of destinations, follower 2’s problem 

P = 𝑃𝑢+𝑃𝑣 + 𝑃𝑤: Total number of sources 

Q = 𝑄𝑢 + Qv + 𝑄𝑤: Total number of destinations 

𝐴1 = 𝑎𝑒𝑓: 𝑒 ∈ 𝑃𝑢 , 𝑓 ∈ 𝑄𝑢 (variables controlled by the leader) 

𝐴2 = 𝑎𝑒𝑓: 𝑒 ∈ 𝑃𝑣 , 𝑓 ∈ 𝑄𝑣 (variables controlled by the follower 1) 

𝐴3 = 𝑎𝑒𝑓: 𝑒 ∈ 𝑃𝑤 , 𝑓 ∈ 𝑄𝑤 (variables controlled by the follower 2) 

5. Formulation of a three-level linear fractional transportation problem 

incorporating neutrosophic numbers.  

 
Mathematically, Trilevel linear fractional transportation problem with interval neutrosophic 

number (TLFTP-NN) are comprised of the following steps 

• Step1 

• Step-2 

• Step-3 
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Step1(leader)  

(highways to traffic hubs) 

(𝑅1) min
𝐴1

𝑧1( 𝐴1, 𝐴2, 𝐴3) =  
(𝑑1𝑚

𝑆 )𝐴1+(𝑑2𝑚
𝑆 )𝐴2+(𝑑3𝑚

𝑆 )𝑎3

(𝑥1𝑚
𝑆 )𝐴1+(𝑥2𝑚

𝑆 )𝐴2+(𝑥3)𝑚
𝑆 )𝑎3

                            (1) 

Subject to  

  ∑ 𝑎𝑒𝑓

𝑓∈𝑄𝑈

≤ (𝐵𝑚)𝑒
𝑈 ,        ∀ 𝑒 ∈ 𝑃𝑈  

∑ 𝑎𝑒𝑓

𝑒∈𝑃𝑈

≤ (𝐷𝑚)𝑓
𝑈 ,        ∀ 𝑓 ∈ 𝑄𝑈 

Step2(follower-1) 

(traffic hubs to city regions) 

(𝑅2) min
𝐴2

𝑧2( 𝐴1, 𝐴2, 𝐴3) =  
(𝑔1𝑚

𝑆 )𝐴1+(𝑔2𝑚
𝑆 )𝐴2+(𝑔3𝑚

𝑆 )𝑎3

(𝑦1𝑚
𝑆 )𝐴1+(𝑦2𝑚

𝑆 )𝐴2+(𝑦3)𝑚
𝑆 )𝑎3

                                      (3) 

 

Subject to  

   ∑ 𝑎𝑒𝑓

𝑓∈𝑄𝑉

≤ (𝐵𝑚)𝑒
𝑉 ,        ∀ 𝑒 ∈ 𝑃𝑉  

∑ 𝑎𝑒𝑓

𝑒∈𝑃𝑉

≤ (𝐷𝑚)𝑓
𝑉 ,        ∀ 𝑓 ∈ 𝑄𝑉 

Step-3(follower-2) 

(street roads to city regions) 

(𝑅3) min
𝐴3

𝑧3( 𝐴1, 𝐴2, 𝐴3) =  
(ℎ1𝑚

𝑆 )𝐴1+(ℎ2𝑚
𝑆 )𝐴2+(ℎ3𝑚

𝑆 )𝑎3

(𝑜1𝑚
𝑆 )𝐴1+(𝑜2)𝑚

𝑆 )𝐴2+(𝑜3)𝑚
𝑆 )𝑎3

                                      (5) 

Subject to  

   ∑ 𝑎𝑒𝑓

𝑓∈𝑄𝑊

≤ (𝐵𝑚)𝑒
𝑊,        ∀ 𝑒 ∈ 𝑃𝑊  

∑ 𝑎𝑒𝑓

𝑒∈𝑃𝑊

≤ (𝐷𝑚)𝑓
𝑊,        ∀ 𝑓 ∈ 𝑄𝑊 

 

 

 

 

Where,  

 

(𝑑1)𝑚 = [(𝑑𝑚)𝑒𝑓
𝑈 ]   𝑒 ∈ 𝑃𝑈 , 𝑓 ∈ 𝑄𝑈    

(𝑔1)𝑚 = [(𝑔𝑚)𝑒𝑓
𝑈 ]   𝑒 ∈ 𝑃𝑈, 𝑓 ∈ 𝑄𝑈  

(ℎ1)𝑚 = [(ℎ𝑚)𝑒𝑓
𝑈 ]   𝑒 ∈ 𝑃𝑈 , 𝑓 ∈ 𝑄𝑈  

 

 

 

(2) 

(4) 

(6) 

neutrosophic cost parameters of 

leader’s problem 
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(𝑑2)𝑚 = [(𝑑𝑚)𝑒𝑓
𝑉 ]   𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉  

(𝑔2)𝑚 = [(𝑑𝑚)𝑒𝑓
𝑉 ]   𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉  

(ℎ2)𝑚 = [(𝑑𝑚)𝑒𝑓
𝑉 ]   𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉  

 

 

(𝑑3)𝑚 = [(𝑑𝑚)𝑒𝑓
𝑊 ]   𝑒 ∈ 𝑃𝑊, 𝑓 ∈ 𝑄𝑊  

(𝑔3)𝑚 = [(𝑑𝑚)𝑒𝑓
𝑊 ]   𝑒 ∈ 𝑃𝑊, 𝑓 ∈ 𝑄𝑊  

(ℎ3)𝑚 = [(𝑑𝑚)𝑒𝑓
𝑊 ]   𝑒 ∈ 𝑃𝑊, 𝑓 ∈ 𝑄𝑊  

 

 

 

 

(𝑥1)𝑚 = [(𝑥𝑚)𝑒𝑓
𝑈 ]   𝑒 ∈ 𝑃𝑈, 𝑓 ∈ 𝑄𝑈  

(𝑦1)𝑚 = [(𝑦𝑚)𝑒𝑓
𝑈 ]   𝑒 ∈ 𝑃𝑈, 𝑓 ∈ 𝑄𝑈   

(𝑜1)𝑚 = [(𝑜𝑚)𝑒𝑓
𝑈 ]   𝑒 ∈ 𝑃𝑈 , 𝑓 ∈ 𝑄𝑈  

 

 

(𝑥2)𝑚 = [(𝑥𝑚)𝑒𝑓
𝑉 ]   𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉  

(𝑦2)𝑚 = [(𝑦𝑚)𝑒𝑓
𝑉 ]   𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉   

(𝑜2)𝑚 = [(𝑜𝑚)𝑒𝑓
𝑉 ]   𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉  

 

 

 

(𝑥3)𝑚 = [(𝑥𝑚)𝑒𝑓
𝑊 ]   𝑒 ∈ 𝑃𝑈 , 𝑓 ∈ 𝑄𝑈  

(𝑦3)𝑚 = [(𝑦𝑚)𝑒𝑓
𝑊 ]   𝑒 ∈ 𝑃𝑈 , 𝑓 ∈ 𝑄𝑈   

(𝑜3)𝑚 = [(𝑜𝑚)𝑒𝑓
𝑈 ]   𝑒 ∈ 𝑃𝑈 , 𝑓 ∈ 𝑄𝑈  

 

 

And 𝐴𝑒𝑓 ≥ 0  ∀(𝑒, 𝑓)   ∈ 𝑃 × 𝑄  𝑤ℎ𝑒𝑟𝑒, 

P=  𝑃𝑈 ∪ 𝑃𝑉 ∪ 𝑃𝑊,   𝑄 = 𝑄𝑈 ∪ 𝑄𝑉 ∪ 𝑄𝑊, 

𝑃𝑢 = {1,2, … , 𝑝1} ,  𝑃𝑣 = {𝑝1 + 1, … , 𝑝𝑜},  𝑃𝑤 = {𝑝𝑜 + 1, … , 𝑝} 

𝑄𝑢 = {1,2, … , 𝑞1}, Qv = {q1 + 1, … , qo}, 𝑄𝑤 = {𝑞𝑜 + 1, … , 𝑞}  

 Also, we have, (𝐴1, 𝐴2, 𝐴3) ∈ 𝐷1 

D= {(𝐴1, 𝐴2, 𝐴3) ∈ 𝛼, 𝐴2, 𝐴3 ∈ 𝛽(𝐴1), (𝑥1)𝑚
𝑆 𝐴1 + (𝑥2)𝑚

𝑆 𝐴2) + (𝑥3)𝑚
𝑆 𝐴3 > 0, (𝑦1)𝑚

𝑆 𝐴1 +

(𝑦2)𝑚
𝑆 𝐴2) + (𝑦3)𝑚

𝑆 𝐴3 > 0, (𝑜1)𝑚
𝑆 𝐴1 + (𝑜2)𝑚

𝑆 𝐴2) + (𝑜3)𝑚
𝑆 𝐴3  } 

𝛽 = {(𝐴1, 𝐴2,𝐴3): (𝐴1, 𝐴2, 𝐴3): (𝐴1, 𝐴2,𝐴3)}  satisfy constraints in equation 2 and 4 and 6 

 

 

neutrosophic cost parameters of 

follower-1’s problem 

 

neutrosophic cost parameters of 

follower-2’s problem 

 

 Number of neutrosophic parameters 

of leader’s problem 

 

 Number of neutrosophic parameters 

of follower-1’s problem 

 

 Number of neutrosophic parameters 

of follower-2’s problem 

, 
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5.1 Solution methodology for (TLFTP-NN) using goal programming. 

(𝑏1)𝑚
𝑆 𝐴1 + (𝑏2)𝑚

𝑆 𝐴2 + (𝑏3)𝑚
𝑆 𝐴3 = ∑ ∑[(𝑏𝑚)𝑒𝑓]𝐴𝑒𝑓

𝑄

𝑓=1

𝑃

𝑒=1

 

= ∑ ∑[𝑏𝑒𝑓 + �̃�𝑒𝑓𝐽]𝐴𝑒𝑓

𝑄

𝑓=1

𝑃

𝑒=1

          𝑤ℎ𝑒𝑟𝑒 𝐽 ∈ [𝑗′, 𝐽′′] 

Now the problem (TLFTP-NN) simplifies to  

(𝑅1) lim
𝐴1

𝑧1(𝐴1, 𝐴2, 𝐴3) =
∑ ∑ [𝑑𝑒𝑓+�̃�𝑒𝑓𝐽]

𝑄
𝑓=1 𝑎𝑒𝑓

𝑃
𝑒=1

∑ ∑ [𝑥𝑒𝑓+�̃�𝑒𝑓𝐽]
𝑄
𝑓=1

𝑃
𝑒=1 𝑎𝑒𝑓

 

Subject to  

∑ 𝑎𝑒𝑓 ≤ [𝐵𝑒
𝑈 + �̃�𝑒

𝑈𝐽]𝑓∈𝑄𝑈
 ∀𝑒 ∈ 𝑃𝑈 , 

∑ 𝑎𝑒𝑓 ≤ [𝐷𝑒
𝑈 + �̃�𝑒

𝑈𝐽]𝑒∈𝑃𝑈
 ∀𝑓 ∈ 𝑄𝑈   

 Where 𝐴2 solves  

(𝑅2) lim
𝐴2

𝑧2(𝐴1, 𝐴2, 𝐴3) =
∑ ∑ [𝑔𝑒𝑓+�̃�𝑒𝑓𝐽]

𝑄
𝑓=1 𝑎𝑒𝑓

𝑃
𝑒=1

∑ ∑ [𝑦𝑒𝑓+�̃�𝑒𝑓𝐽]
𝑄
𝑓=1

𝑃
𝑒=1 𝑎𝑒𝑓

 

Subject to  

∑ 𝑎𝑒𝑓 ≤ [𝐵𝑒
𝑉 + �̃�𝑒

𝑉𝐽]𝑓∈𝑄𝑉
 ∀𝑒 ∈ 𝑃𝑉 , 

∑ 𝑎𝑒𝑓 ≤ [𝐷𝑒
𝑉 + �̃�𝑒

𝑉𝐽]𝑒∈𝑃𝑉
 ∀𝑓 ∈ 𝑄𝑉   

𝐴3 Solves 

(𝑅3) lim
𝐴3

𝑧3(𝐴1, 𝐴2, 𝐴3) =
∑ ∑ [ℎ𝑒𝑓+ℎ̃𝑒𝑓𝐽]

𝑄
𝑓=1 𝑎𝑒𝑓

𝑃
𝑒=1

∑ ∑ [𝑜𝑒𝑓+�̃�𝑒𝑓𝐽]
𝑄
𝑓=1

𝑃
𝑒=1 𝑎𝑒𝑓

 

Subject to  

∑ 𝑎𝑒𝑓 ≤ [𝐵𝑒
𝑊 + �̃�𝑒

𝑊𝐽]𝑓∈𝑄𝑊
 ∀𝑒 ∈ 𝑃𝑊 , 

∑ 𝑎𝑒𝑓 ≤ [𝐷𝑒
𝑊 + �̃�𝑒

𝑊𝐽]𝑒∈𝑃𝑊
 ∀𝑓 ∈ 𝑄𝑊   

Also, 𝑎𝑒𝑓 ≥ 0  ∀(𝑒, 𝑓) ∈ 𝑃 × 𝑄. Let J∈ [𝐽′, 𝐽′′] and using Sect. 3, we convert each NN to an 

interval number. So, we get 

(𝑅1) lim
𝐴1

𝑧1(𝐴1, 𝐴2, 𝐴3) =
∑ ∑ [𝑑′

𝑒𝑓,𝑑′′
𝑒𝑓]

𝑄
𝑓=1 𝑎𝑒𝑓

𝑃
𝑒=1

∑ ∑ [𝑥′
𝑒𝑓,𝑥′′

𝑒𝑓]
𝑄
𝑓=1

𝑃
𝑒=1 𝑎𝑒𝑓

 

Subject to 

 

∑ 𝑎𝑒𝑓 ≤ [𝐵′
𝑒
𝑈

, 𝐵′′
𝑒
𝑈

]𝑓∈𝑄𝑈
 ∀𝑒 ∈ 𝑃𝑈 , 

∑ 𝑎𝑒𝑓 ≤ [𝐷′′
𝑒
𝑈

, 𝐷′′
𝑒
𝑈

]𝑒∈𝑃𝑈
 ∀𝑓 ∈ 𝑄𝑈   

And 𝐴2 solves 

 

 

(𝑅2) lim
𝐴2

𝑧2(𝐴1, 𝐴2, 𝐴3) =
∑ ∑ [𝑔′

𝑒𝑓,𝑔′′
𝑒𝑓]

𝑄
𝑓=1 𝑎𝑒𝑓

𝑃
𝑒=1

∑ ∑ [𝑦′
𝑒𝑓,𝑦′′

𝑒𝑓]
𝑄
𝑓=1

𝑃
𝑒=1 𝑎𝑒𝑓

 

Subject to 

∑ 𝑎𝑒𝑓 ≤ [𝐵′
𝑒
𝑉

, 𝐵′′
𝑒
𝑉

]𝑓∈𝑄𝑉
 ∀𝑒 ∈ 𝑃𝑉 , 

∑ 𝑎𝑒𝑓 ≤ [𝐷′′
𝑒
𝑉

, 𝐷′′
𝑒
𝑉

]𝑒∈𝑃𝑉
 ∀𝑓 ∈ 𝑄𝑉   

And 𝐴3 solves 

(7) 

(8) 

(9) 
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(𝑅3) lim
𝐴3

𝑧3(𝐴1, 𝐴2, 𝐴3) =
∑ ∑ [ℎ′

𝑒𝑓,ℎ′′
𝑒𝑓]

𝑄
𝑓=1 𝑎𝑒𝑓

𝑃
𝑒=1

∑ ∑ [𝑜′
𝑒𝑓,𝑜′′

𝑒𝑓]
𝑄
𝑓=1

𝑃
𝑒=1 𝑎𝑒𝑓

 

 

Subject to 

∑ 𝑎𝑒𝑓 ≤ [𝐵′
𝑒
𝑊

, 𝐵′′
𝑒
𝑊

]𝑓∈𝑄𝑊
 ∀𝑒 ∈ 𝑃𝑊 , 

∑ 𝑎𝑒𝑓 ≤ [𝐷′′
𝑒
𝑊

, 𝐷′′
𝑒
𝑊

]𝑒∈𝑃𝑊
 ∀𝑓 ∈ 𝑄𝑊   

Where 𝑎𝑒𝑓 ≥ 0  ∀(𝑒, 𝑓) ∈ 𝑃 × 𝑄. 

To find the optimal solution range, we adjust coefficients within their intervals in the objective 

functions and constraints. This approach helps determine the best and worst optimal solutions, 

considering system limitations 

Theorem 1. 

Suppose ∑ [𝐺1
𝑓

, 𝐺2
𝑓

]𝑍𝑓 ≥ [ℎ1, ℎ2]𝑚
𝑓=1  then ∑ [𝐺2

𝑓
]𝑍𝑓 ≥ [ℎ1]𝑚

𝑓=1  and ∑ [𝐺1
𝑓

]𝑍𝑓 ≥ [ℎ2]𝑚
𝑓=1  

represent the upper and lower limits, respectively, of the range of values that satisfy the 

constraint condition. 

Applying the proposition to constraints (Eqs. 6-7) with [𝐺1
𝑓

, 𝐺2
𝑓
] = 1 yields the maximum and 

minimum feasible regions for both levels, representing the best and worst optimal solutions 

(Shaocheng, 1994; Chinneck & Ramadan, 2000). To minimize At each level, the coefficients 

in the interval fractional objective function are modified accordingly. Optimization problems 

for the best solutions are summarized at table 1 and the worst solutions summarized in Tables 

2. 

 

(10) 
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Table 1. Best solution 

 

Leader’s Problem 
lim
𝑎∈𝐴

𝑧1( 𝐴1, 𝐴2, 𝐴3) =
∑ ∑ 𝑑𝑒𝑓

′ 𝑎𝑒𝑓
𝑄
𝑓=1

𝑃
𝑒=1

∑ ∑ 𝑥𝑒𝑓
′′ 𝑎𝑒𝑓

𝑄
𝑓=1

𝑃
𝑒=1

 

s.t. 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′′𝑈       ∀𝑒 ∈ 𝑃𝑈

𝑓∈𝑄𝑈

 

∑ 𝑎𝑒𝑓 ≥ 𝐷𝑓
′𝑈       ∀𝑓 ∈ 𝑄𝑈

𝑒∈𝑃𝑈

 

 

Follower-1’s Problem 
lim
𝑎∈𝐴

𝑧2( 𝐴1, 𝐴2, 𝐴3) =
∑ ∑ 𝑔𝑒𝑓

′ 𝑎𝑒𝑓
𝑄
𝑓=1

𝑃
𝑒=1

∑ ∑ 𝑦𝑒𝑓
′′ 𝑎𝑒𝑓

𝑄
𝑓=1

𝑃
𝑒=1

 

s.t. 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′′𝑉       ∀𝑒 ∈ 𝑃𝑉

𝑓∈𝑄𝑉

 

∑ 𝑎𝑒𝑓 ≥ 𝐷𝑓
′𝑉       ∀𝑓 ∈ 𝑄𝑉

𝑒∈𝑃𝑉

 

 

Follower-2’s Problem 
lim
𝑎∈𝐴

𝑧3( 𝐴1, 𝐴2, 𝐴3) =
∑ ∑ ℎ𝑒𝑓

′ 𝑎𝑒𝑓
𝑄
𝑓=1

𝑃
𝑒=1

∑ ∑ 𝑜𝑒𝑓
′′ 𝑎𝑒𝑓

𝑄
𝑓=1

𝑃
𝑒=1

 

s.t. 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′′𝑊       ∀𝑒 ∈ 𝑃𝑊

𝑓∈𝑄𝑊

 

∑ 𝑎𝑒𝑓 ≥ 𝐷𝑓
′𝑊       ∀𝑓 ∈ 𝑄𝑊

𝑒∈𝑃𝑊

 

 

 

 

Table 2. Worst solution 

Leader’s Problem 
lim
𝑎∈𝐴

𝑧1( 𝐴1, 𝐴2, 𝐴3) =
∑ ∑ 𝑑𝑒𝑓

′′ 𝑎𝑒𝑓
𝑄
𝑓=1

𝑃
𝑒=1

∑ ∑ 𝑥𝑒𝑓
′ 𝑎𝑒𝑓

𝑄
𝑓=1

𝑃
𝑒=1

 

s.t. 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′𝑈       ∀𝑒 ∈ 𝑃𝑈

𝑓∈𝑄𝑈

 

∑ 𝑎𝑒𝑓 ≥ 𝐷𝑓
′′𝑈       ∀𝑓 ∈ 𝑄𝑈

𝑒∈𝑃𝑈
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Follower-1’s Problem 
lim
𝑎∈𝐴

𝑧2( 𝐴1, 𝐴2, 𝐴3) =
∑ ∑ 𝑔𝑒𝑓

′′ 𝑎𝑒𝑓
𝑄
𝑓=1

𝑃
𝑒=1

∑ ∑ 𝑦𝑒𝑓
′ 𝑎𝑒𝑓

𝑄
𝑓=1

𝑃
𝑒=1

 

s.t. 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′𝑉       ∀𝑒 ∈ 𝑃𝑉

𝑓∈𝑄𝑉

 

∑ 𝑎𝑒𝑓 ≥ 𝐷𝑓
′′𝑉       ∀𝑓 ∈ 𝑄𝑉

𝑒∈𝑃𝑉

 

 

Follower-2’s Problem 
lim
𝑎∈𝐴

𝑧3( 𝐴1, 𝐴2, 𝐴3) =
∑ ∑ ℎ𝑒𝑓

′′ 𝑎𝑒𝑓
𝑄
𝑓=1

𝑃
𝑒=1

∑ ∑ 𝑜𝑒𝑓
′ 𝑎𝑒𝑓

𝑄
𝑓=1

𝑃
𝑒=1

 

s.t. 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′𝑊       ∀𝑒 ∈ 𝑃𝑊

𝑓∈𝑄𝑊

 

∑ 𝑎𝑒𝑓 ≥ 𝐷𝑓
′′𝑊       ∀𝑓 ∈ 𝑄𝑊

𝑒∈𝑃𝑊

 

 

 

For the mth  level decision maker, m=1,2,3, let 

Individual best solution is 

 𝑎𝑚
𝑐 = ((𝑎𝑚

𝑐 )11, (𝑎𝑚
𝑐 )12, … (𝑎𝑚

𝑐 )𝑝1𝑞1
, (𝑎𝑚

𝑐 )𝑚1+1,𝑛1+1, … (𝑎𝑚
𝑐 )𝑃𝑄) 

Individual worst solution is 

𝑎𝑚
𝑙 = ((𝑎𝑚

𝑙 )11, (𝑎𝑚
𝑙 )12, … (𝑎𝑚

𝑙 )𝑝1𝑞1
, (𝑎𝑚

𝑙 )𝑚1+1,𝑛1+1, … (𝑎𝑚
𝑙 )𝑃𝑄) 

      Let 𝑧𝑚(𝑎𝑚
𝑐 ) represent the best possible outcome (individual optimal value) and 𝑧𝑚(𝑎𝑚

𝑙 )  

represent the worst possible outcome (individual worst value) for the objective function. Then the 

best possible outcomes for the m-th level decision-maker fall within the range of [𝑧�̅�, 𝑧�̿�]C, which 

is between 𝑧𝑚(𝑎𝑚
𝑐 )  and 𝑧𝑚(𝑎𝑚

𝑙 )  . 

To achieve an optimal compromise solution, a target range [𝑌𝑚
∗ , 𝑌𝑚

∗∗] is set for the m-th level 

decision-maker, representing a middle ground for negotiation. 

𝑧�̿� ≥ 𝑌𝑚
∗  

𝑧�̅� ≤ 𝑌𝑚
∗∗ 

Therefore, this goal achievement functions can be mathematically represented as: 

−𝑧�̿� + �̿�𝑚 = −𝑌𝑚
∗ , 

𝑧�̅� + �̅�𝑚 = 𝑌𝑚
∗∗ 

Let  

(𝑎1
𝐷)𝑒𝑓 − (𝑞1)𝑒𝑓𝑎𝑛𝑑 (𝑎1

𝐷)𝑒𝑓 + (𝑝1)𝑒𝑓, 𝑒 ∈ 𝑃𝑈 , 𝑓 ∈ 𝑄𝑈 be the upper and lower bounds of the 

decision vector given by leader. 

(𝑎2
𝐷)𝑒𝑓 − (𝑞2)𝑒𝑓𝑎𝑛𝑑 (𝑎2

𝐷)𝑒𝑓 + (𝑝2)𝑒𝑓, 𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉 be the upper and lower bounds of the 

decision vector given by follower-1. 

(11) 

(12

) 
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(𝑎3
𝐷)𝑒𝑓 − (𝑞3)𝑒𝑓 ≤ (𝑎3

𝐷)𝑒𝑓 ≤ (𝑎3
𝐷)𝑒𝑓 + (𝑝3)𝑒𝑓 , 𝑒 ∈ 𝑃𝑉 , 𝑓 ∈ 𝑄𝑉 be the lower and upper bounds of 

the decision vector given by follower-2. 

Then we have  

(𝑎1
𝐷)𝑒𝑓 − (𝑞1)𝑒𝑓 ≤ (𝑎1

𝐷)𝑒𝑓 ≤ (𝑎1
𝐷)𝑒𝑓 + (𝑝1)𝑒𝑓, 𝑒 ∈ 𝑃𝑈, 𝑓 ∈ 𝑄𝑈 

(𝑎2
𝐷)𝑒𝑓 − (𝑞2)𝑒𝑓 ≤ (𝑎2

𝐷)𝑒𝑓 ≤ (𝑎2
𝐷)𝑒𝑓 + (𝑝2)𝑒𝑓, 𝑒 ∈ 𝑃𝑉, 𝑓 ∈ 𝑄𝑉 

(𝑎3
𝐷)𝑒𝑓 − (𝑞3)𝑒𝑓 ≤ (𝑎3

𝐷)𝑒𝑓 ≤ (𝑎3
𝐷)𝑒𝑓 + (𝑝3)𝑒𝑓, 𝑒 ∈ 𝑃𝑊, 𝑓 ∈ 𝑄𝑊 

 

The following goal programming model is formulated to obtain a satisfactory solution: 

𝑀𝑖𝑛 ∑ (�̅�𝑀 + �̿�𝑀)

3

𝑚=1

 

Subject to  

 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′′𝑈

,

𝑓∈𝑄𝑈

  ∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′ 𝑈

    ∀𝑒 ∈ 𝑃𝑈 ,

𝑓∈𝑄𝑈

 

∑ 𝑎𝑒𝑓 ≤ 𝐷𝑒
′′𝑈

,

𝑒∈𝑃𝑈

  ∑ 𝑎𝑒𝑓 ≤ 𝐷𝑒
′ 𝑈

    ∀𝑒 ∈ 𝑄𝑈 ,

𝑒∈𝑃𝑈

 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′′𝑉

,

𝑓∈𝑄𝑉

  ∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′ 𝑉

    ∀𝑒 ∈ 𝑃𝑉,

𝑓∈𝑄𝑉

 

∑ 𝑎𝑒𝑓 ≤ 𝐷𝑒
′′𝑉

,

𝑒∈𝑃𝑉

  ∑ 𝑎𝑒𝑓 ≤ 𝐷𝑒
′ 𝑉

    ∀𝑒 ∈ 𝑄𝑉 ,

𝑒∈𝑄𝑉

 

∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′′𝑊

,

𝑓∈𝑄𝑊

  ∑ 𝑎𝑒𝑓 ≤ 𝐵𝑒
′ 𝑊

    ∀𝑒 ∈ 𝑃𝑈 ,

𝑓∈𝑄𝑊

 

∑ 𝑎𝑒𝑓 ≤ 𝐷𝑒
′′𝑊

,

𝑒∈𝑃𝑊

  ∑ 𝑎𝑒𝑓 ≤ 𝐷𝑒
′ 𝑊

    ∀𝑒 ∈ 𝑄𝑊,

𝑒∈𝑃𝑊

 

(𝑎1
𝐷)𝑒𝑓 − (𝑞1)𝑒𝑓 ≤ (𝑎1

𝐷)𝑒𝑓 ≤ (𝑎1
𝐷)𝑒𝑓 + (𝑝1)𝑒𝑓, 𝑒 ∈ 𝑃𝑈, 𝑓 ∈ 𝑄𝑈 

(𝑎2
𝐷)𝑒𝑓 − (𝑞2)𝑒𝑓 ≤ (𝑎2

𝐷)𝑒𝑓 ≤ (𝑎2
𝐷)𝑒𝑓 + (𝑝2)𝑒𝑓, 𝑒 ∈ 𝑃𝑉, 𝑓 ∈ 𝑄𝑉 

(𝑎3
𝐷)𝑒𝑓 − (𝑞3)𝑒𝑓 ≤ (𝑎3

𝐷)𝑒𝑓 ≤ (𝑎3
𝐷)𝑒𝑓 + (𝑝3)𝑒𝑓, 𝑒 ∈ 𝑃𝑊, 𝑓 ∈ 𝑄𝑊 

�̅�𝑚, �̿�𝑚, 𝐴 ≥ 0, 𝑚 = 1,2,3. 

 

 

 

5.2 Flowchart of the Proposed Methodology 

(13) 
(14

) 

(15

) 
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6. Numerical example of TLFTP-NN 

6.1 Definition of Problem 

A traffic management authority is responsible for optimizing the movement of vehicles across a 

city. The transportation network consists of: 

Top Level (Leader - Government Authority): Controls the main highways connecting different cities 

and aims to minimize overall traffic congestion. Middle Level (Follower 1 - City Traffic 

Department): Regulates the flow of traffic from major highways to urban distribution centers while 

minimizing delays. Lower Level (Follower 2 - Local Authorities): Manages vehicle flow within 

urban areas and optimizes road usage for local traffic. 

6.2 Solved numerical (TLFTP-NN) 

In this scenario, three entities collaborate to optimize traffic flow: 

Government Traffic Authority (Leader): Aims to minimize neutrosophic transportation costs 

while maximizing vehicle flow on highways connecting cities. 
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City Traffic Management Department (First Follower): Seeks to minimize neutrosophic 

transportation costs while ensuring optimal traffic distribution from highways to urban traffic 

hubs. 

Local Traffic Control Authority (Second Follower): Focuses on minimizing traffic congestion 

in city regions by maximizing efficient vehicle distribution from urban hubs to different city 

regions (North, East, West, and South). 

We consider a three- level transportation system for managing traffic in a metropolitan region; 

At upper Level, (highway to traffic Hubs) (see table 3) 

Four highway points serve as supply i.e.- 

(A=6+5J), (B=6+4J), (C=6+7J), (D=6+3J) 

Let four traffic hubs points serve as demand  

(W=6+3J), (X=5+6J), (Y=7+5J), (Z=6+5J) 

Table 3. Upper level neutrosophic transportation problem 

 

Highway to 

traffic Hubs 

W X Y Z 

A 2+3J 

5+2J 

5+6J 

4+2J 

7+J 

2+4J 

4+3J 

7+3J 

B 3+2J 

4+2J 

4+5J 

2+5J 

5+3J 

3+4J 

8+3J 

4+5J 

C 10+7J 

6+3J 

7+3J 

3+5J 

2+5J 

5+6J 

10+3J 

3+6J 

D 3+4J 

3+7J 

2+6J 

4+5J 

3+4J 

4+3J 

5+3J 

6+2J 

 

At follower-1 level (traffic Hubs to city regions) Each Hub must send vehicles to city regions 

while minimizing congestion.  

So, at middle level  ( see Table 4) we get supply (W=6+3J), (X=5+6J), (Y=7+5J), (Z=6+5J) 

Demand is (North=7+5J), (East=7+4J), (West=6+5J), (South=4+5J) 

Table 4.  Middle level neutrosophic transportation problem 

 

traffic Hubs to 

city regions 

NORTH EAST WEST SOUTH 

W 5+3J 

6+2J 

6+8J 

4+2J 

3+2J 

5+3J 

7+3J 

11+2J 

X 8+6J 

3+3J 

11+2J 

4+5J 

9+5J 

7+4J 

9+2J 

2+6J 

Y 7+10J 

3+3J 

5+5J 

4+3J 

7+4J 

2+4J 

10+3J 

4+7J 

Z 9+2J 5+4J 3+5J 6+5J 

[𝑑𝑒𝑓 + �̃�𝑒𝑓𝐽 

[𝑥𝑒𝑓 + �̃�𝑒𝑓𝐽 

[𝑔𝑒𝑓 + �̃�𝑒𝑓𝐽 

[𝑦𝑒𝑓 + �̃�𝑒𝑓𝐽 
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6+2J 4+3J 7+3J 4+5J 

 

And at lower level (City Reasons to Local Streets) (see Table 5) we obtain  

Supply is (North=7+5J), (East=7+4J), (West=6+5J), (South=4+5J) 

Demand is (Street -1=8+6J), (Street-2=6+3J), (Street-3=5+6J), (Street-4=5+4J) 

 

Table 5. Lower level neutrosophic transportation problem 

 

City Reasons to 

Local Streets 

STREET-1 STREET-2 STREET-3 STREET-

4 

NORTH 2+5J 

5+6J 

3+2J 

4+2J 

3+2J 

4+2J 

3+5J 

7+3J 

EAST 3+2J 

4+2J 

3+2J 

4+2J 

9+5J 

7+4J 

5+4J 

4+3J 

WEST 4+3J 

7+3J 

5+6J 

4+2J 

5+6J 

4+2J 

7+3J 

11+2J 

SOUTH 7+3J 

11+2J 

7+10J 

3+3J 

3+4J 

3+7J 

3+4J 

3+7J 

 

At each level, the transportation problem is considered balanced, with total supply equalling total 

demand amounting to 24+19J. 

Tables 4 and 5 display that neutrosophic transportation costs and neutrosophic parameter numbers 

for the upper, middle and lower levels, respectively. Each cell (e, f) in both tables contains two 

entries: 

The source and demand constraints at upper level: 

∑ 𝑎1𝑓 ≤ 6 + 5𝐽

4

𝑓=1

, ∑ 𝑎2𝑓 ≤ 6 + 4𝐽

4

𝑓=1

, ∑ 𝑎3𝑓 ≤ 6 + 7𝐽

4

𝑓=1

, ∑ 𝑎4𝑓 ≤ 6 + 3𝐽

4

𝑓=1

, 

∑ 𝑎𝑒1 ≤ 6 + 3𝐽

4

𝑒=1

, ∑ 𝑎𝑒2 ≤ 5 + 6𝐽

4

𝑒=1

, ∑ 𝑎𝑒3 ≤ 7 + 5𝐽

4

𝑒=1

, ∑ 𝑎𝑒4 ≤ 6 + 5𝐽

4

𝑒=1

 

The source and demand constraints at middle level: 

∑ 𝑎1𝑓 ≤ 6 + 3𝐽

4

𝑓=1

, ∑ 𝑎2𝑓 ≤ 5 + 6𝐽

4

𝑓=1

, ∑ 𝑎3𝑓 ≤ 7 + 5𝐽

4

𝑓=1

, ∑ 𝑎4𝑓 ≤ 6 + 5𝐽

4

𝑓=1

 

∑ 𝑎𝑒1 ≤ 7 + 5𝐽

4

𝑒=1

, ∑ 𝑎𝑒2 ≤ 7 + 4𝐽

4

𝑒=1

, ∑ 𝑎𝑒3 ≤ 6 + 5𝐽

4

𝑒=1

, ∑ 𝑎𝑒4 ≤ 4 + 5𝐽

4

𝑒=1

 

The source and demand constraints at lower level: 

[ℎ𝑒𝑓 + ℎ̃𝑒𝑓𝐽 

[𝑜𝑒𝑓 + �̃�𝑒𝑓𝐽 
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∑ 𝑎1𝑓 ≤ 7 + 5𝐽

4

𝑓=1

, ∑ 𝑎2𝑓 ≤ 7 + 4𝐽

4

𝑓=1

, ∑ 𝑎3𝑓 ≤ 6 + 5𝐽

4

𝑓=1

, ∑ 𝑎4𝑓 ≤ 4 + 5𝐽

4

𝑓=1

 

∑ 𝑎𝑒1 ≤ 8 + 6𝐽

4

𝑒=1

, ∑ 𝑎𝑒2 ≤ 6 + 3𝐽

4

𝑒=1

, ∑ 𝑎𝑒3 ≤ 5 + 6𝐽

4

𝑒=1

, ∑ 𝑎𝑒4 ≤ 5 + 4𝐽

4

𝑒=1

 

By setting J ∈ [0,1], we transform the trilevel Transportation Problem with Neutrosophic Numbers 

(TLTP-NN) into a Trilevel Transportation Problem (TLTP) with interval numbers (see table 6 & 

Table 7). This conversion enables us to derive optimization problems, as shown in Tables 1 and 2, 

which help determine the best and worst upper-level solutions. 

Next, we create goal achievement functions for both levels' objective functions using the obtained 

results. We then set preference bounds for the decision variables to guide the decision-making 

process. 

Now, Let the target level of the leader’s objective function be given by [𝑌1
∗, 𝑌2

∗∗] = [0.2,0.5] 

the target level of the follower-1’s objective function be given by [𝑌2
∗, 𝑌2

∗∗] = [0.5,0.8] 

the target level of the follower-2’s objective function be given by [𝑌3
∗, 𝑌3

∗∗] = [0.8,1.1] 

A goal programming model is formulated, incorporating preference bounds on the decision 

variables, and is represented as follows: 

 

Table 6.  Best upper-level optimization problem 

 

Highway to 

traffic Hubs 

W X Y Z supply 

A 2 

7 

5 

6 

7 

6 

4 

10 

11 

B 3 

6 

4 

7 

5 

7 

8 

9 

10 

C 10 

9 

7 

8 

2 

11 

10 

9 

13 

D 3 

10 

2 

9 

3 

7 

5 

8 

9 

demand 6 5 7 6  

 

Table 7 Worst upper-level optimization problem 

 

Highway to 

traffic Hubs 

W X Y Z supply 

A 5 

5 

11 

4 

8 

2 

7 

7 

6 

B 5 9 8 11 6 
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4 2 3 4 

C 17 

6 

10 

3 

7 

5 

13 

3 

6 

D 7 

3 

8 

4 

7 

4 

8 

6 

6 

demand 9 11 12 11  

By setting J ∈ [0,1] in this given problem, we convert the TLTP-NN into a TLTP with the interval 

numbers. Tables 8, and Table-9 represent that optimization problems derived from Table 1 and table 

2, used to determine the best and worst upper-level solutions, respectively. 

Table 8.  Best middle level optimization problem 

 

Traffic Hubs 

to city regions 

NORTH EAST WEST SOUTH supply 

W 5 

8 

6 

6 

3 

8 

7 

13 

9 

X 8 

6 

11 

9 

9 

11 

9 

8 

11 

Y 7 

6 

5 

7 

7 

6 

10 

11 

12 

Z 9 

8 

5 

7 

3 

10 

6 

9 

11 

demand 7 7 6 4  

 

Table 9.  Worst middle level optimization problem 

 

Traffic Hubs to 

city regions 

NORTH EAST WEST SOUTH supply 

W 8 

6 

14 

4 

5 

5 

10 

11 

6 

X 14 

3 

13 

4 

14 

7 

11 

2 

5 

Y 17 

3 

10 

4 

11 

2 

13 

4 

7 

Z 11 

6 

9 

4 

8 

7 

11 

4 

6 

demand 12 11 11 9  
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By setting J ∈ [0,1] in this given problem, we convert the TLTP-NN into a TLTP with the interval 

numbers. Tables 10 and Table-11 represent that optimization problems derived from Table 1 and 

table 2, used to determine the best and worst upper-level solutions, respectively. 

 

 

 

 

Table10. Best lower-level optimization problem 

 

City Reasons to 

Local Streets 

NORTH EAST WEST SOUTH supply 

W 5 

8 

6 

6 

3 

8 

7 

13 

12 

X 8 

6 

11 

9 

9 

11 

9 

8 

11 

Y 7 

6 

5 

7 

7 

6 

10 

11 

11 

Z 9 

8 

5 

7 

3 

10 

6 

9 

9 

demand 8 6 5 5  

 

 

 

 

Table 11. Worst lower-level optimization problem 

 

City Reasons 

to Local 

Streets 

STREET-1 STREET-2 STREET-3 STREET-4 supply 

NORTH 7 

5 

5 

4 

5 

4 

8 

7 

7 

EAST 5 

4 

5 

4 

14 

7 

9 

4 

7 

WEST 7 

7 

11 

4 

11 

4 

10 

11 

6 

SOUTH 10 

11 

17 

3 

7 

3 

7 

3 

4 

demand 14 9 11 9  
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Dummy sources and destinations are added to balance the transportation problem and identify the 

optimal and least favourable solutions./ The compiled results are presented in Table 12. 

Table 12.  Best and worst solution  

 

Solution Best  Worst  

Upper level 𝑧1̅ = 0.1063  

At 𝑎1
𝑏𝑒𝑠𝑡 = 

(0,0,0,6,2,0,0,0,0,0,7,0,4,5,0,0) 

𝑧1̅ = 0.2063  

At 𝑎1
𝑤𝑜𝑟𝑠𝑡 = 

(6,0,0,0,0,0,6,0,0,0,6,0,0,5,0,1) 

solution Best  worst 

Middle level 𝑧1̅ = 0.1333   

At 𝑎1
𝑏𝑒𝑠𝑡 = 

(0,0,6,0,0,0,0,0,7,0,0,0,0,7,0,4) 

𝑧1̅ = 0.333  

At 𝑎1
𝑤𝑜𝑟𝑠𝑡 = 

(0,0,6,0,0,0,0,5,0,7,0,0,0,0,5,0) 

solution Best  worst 

Lower level 𝑧1̅ = 0.36  

At 𝑎1
𝑏𝑒𝑠𝑡 = 

(8,4,0,0,0,2,5,4,0,0,0,11,0,0,0,0) 

𝑧1̅ = 0.389  

At 𝑎1
𝑤𝑜𝑟𝑠𝑡 = 

(7,0,0,0,7,0,0,0,0,1,6,0,7,7,5,0) 

 

Minimize (𝐺1
̅̅ ̅ + 𝐺2

̅̅ ̅ + 𝐺3
̅̅ ̅ + 𝐺1

̿̿ ̿ + 𝐺1
̿̿ ̿ + 𝐺3

̿̿ ̿ 

Subject to 
2𝑎11+5𝑎12+7𝑎13+4𝑎14+3𝑎21+4𝑎22+5𝑎23+8𝑎24+10𝑎31+7𝑎32+2𝑎33+10𝑎34+3𝑎41+2𝑎42+3𝑎43+5𝑎44

7𝑎11+6𝑎12+6𝑎13+10𝑎14+6𝑎21+7𝑎22+7𝑎23+9𝑎24+9𝑎31+8𝑎32+11𝑎33+9𝑎34+10𝑎41+9𝑎42+7𝑎43+8𝑎44
 

𝐺1
̅̅ ̅ =0.6201  

−5𝑎11−11𝑎12−8𝑎13−7𝑎14−5𝑎21−9𝑎22−8𝑎23−11𝑎24−17𝑎31−10𝑎32−7𝑎33−13𝑎34−7𝑎41−8𝑎42−7𝑎43−8𝑎44

5𝑎11+4𝑎12+2𝑎13+7𝑎14+4𝑎21+2𝑎22+3𝑎23+4𝑎24+6𝑎31+3𝑎32+5𝑎33+3𝑎34+3𝑎41+4𝑎42+4𝑎43+6𝑎44
 𝐺2

̿̿ ̿ =

−2.16  

 

5𝑎11+6𝑎12+3𝑎13+7𝑎14+8𝑎21+11𝑎22+9𝑎23+9𝑎24+7𝑎31+5𝑎32+7𝑎33+10𝑎34+9𝑎41+5𝑎42+3𝑎43+6𝑎44

8𝑎11+6𝑎12+8𝑎13+13𝑎14+6𝑎21+9𝑎22+11𝑎23+8𝑎24+6𝑎31+7𝑎32+6𝑎33+11𝑎34+8𝑎41+7𝑎42+10𝑎43+9𝑎44
  

𝐺2
̅̅ ̅ = 0.827  

 

−8𝑎11−14𝑎12−5𝑎13−10𝑎14−14𝑎21−13𝑎22−14𝑎23−11𝑎24−17𝑎31−10𝑎32−11𝑎33−13𝑎34−11𝑎41−9𝑎42−8𝑎43−11𝑎44

5𝑎11+4𝑎12+2𝑎13+7𝑎14+4𝑎21+2𝑎22+3𝑎23+4𝑎24+6𝑎31+3𝑎32+5𝑎33+3𝑎34+3𝑎41+4𝑎42+4𝑎43+6𝑎44
  

𝐺2
̿̿ ̿ = 2.35 

 

5𝑎11+6𝑎12+3𝑎13+7𝑎14+8𝑎21+11𝑎22+9𝑎23+9𝑎24+7𝑎31+5𝑎32+7𝑎33+10𝑎34+9𝑎41+5𝑎42+3𝑎43+6𝑎44

8𝑎11+6𝑎12+8𝑎13+13𝑎14+6𝑎21+9𝑎22+11𝑎23+8𝑎24+6𝑎31+7𝑎32+6𝑎33+11𝑎34+8𝑎41+7𝑎42+10𝑎43+9𝑎44
  

𝐺3
̅̅ ̅ = 0.83 

 
−7𝑎11−5𝑎12−5𝑎13−8𝑎14−5𝑎21−5𝑎22−14𝑎23−9𝑎24−7𝑎31−11𝑎32−11𝑎33−10𝑎34−10𝑎41−17𝑎42−7𝑎43−7𝑎44

5𝑎11+4𝑎12+4𝑎13+7𝑎14+4𝑎21+4𝑎22+7𝑎23+4𝑎24+7𝑎31+4𝑎32+4𝑎33+11𝑎34+11𝑎41+3𝑎42+3𝑎43+3𝑎44
 

𝐺3
̿̿ ̿ =  1.62  

The results obtained from the proposed goal programming model are displayed in Table 13. 
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Table 13. Satisfactory solution of TLFTP-NN 

 

 

Solution point (1,0,0,0,6,5,0,0,0,0,5,1,0,1,1,5,) 

Objective values of leader (0.1063,0.2063 ) 

Objective values of follower-1 (0.1333,0.333)  

Objective values of follower-2 (0.36,0.389) 

 

7. Comparative Study 

To assess the performance of the proposed Trilevel Linear Fractional Transportation Problem under 

the neutrosophic framework (TLFTP-INN), a comparison has been made with a standard trilevel 

transportation model designed under a deterministic (crisp) setting, referred to here as TLFTP-C. 

In both models, the structure of decision-making is the same and follows three levels: 

• Leader level: Transportation from highways to traffic hubs. 

• First follower level: Distribution from traffic hubs to urban city zones. 

• Second follower level: Allocation from city zones to local streets. 

 

7.1 Objective of the Comparison: The comparison aims to evaluate the two models based on their 

total transportation cost across the three hierarchical levels, ability to handle uncertain data, 

adaptability and robustness in decision-making, and effectiveness in responding to changing or 

imprecise conditions. 

7.2 Classical TLFTP Model (Deterministic) 

In this approach, all parameters related to cost, supply, and demand are treated as fixed numerical 

values. The uncertainty component J is assumed to be zero, which essentially eliminates the 

indeterminate nature of data. The optimization is carried out independently at each level using 

conventional linear programming techniques. 

 

7.3 Neutrosophic TLFTP Model (Proposed) 

In contrast, the proposed model considers all costs and capacities as interval neutrosophic numbers 

of the form 𝑝 +  𝑞𝐽, where 𝐽 ∈ [0,1]. This structure allows the model to incorporate both 

determinacy and indeterminacy. The optimization is handled using a goal programming strategy, 

which considers the best-case and worst-case performance scenarios. 

 

7.4 Comparative Results 

Comparison of crisp TLFTP with Neutrosophic TLFTP-INN is shown in Table 14.  

                    

 Table 14.  Comparison of Crisp TLFTP with Neutrosophic TLFTP-INN 
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Evaluation Criteria Crisp TLFTP Neutrosophic TLFTP-INN 

Treatment of Uncertainty Not Addressed Incorporated via J 

Flexibility of Decision Variables Rigid (Single Values) Adaptive (Interval-based) 

Use of Goal Programming Not Included Fully Integrated 

Resistance to Parameter Changes Low High 

Availability of Best/Worst Scenarios Absent Present 

Practical Suitability for Real Systems Limited Highly Suitable 

 

 

8. Sensitive Analysis 

The classical TLFTP model produces a fixed solution, which may not reflect the variability or 

indeterminacy present in real-world traffic conditions. On the other hand, the neutrosophic TLFTP-

INN model offers a broader and more flexible solution set. It adapts better to uncertain environments, 

provides more informed decisions under ambiguity, and allows planners to evaluate outcomes under 

multiple scenarios. This makes the proposed model particularly effective for complex traffic 

networks subject to unpredictable behaviours. 

Sensitivity analysis is a crucial tool to evaluate the stability and robustness of a mathematical model 

under variations in key parameters. In the proposed TLFTP-INN model, uncertainty is captured 

through interval neutrosophic numbers of the form 𝑝 + 𝑞𝐽 , where 𝐽 ∈ [0,1] represents the degree of 

indeterminacy. This analysis investigates how changes in the indeterminacy factor 𝐽 affect the 

optimal solutions across the three hierarchical decision levels. 

To perform the sensitivity analysis, the value of 𝐽 is systematically varied from 0 𝑡𝑜 1 in increments 

of 0.2 (i.e., 𝐽 = 0.0,0.2,0.4,0.6,0.8,1.0). At each level, we observe  ( see table 15) the changes in the 

objective function values corresponding to the leader, follower-1, and follower-2 under the given 

neutrosophic transportation cost and supply-demand structures. 

       

Table 15. Observations 

 

Value of J 
Leader’s Objective 

Value 

Follower-1’s Objective 

Value 

Follower-2’s Objective 

Value 

0.0 0.83 1.14 0.36 

0.2 1.04 1.35 0.38 

0.4 1.27 1.56 0.40 

0.6 1.62 1.79 0.43 

0.8 2.03 2.03 0.45 

1.0 2.35 2.28 0.48 
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• As the value of 𝐽 increases, the objective function values at all three levels increase, reflecting 

the growing influence of uncertainty in cost estimation. 

• The leader’s problem shows a sharper increase in cost compared to the followers, indicating 

a higher sensitivity to uncertain conditions at the top decision level. 

• The follower-2 level (local streets) demonstrates relatively stable behavior, suggesting more 

resilience to uncertainty at micro-level traffic zones. 

The results of this sensitivity analysis confirm that the proposed neutrosophic model maintains a 

consistent and logical response to changes in the indeterminacy level 𝐽. This validates the robustness 

of the TLFTP-INN model in handling real-world uncertainty. The findings also highlight the 

importance of accounting for indeterminacy in high-level traffic planning, as decision errors at the 

top level can cascade through the system. 

 

9. Conclusions  

This study introduces a novel and efficient framework for addressing the Trilevel Transportation 

Problem (TLTP) in urban traffic systems by incorporating Interval Neutrosophic Numbers 

(INNs) into a Trilevel Linear Fractional Transportation Problem (TLFTP), solved through the 

Goal Programming (GP) method. The proposed approach effectively models the uncertainty and 

vagueness inherent in real-world transportation scenarios, while capturing the hierarchical nature 

of decision-making across different network levels—namely highways, traffic hubs, and urban 

roads. 

The primary contribution of this work is the development of a neutrosophic-based trilevel 

decision-making model that optimizes traffic flow while considering the distinct yet interrelated 

objectives of various transportation authorities. The integration of neutrosophic logic improves 

the adaptability and realism of planning processes under uncertain and imprecise conditions. 

Looking ahead, this model offers several promising directions for future research. Potential 

extensions include the integration of dynamic traffic management systems using real-time data, 

expansion to multi-modal transport networks, incorporation of environmental and economic 

objectives, and alignment with smart city initiatives such as adaptive signal control, autonomous 

vehicle navigation, and variable toll pricing. Additionally, improving scalability and 

computational efficiency through the use of heuristic or metaheuristic algorithms will enhance 

the model’s applicability to large and complex transportation networks. 
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