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Abstract: The idea of bipolar single value neutrosophic set was created as an extension of a single 

value neutrosophic set when every single value neutrosophic membership function has two poles. 

In this study, we apply this idea in an algebraic environment when we initiate the novel concept of 

bipolar single value neutrosophic subgroups and prove that every bipolar single value neutrosophic 

subgroup generates two bipolar single value neutrosophic subgroups. we explain the level set, 

support, kernel for bipolar single value neutrosophic set, bipolar single value neutrosophic 

characteristic function, and bipolar single value neutrosophic point. Then, we illuminate the bipolar 

single value neutrosophic subgroup, bipolar single value neutrosophic normal subgroup, bipolar 

single value neutrosophic conjugate, normalizer for bipolar single value neutrosophic subgroup, 

bipolar single value neutrosophic abelian subgroup, and bipolar single value neutrosophic factor 

group. Furthermore, we present the linked theorems and examples and prove these theorems. 

Finally, we discussed the image and pre-image of bipolar single-value neutrosophic subgroups 

under homomorphism and proved the related theorems. 

Keywords: Neutrosophic set; single-valued neutrosophic set; bipolar single-valued neutrosophic; 

bipolar single-valued neutrosophic group; bipolar single-valued neutrosophic normal group; 

homomorphism 

 

 

1. Introduction 

Zadeh [1] in 1965 developed the initial results of fuzzy sets (FSs) theory. This theory has been 

successfully employed in handling uncertainty and ambiguous information in our real world. The 

mathematical structure of this theory is characterized by the inclusion of a membership function that 

represents the truth that an object belongs to a set of knowledge called the universal set. For example, 

FSs provide suitable solutions to many problems related to bioinformatics and computational 

biology, such as medical image processing, cell reconstruction, protein structure analysis, gene 

expression analysis, and medical data classification. Atanassov [2] then came up with the idea of the 

intuitionistic fuzzy set (IFS) to address uncertainty issues that the truth function of the fuzzy set alone 
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cannot handle. Atanassov 's idea is an extension of the mathematical structure of the FS by adding a 

second membership function called the falsity function. Smarandache [3] introduced the idea of 

Neutrosophy from a philosophical point of view to handle the indeterminate information that exists 

commonly in real situations. Neutrosophy idea considers an extension of the mathematical structure 

when Smarandache adds a third function, named the indeterminacy-membership function, to study 

the origin, nature, and scope of neutralities, as well as their interactions with different ideational 

spectra that exist commonly in real situations. To adjust Smarandache's idea and put it into practice, 

Wang et al. [4] new notion called single valued neutrosophic sets (SVNSs), which is more specified 

from an engineering point of view. Researchers have been working on employing the concept of 

SVNS in different mathematical directions. 

Researchers have been working on employing the concept of SVNS in different mathematical 

directions. Abuqamar and Hassan [5] defined the notion of neutrosophic normal soft groups under 

Q effect and discussed some related properties. Al-Masarwah et al. [6] introduced the idea of the 

direct product of sets that include Fermat neutrosophic (FN). Alqahtani et al. [7] studied neutrosophic 

graphs under complex numbers and demonstrated their use in the design of hospital infrastructure. 

Al-Quran et al. [8,9] made remarkable efforts to put out the notion of SVNS in decision-making 

problems. Palanikumar et al. [10,11] discuss a new aggregation operator in this environment. Abed 

[12,13] formulates and studies a new property, namely, the indeterminacy of the hollow module. 

Romdhini et al. [14,15] present the Q-CNSFs and examine their unique algebraic properties. Al-

Qudah et al. [16,17] studied this concept in from many mathematical aspects. Bataihah and Azaymeh 

[18-20] studied topological aspects and presented many important applications. Moreover, Hameed 

et al.[21] discussed some characterisation SVN subgroups. Çetkin and Aygün [22] examined the 

subgroup and normal subgroup structures of single-valued neutrosophic sets. Zhang et al. [23] 

generalized of the notion of the standard neutrosophic triplet group. On the other hand, these 

modifications of SVNs cannot avail the positive pole and negative opinion of human thinking. To 

cover this barrier, Deli et al. [24] introduced the concept of bipolar neutrosophic sets (BNSs) by 

extending the notion of bipolar fuzzy sets (BFSs) [25] where every SVN-membership has two poles, 

i.e., positive pole and negative pole. This concept has been studied by many researchers, and many 

results have been presented about it [26 -30]. But until now, the algebraic concepts and properties 

have not been studied with BNSs, and this prompted us to present this study. 

 In this work, we initiate an approach to the group structure of bipolar single-valued neutrosophic 

sets (BSVNSs). We define bipolar neutrosophic normal subgroups and give some properties of these 

structures. Moreover, we explain the image and preimage of a bipolar single-valued neutrosophic set 

and examine the homomorphic image and preimage of a bipolar single-valued neutrosophic (normal) 

subgroup. In this method, we pick up the generalized form of the fuzzy subgroup and the 

intuitionistic fuzzy subgroups that are defined on a classical group. 

The residual paper is organised into five sections: Section 2 presents the preliminary terms and 

definitions that we used to propose the results in this work. The main results, i.e., the elementary 

notions of BNSG and its elementary relevant theorems and examples, are present in Section 3. Also, 

the main results, i.e., the elementary notions of BNNSG and its elementary relevant theorems and 

examples, are present in Section 4. Section 5 hands over a summary, limitations, and future extent of 

the results that are present in this work. 
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2. Preliminaries 

Definition 2.1 The following mathematical frame that is known on 𝕏  

𝒜 = {𝓂, 〈Π𝒜(𝓂), Ξ𝒜(𝓂), Σ𝒜(𝓂)〉,𝓂 ∈ 𝕏} 

Is called NS where the three memberships Π𝒜(𝓂), Ξ𝒜(𝓂), Σ𝒜(𝓂) ∈ [0,1]  denotes to truth-

membership function, indeterminacy-membership function, and falsity-membership function 

respectively for 𝓂 ∈ 𝕏 with stander condition 0 ≤ Π𝒜(𝓂) + Ξ𝒜(𝓂) + Σ𝒜(𝓂) ≤ 3. 

Definition 2.2 Let  

𝒜 = {𝓂, 〈Π𝒜(𝓂), Ξ𝒜(𝓂), Σ𝒜(𝓂)〉,𝓂 ∈ 𝕏} 

And  

ℬ = {𝓂, 〈Πℬ(𝓂), Ξℬ(𝓂), Σℬ(𝓂)〉,𝓂 ∈ 𝕏} 

Then the fundamentals set theory on NS given as following: 

i. The subset between two NSs denotes as 𝒜 ⊆ ℬ where  

Π𝒜(𝓂) ≤ Πℬ(𝓂), Ξ𝒜(𝓂) ≥ Ξℬ(𝓂) and Σ𝒜(𝓂) ≥ Σℬ(𝓂). 

ii. The equals between two NSs denotes as 𝒜 = ℬ where  

Π𝒜(𝓂) = Πℬ(𝓂), Ξ𝒜(𝓂) = Ξℬ(𝓂) and Σ𝒜(𝓂) = Σℬ(𝓂). 

iii. The union between two NSs denotes as 𝒜⋃ℬ where: 

𝒜⋃ℬ = {

𝑚𝑎𝑥{Π𝒜(𝓂), Πℬ(𝓂)}

𝑚𝑖𝑛{Ξ𝒜(𝓂), Ξℬ(𝓂)}

𝑚𝑖𝑛{Σ𝒜(𝓂), Σℬ(𝓂)}
 

iv. The intersection between two NSs denotes as 𝒜⋂ℬ where: 

𝒜⋂ℬ = {

𝑚𝑖𝑛{Π𝒜(𝓂), Πℬ(𝓂)}

𝑚𝑎𝑥{Ξ𝒜(𝓂), Ξℬ(𝓂)}

𝑚𝑎𝑥{Σ𝒜(𝓂), Σℬ(𝓂)}
 

v. The complement of NS denotes as 𝒜𝐶where: 

𝒜𝐶 = {

Σ𝒜(𝓂)

1 − Ξ𝒜(𝓂)

Π𝒜(𝓂)
 

Definition 2.3. A NS-Stricture 𝒜  given in definition 2.1 on classical group (𝔊̈,∗)  is called NS-

subgroup of 𝔊̈ if for 𝔪̈, 𝔫̈ ∈ 𝔊̈ then we have, 

i. Π𝒜(𝓂 ∗ 𝓃) ≥ 𝑚𝑖𝑛{Π𝒜(𝓂), Π𝒜(𝓃)} 

Ξ𝒜(𝓂 ∗ 𝓃) ≥ 𝑚𝑖𝑛{Ξ𝒜(𝓂), Ξ𝒜(𝓃)} 

Σ𝒜(𝓂 ∗ 𝓃) ≤ 𝑚𝑎𝑥{Σ𝒜(𝓂), Σ𝒜(𝓃)} 

ii. Π𝒜(𝔪̈
−1) ≥ Π𝒜(𝓂). 

Ξ𝒜(𝔪̈
−1) ≥ Ξ𝒜(𝓂). 

Σ𝒜(𝔪̈
−1) ≤ Σ𝒜(𝓂). 

The collection of all terms of N-subgroups of (𝔊̈,∗) denotes as NS(𝔊̈). 
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Definition 2.4. A NS-Stricture 𝒜  given in definition 2.1 on classical group (𝔊̈,∗)  is called NS-

subgroup of 𝔊̈ if for 𝔪̈, 𝔫̈ ∈ 𝔊̈ then we have, 

i. Π𝒜(𝓂 ∗ 𝓃) ≥ 𝑚𝑖𝑛{Π𝒜(𝓂), Π𝒜(𝓃)} 

Ξ𝒜(𝓂 ∗ 𝓃) ≥ 𝑚𝑖𝑛{Ξ𝒜(𝓂), Ξ𝒜(𝓃)} 

Σ𝒜(𝓂 ∗ 𝓃) ≤ 𝑚𝑎𝑥{Σ𝒜(𝓂), Σ𝒜(𝓃)} 

ii. Π𝒜(𝔪̈
−1) ≥ Π𝒜(𝓂). 

Ξ𝒜(𝔪̈
−1) ≥ Ξ𝒜(𝓂). 

Σ𝒜(𝔪̈
−1) ≤ Σ𝒜(𝓂). 

The collection of all terms of N-subgroups of (𝔊̈,∗) denotes as NS(𝔊̈). 

Definition 2.4 The following mathematical frame that is known on 𝕏  

𝒜 = {𝓂 ∈ 𝕏,Π(𝒜)
+ (𝓂),Ξ(𝒜)

+ (𝓂), Σ(𝒜)
+ (𝓂), Π(𝒜)

− (𝓂), Ξ(𝒜)
− (𝓂), Σ(𝒜)

− (𝓂)} 

 

Is called BNS where the three memberships 

Π(𝒜)
+ (𝓂), Ξ(𝒜)

+ (𝓂), Σ(𝒜)
+ (𝓂), Π(𝒜)

− (𝓂), Ξ(𝒜)
− (𝓂), Σ(𝒜)

− (𝓂)  ∈ [−1,1] denotes to positive and negative 

truth-membership function, positive and negative indeterminacy-membership function, and positive 

and negative falsity-membership function respectively for 𝓂 ∈ 𝕏 . 

 

 

3. Bipolar single value neutrosophic subgroups 

 

Here in this section, we going to diagnose the mathematical structure of Bipolar single value 

neutrosophic subgroups and their fundamentals properties. 

 

Definition 3. 1. Let (𝔊̈,∗) be a classical group and 𝒜 be a bipolar neutrosophic subset of classical 

group 𝔊̈ and 𝛽 ∈ [1, −1] . Then  

(𝒜)𝛽 = {𝔪̈ ∈ 𝔊̈, Π(𝒜)𝛽
+ (𝔪̈), Ξ(𝒜)𝛽

+ (𝔪̈), Σ(𝒜)𝛽
+ (𝔪̈), Π(𝒜)𝛽

− (𝔪̈), Ξ(𝒜)𝛽
− (𝔪̈), Σ(𝒜)𝛽

− (𝔪̈)} 

Where, 

Π(𝒜)𝛽
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝒜)

+ ≥ 𝛽, 𝛽 ∈ [0,1]} and Π(𝒜)𝛽
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝒜)

− ≤ 𝛽, 𝛽 ∈ [−1,0]}, 

Ξ(𝒜)𝛽
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝒜)

+ ≥ 𝛽, 𝛽 ∈ [0,1]} and Ξ(𝒜)𝛽
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝒜)

− ≤ 𝛽, 𝛽 ∈ [−1,0]}, 

Σ(𝒜)𝛽
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝒜)

+ ≤ 𝛽, 𝛽 ∈ [0,1]} and Σ(𝒜)𝛽
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝒜)

− ≥ 𝛽, 𝛽 ∈ [−1,0]}. 

Here we denotes to (𝒜)𝛽 as bipolar neutrosophic 𝛽-level set. 

Remark 3.2. For two bipolar neutrosophic subset of classical group 𝔊̈ i.e 𝒜,ℬ and if  𝒜 ⊆ ℬ and 

∈ [1, −1]  then for positive side Π(𝒜) 
+ ≤ Π(ℬ) 

+ , Ξ(𝒜) 
+ ≤ Ξ(ℬ) 

+ ,  Σ(𝒜) 
+ ≥ Σ(ℬ) 

+  and for negative 

side Π(𝒜) 
− ≥ Π(ℬ) 

− , Ξ(𝒜) 
− ≥ Ξ(ℬ) 

− , Σ(𝒜) 
− ≤ Σ(ℬ) 

− . 

Definition 3. 3.  Let (𝔊̈,∗) be a classical group and 𝒜 be a bipolar neutrosophic subset of classical 

group 𝔊̈ and 𝛽 ∈ [1, −1] . Then  

(𝒜)𝑆 = {𝔪̈ ∈ 𝔊̈, Π(𝒜)𝑆
+ (𝔪̈),Ξ(𝒜)𝑆

+ (𝔪̈), Σ(𝒜)𝑆
+ (𝔪̈), Π(𝒜)𝑆

− (𝔪̈), Ξ(𝒜)𝑆
− (𝔪̈), Σ(𝒜)𝑆

− (𝔪̈)} 
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Where, 

Π(𝒜)𝑆
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝒜)

+ ≥ 0} and Π(𝒜)
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝒜)

− ≤ 0}, 

Ξ(𝒜)𝑆
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝒜)

+ ≥ 0} and Ξ(𝒜)
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝒜)

− ≤ 0}, 

Σ(𝒜)𝑆
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝒜)

+ ≤ 0} and Σ(𝒜)
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝒜)

− ≥ 0}. 

Here we denotes to (𝒜)𝑆 as bipolar neutrosophic support set. 

Definition 3. 4. Let (𝔊̈,∗) be a classical group and 𝒜 be a bipolar neutrosophic subset of classical 

group 𝔊̈ and 𝛽 ∈ [1, −1] . Then  

(𝒜)𝐾 = {𝔪̈ ∈ 𝔊̈, Π(𝒜)𝑆
+ (𝔪̈),Ξ(𝒜)𝑆

+ (𝔪̈), Σ(𝒜)𝑆
+ (𝔪̈), Π(𝒜)𝑆

− (𝔪̈), Ξ(𝒜)𝑆
− (𝔪̈), Σ(𝒜)𝑆

− (𝔪̈)} 

Where, 

Π(𝒜)𝐾
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝐾)

+ = 1} and Π(𝐾)
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝐾)

− = −1}, 

Ξ(𝒜)𝐾
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝐾)

+ = 1} and Ξ(𝐾)
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝐾)

− = −1}, 

Σ(𝒜)𝐾
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝐾)

+ = 1} and Σ(𝐾)
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝐾)

− = −1}. 

Here we denotes to (𝒜)𝐾 as Kernel of  bipolar neutrosophic subset of classical group 𝔊̈. 

Definition 3. 5. Let (𝔊̈,∗) be a classical group and for any subset ℋ of a classical group 𝔊̈. Then the 

bipolar characteristic function neutrosophic (BCN) is denotes as  

(𝒜)ℋ = {Π(𝒜)ℋ ,Ξ(𝒜)ℋ , Σ(𝒜)ℋ} 

Where  

Π(𝒜)ℋ(𝔪̈) =

{
 
 

 
 
Π(𝒜)ℋ
+ (𝔪̈) = 1 𝑖𝑓 𝔪̈ ∈ ℋ 

Π(𝒜)ℋ
+ (𝔪̈) = 0 𝑖𝑓 𝔪̈ ∉ ℋ

Π(𝒜)ℋ
− (𝔪̈) = −1 𝑖𝑓 𝔪̈ ∈ ℋ

Π(𝒜)ℋ
− (𝔪̈) = 0 𝑖𝑓 𝔪̈ ∉ ℋ

, 

 

Ξ(𝒜)ℋ(𝔪̈) =

{
 
 

 
 
Ξ(𝒜)ℋ
+ (𝔪̈) = 1 𝑖𝑓 𝔪̈ ∈ ℋ 

Ξ(𝒜)ℋ
+ (𝔪̈) = 0 𝑖𝑓 𝔪̈ ∉ ℋ

Ξ(𝒜)ℋ
− (𝔪̈) = −1 𝑖𝑓 𝔪̈ ∈ ℋ

Ξ(𝒜)ℋ
− (𝔪̈) = 0 𝑖𝑓 𝔪̈ ∉ ℋ

 

 

Σ(𝒜)ℋ(𝔪̈) =

{
 
 

 
 
 Σ(𝒜)ℋ

+ (𝔪̈) = 1 𝑖𝑓 𝔪̈ ∈ ℋ 

Σ(𝒜)ℋ
+ (𝔪̈) = 0 𝑖𝑓 𝔪̈ ∉ ℋ

 Σ(𝒜)ℋ
− (𝔪̈) = −1 𝑖𝑓 𝔪̈ ∈ ℋ

Σ(𝒜)ℋ
− (𝔪̈) = 0 𝑖𝑓 𝔪̈ ∉ ℋ

 

 

Remark 3.6. Evidently generalize a BCN is a BN-subset of classical group 𝔊̈. 

 

Definition 3. 7. Let (𝔊̈,∗) be a classical group and for any 𝔪̈, 𝔫̈ ∈ 𝔊̈, 𝜌 ∈ [−1,1] . Then the bipolar 

neutrosophic subset of 𝔊̈ given as following structure   

𝒜 = {Π(𝒜),Ξ(𝒜), Σ(𝒜)} 

Where  
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Π(𝒜)(𝔪̈) =

{
 
 

 
 
Π(𝒜)
+ (𝔪̈) = 𝜌 𝑖𝑓 𝔪̈ = 𝔫̈ 

Π(𝒜)
+ (𝔪̈) = 0 𝑖𝑓 𝔪̈ ≠ 𝔫̈

Π(𝒜)
− (𝔪̈) = 𝜌 𝑖𝑓 𝔪̈ = 𝔫̈

Π(𝒜)
− (𝔪̈) = 0 𝑖𝑓 𝔪̈ ≠ 𝔫̈

, 

 

Ξ(𝒜)(𝔪̈) =

{
 
 

 
 
Ξ(𝒜)
+ (𝔪̈) = 𝜌 𝑖𝑓 𝔪̈ = 𝔫̈ 

Ξ(𝒜)
+ (𝔪̈) = 0 𝑖𝑓 𝔪̈ ≠ 𝔫̈

Ξ(𝒜)
− (𝔪̈) = 𝜌 𝑖𝑓 𝔪̈ = 𝔫̈

Ξ(𝒜)
− (𝔪̈) = 0 𝑖𝑓 𝔪̈ ≠ 𝔫̈

 

 

Σ(𝒜)(𝔪̈) =

{
 
 

 
 
 Σ(𝒜)

+ (𝔪̈) = 𝜌 𝑖𝑓 𝔪̈ = 𝔫̈ 

Σ(𝒜)
+ (𝔪̈) = 0 𝑖𝑓 𝔪̈ ≠ 𝔫̈

 Σ(𝒜)
− (𝔪̈) = 𝜌 𝑖𝑓 𝔪̈ = 𝔫̈

Σ(𝒜)
− (𝔪̈) = 0 𝑖𝑓 𝔪̈ ≠ 𝔫̈

 

 

Is said BN point with value , 𝜌 ∈ [−1,1] and support 𝔪̈. 

 

Definition 3. 8.  Let (𝔊̈,∗) be a classical group and 𝒜 be a bipolar neutrosophic set on classical 

group 𝔊̈ and 𝛽 ∈ [1, −1] . Then  

(𝒜)𝛽 = {𝔪̈ ∈ 𝔊̈, Π(𝒜)𝛽
+ (𝔪̈), Ξ(𝒜)𝛽

+ (𝔪̈), Σ(𝒜)𝛽
+ (𝔪̈), Π(𝒜)𝛽

− (𝔪̈), Ξ(𝒜)𝛽
− (𝔪̈), Σ(𝒜)𝛽

− (𝔪̈)} 

Where, 

Π(𝒜)𝛽
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝒜)

+ ≥ 𝛽, 𝛽 ∈ [0,1]} and Π(𝒜)𝛽
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Π(𝒜)

− ≤ 𝛽, 𝛽 ∈ [−1,0]}, 

Ξ(𝒜)𝛽
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝒜)

+ ≥ 𝛽, 𝛽 ∈ [0,1]} and Ξ(𝒜)𝛽
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Ξ(𝒜)

− ≤ 𝛽, 𝛽 ∈ [−1,0]}, 

Σ(𝒜)𝛽
+ (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝒜)

+ ≤ 𝛽, 𝛽 ∈ [0,1]} and Σ(𝒜)𝛽
− (𝔪̈) = {𝔪̈ ∈ 𝔊̈|Σ(𝒜)

− ≥ 𝛽, 𝛽 ∈ [−1,0]}. 

Here we denotes to (𝒜)𝛽 as bipolar neutrosophic 𝛽-level set. 

 

 

Definition 3.9. Let (𝔊̈,∗) be a classical group and 𝒜 be a bipolar neutrosophic set on classical group 

𝔊̈ . Then 𝒜 is named bipolar neutrosophic subgroup of 𝔊̈ if the following conditions satisfies: 

i. 𝒜(𝔪̈ ∗ 𝔫̈)  ≥ min{𝒜(𝔪̈),𝒜(𝔫̈)} for all 𝔪̈, 𝔫̈ ∈ 𝔊̈. Such that  

Π𝒜
+ (𝔪̈ ∗ 𝔫̈) ≥ min{Π𝒜

+ (𝔪̈), Π𝒜
+ (𝔫̈)}, 

Ξ𝒜
+ (𝔪̈ ∗ 𝔫̈) ≥ min{Ξ𝒜

+ (𝔪̈), Ξ𝒜
+ (𝔫̈)} 

Σ𝒜
+ (𝔪̈ ∗ 𝔫̈) ≤ max{Σ𝒜

+ (𝔪̈), Σ𝒜
+ (𝔫̈)}. 

ii. 𝒜(𝔪̈−1)  ≥ 𝒜(𝔪̈). Such that  

Π𝒜
+ (𝔪̈−1) ≥ Π𝒜

+ (𝔪̈), 

Ξ𝒜
+ (𝔪̈−1) ≥ Ξ𝒜

+ (𝔪̈), 

Σ𝒜
+ (𝔪̈−1) ≤ Σ𝒜

+ (𝔪̈). 

iii. (𝔪̈ ∗ 𝔫̈)  ≤ min{𝒜(𝔪̈),𝒜(𝔫̈)} for all 𝔪̈, 𝔫̈ ∈ 𝔊̈. Such that  

Π𝒜
− (𝔪̈ ∗ 𝔫̈) ≤ max{Π𝒜

− (𝔪̈), Π𝒜
− (𝔫̈)}, 

Ξ𝒜
− (𝔪̈ ∗ 𝔫̈) ≤ max{Ξ𝒜

− (𝔪̈), Ξ𝒜
− (𝔫̈)} 
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Σ𝒜
− (𝔪̈ ∗ 𝔫̈) ≥ min{Σ𝒜

− (𝔪̈), Σ𝒜
− (𝔫̈)}. 

iv. 𝒜(𝔪̈−1)  ≤ 𝒜(𝔪̈). Such that  

Π𝒜
− (𝔪̈−1) ≤ Π𝒜

− (𝔪̈), 

Ξ𝒜
− (𝔪̈−1) ≤ Ξ𝒜

− (𝔪̈), 

Σ𝒜
− (𝔪̈−1) ≥ Σ𝒜

− (𝔪̈). 

 

Here the summation of all bipolar neutrosophic subgroups of 𝔊̈ indicated as 

𝐵𝑁𝑆(𝔊̈ ). 

 

 

 

 

Example 3.10. Take 𝔊̈ = 𝕂4 = {1, 𝔪̈, 𝔫̈, 𝔪̈ ∗ 𝔫̈} is classical group with following Cayley table and 

here *is natural multiplication: 

 

* 1 𝔪̈ 𝔫̈ 𝔪̈ ∗ 𝔫̈ 

1 1 𝔪̈ 𝔫̈ 𝔪̈ ∗ 𝔫̈ 

𝔪̈ 𝔪̈ 1 𝔪̈ ∗ 𝔫̈ 𝔫̈ 

𝔫̈ 𝔫̈ 𝔪̈ ∗ 𝔫̈ 1 𝔪̈ 

𝔪̈ ∗ 𝔫̈ 𝔪̈ ∗ 𝔫̈ 𝔫̈ 𝔪̈ 1 

 

And properties that 𝔪̈2 = 𝔫̈2 = (𝔪̈ ∗ 𝔫̈)2 = 1 and 𝔪̈ ∗ 𝔫̈ = 𝔫̈ ∗ 𝔪̈. 

Now take the BN subset values of 𝔊̈ = 𝕂4 as next 

𝒜 = {
〈0.3,0.4,0.5, −0.4, −0.6, −0.7〉

1
,
〈0.3,0.4,0.5, −0.4, −0.6, −0.7〉

𝔪̈
, 

〈0.3,0.4,0.5, −0.4, −0.6, −0.7〉

𝔫̈
,
〈0.3,0.4,0.5, −0.4, −0.6, −0.7〉

𝔪̈ ∗ 𝔫̈
} 

Then we have to investigate: 

1.  𝒜(𝔪̈ ∗ 𝔫̈)  ≥ min{𝒜(𝔪̈),𝒜(𝔫̈)} for all 𝔪̈, 𝔫̈ ∈ 𝕂4. Such that  

Π𝒜
+ (𝔪̈ ∗ 𝔫̈) ≥ min{Π𝒜

+ (𝔪̈), Π𝒜
+ (𝔫̈)}, 

Ξ𝒜
+ (𝔪̈ ∗ 𝔫̈) ≥ min{Ξ𝒜

+ (𝔪̈), Ξ𝒜
+ (𝔫̈)} 

Σ𝒜
+ (𝔪̈ ∗ 𝔫̈) ≤ max{Σ𝒜

+ (𝔪̈), Σ𝒜
+ (𝔫̈)}. 

𝒜(𝔪̈−1)  ≥ 𝒜(𝔪̈). Such that  

Π𝒜
+ (𝔪̈−1) ≥ Π𝒜

+ (𝔪̈), 

Ξ𝒜
+ (𝔪̈−1) ≥ Ξ𝒜

+ (𝔪̈), 

Σ𝒜
+ (𝔪̈−1) ≤ Σ𝒜

+ (𝔪̈). 
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(𝔪̈ ∗ 𝔫̈)  ≤ min{𝒜(𝔪̈),𝒜(𝔫̈)} for all 𝔪̈, 𝔫̈ ∈ 𝕂4. Such that  

Π𝒜
− (𝔪̈ ∗ 𝔫̈) ≤ max{Π𝒜

− (𝔪̈), Π𝒜
− (𝔫̈)}, 

Ξ𝒜
− (𝔪̈ ∗ 𝔫̈) ≤ max{Ξ𝒜

− (𝔪̈), Ξ𝒜
− (𝔫̈)} 

Σ𝒜
− (𝔪̈ ∗ 𝔫̈) ≥ min{Σ𝒜

− (𝔪̈), Σ𝒜
− (𝔫̈)}. 

𝒜(𝔪̈−1)  ≤ 𝒜(𝔪̈). Such that  

Π𝒜
− (𝔪̈−1) ≤ Π𝒜

− (𝔪̈), 

Ξ𝒜
− (𝔪̈−1) ≤ Ξ𝒜

− (𝔪̈), 

Σ𝒜
− (𝔪̈−1) ≥ Σ𝒜

− (𝔪̈). 

2. Let 𝔪̈ = 1 and 𝔫̈ = 𝔪̈ 

𝒜(𝔪̈ ∗ 𝔫̈)  ≥ min{𝒜(𝔪̈),𝒜(𝔫̈)} for all 𝔪̈, 𝔫̈ ∈ 𝕂4. Such that  

Π𝒜
+ (𝔪̈ ∗ 𝔫̈) ≥ min{Π𝒜

+ (𝔪̈), Π𝒜
+ (𝔫̈)}, 

Ξ𝒜
+ (𝔪̈ ∗ 𝔫̈) ≥ min{Ξ𝒜

+ (𝔪̈), Ξ𝒜
+ (𝔫̈)} 

Σ𝒜
+ (𝔪̈ ∗ 𝔫̈) ≤ max{Σ𝒜

+ (𝔪̈), Σ𝒜
+ (𝔫̈)}. 

𝒜(𝔪̈−1)  ≥ 𝒜(𝔪̈). Such that  

Π𝒜
+ (𝔪̈−1) ≥ Π𝒜

+ (𝔪̈), 

Ξ𝒜
+ (𝔪̈−1) ≥ Ξ𝒜

+ (𝔪̈), 

Σ𝒜
+ (𝔪̈−1) ≤ Σ𝒜

+ (𝔪̈). 

(𝔪̈ ∗ 𝔫̈)  ≤ min{𝒜(𝔪̈),𝒜(𝔫̈)} for all 𝔪̈, 𝔫̈ ∈ 𝕂4. Such that  

Π𝒜
− (𝔪̈ ∗ 𝔫̈) ≤ max{Π𝒜

− (𝔪̈), Π𝒜
− (𝔫̈)}, 

Ξ𝒜
− (𝔪̈ ∗ 𝔫̈) ≤ max{Ξ𝒜

− (𝔪̈), Ξ𝒜
− (𝔫̈)} 

Σ𝒜
− (𝔪̈ ∗ 𝔫̈) ≥ min{Σ𝒜

− (𝔪̈), Σ𝒜
− (𝔫̈)}. 

𝒜(𝔪̈−1)  ≤ 𝒜(𝔪̈). Such that  

Π𝒜
− (𝔪̈−1) ≤ Π𝒜

− (𝔪̈), 

Ξ𝒜
− (𝔪̈−1) ≤ Ξ𝒜

− (𝔪̈), 

Σ𝒜
− (𝔪̈−1) ≥ Σ𝒜

− (𝔪̈). 

 

And so on for the rest of the elements in 𝕂4, thus BN subset 𝒜 of 𝕂4 is BNSG. 

Theorem 3.11.  Assume that 𝔊̈ is a traditional group and 𝒜 is a bipolar neutrosophic subgroup of 

𝔊̈. Then, the subsequent properties are fulfilled: 

i. 𝒜(𝔢̈)  ≥  𝒜(𝔪̈) where 𝔢̈ is the identity element in group 𝔊̈ and 𝔪̈ ∈ 𝔊̈. 

ii. 𝒜(𝔪̈−1)  ≥ 𝒜(𝔪̈), where 𝔪̈−1is the inverse element in group 𝔊̈ and 𝔪̈ ∈ 𝔊̈. 

Proof (𝒊) Suppose that 𝔢̈ is the identity element in group 𝔊̈ and 𝔪̈ ∈ 𝔊̈. 

Then by definition 3.1, we get for positive side: 

Π𝒜
+ (𝔢̈) = Π𝒜

+ (𝔪̈ ∗ 𝔪̈−1) 

≥ min{Π𝒜
+ (𝔪̈), Π𝒜

+ (𝔪̈−1)} 

≥ min{Π𝒜
+ (𝔪̈), Π𝒜

+ (𝔪̈)} =Π𝒜
+ (𝔪̈) 

Σ𝒜
+ (𝔢̈) = Σ𝒜

+ (𝔪̈ ∗ 𝔪̈−1) 

≤ max{Σ𝒜
+ (𝔪̈), Σ𝒜

+ (𝔪̈−1)} 

≤ max{Σ𝒜
+ (𝔪̈), Σ𝒜

+ (𝔪̈)} = Σ𝒜
+ (𝔪̈) 
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From similar steps, it is clearly shown that Ξ𝒜
+ (𝔢̈) ≥ Ξ𝒜

+ (𝔪̈). 

Now for negative side, we get: 

Π𝒜
− (𝔢̈) = Π𝒜

− (𝔪̈ ∗ 𝔪̈−1) 

≤ max{Π𝒜
− (𝔪̈), Π𝒜

− (𝔪̈−1)} 

≤ max{Π𝒜
− (𝔪̈), Π𝒜

− (𝔪̈)} =Π𝒜
− (𝔪̈) 

Σ𝒜
− (𝔢̈) = Σ𝒜

− (𝔪̈ ∗ 𝔪̈−1) 

≥ min{Σ𝒜
− (𝔪̈), Σ𝒜

− (𝔪̈−1)} 

≥ min{Σ𝒜
− (𝔪̈), Σ𝒜

− (𝔪̈)} = Σ𝒜
− (𝔪̈) 

From similar steps, it is clearly shown that Ξ𝒜
− (𝔢̈) ≤ Ξ𝒜

− (𝔪̈). Hence, we get the desired inequality in 

(i) 𝒜(𝔢̈)  ≥  𝒜(𝔪̈). 

Proof (𝒊𝒊. ) Suppose that 𝔪̈ ∈ 𝔊̈ and 𝔪̈−1 is the inverse element of 𝔪̈ ∈ 𝔊̈. Again, by applying (ii) in 

definition 3.1 and utilizing the group properties of 𝔊̈, the other side of the inequality is proved as 

next: 

Π𝒜
+ (𝔪̈) = Π𝒜

+ (𝔪̈−1)−1 ≥ Π𝒜
+ (𝔪̈−1) and Π𝒜

− (𝔪̈) = Π𝒜
− (𝔪̈−1)−1 ≤ Π𝒜

− (𝔪̈−1), 

Ξ𝒜
+ (𝔪̈) = Ξ𝒜

+ (𝔪̈−1)−1 ≥ Ξ𝒜
+ (𝔪̈−1) and Ξ𝒜

− (𝔪̈) = Ξ𝒜
− (𝔪̈−1)−1 ≤ Ξ𝒜

− (𝔪̈−1), 

Σ𝒜
+ (𝔪̈) = Σ𝒜

+ (𝔪̈−1)−1 ≤ Σ𝒜
+ (𝔪̈−1) and Σ𝒜

− (𝔪̈) = Σ𝒜
− (𝔪̈−1)−1 ≥ Σ𝒜

− (𝔪̈−1), 

Therefor,  

𝒜(𝔪̈−1) = (Π𝒜
+ (𝔪̈−1), Ξ𝒜

+ (𝔪̈−1), Σ𝒜
+ (𝔪̈−1), Π𝒜

− (𝔪̈−1), Ξ𝒜
− (𝔪̈−1), Σ𝒜

− (𝔪̈−1)) 

= (Π𝒜
+ (𝔪̈), Ξ𝒜

+ (𝔪̈), Σ𝒜
+ (𝔪̈), Π𝒜

− (𝔪̈), Ξ𝒜
− (𝔪̈), Σ𝒜

− (𝔪̈)) 

= 𝒜(𝔪̈). 

 

Theorem 3.12.  Assume that 𝔊̈ is a traditional group and 𝒜 is a bipolar neutrosophic set of 𝔊̈. 

Then 𝒜 ∈ 𝐵𝑁𝑆(𝔊̈) if and only if  𝒜+(𝔪̈ ∗ 𝔫̈−1) ≥ min {𝒜+(𝔪̈),𝒜+(𝔫̈−1)} = min {𝒜+(𝔪̈),𝒜+(𝔫̈)} 

and 𝒜−(𝔪̈ ∗ 𝔫̈−1) ≤ max {𝒜−(𝔪̈),𝒜−(𝔫̈−1)} = max {𝒜−(𝔪̈),𝒜−(𝔫̈)} where each 𝔪̈, 𝔫̈ ∈ 𝔊̈. 

Proof. Suppose that 𝒜 is a bipolar neutrosophic subgroup of 𝔊̈ and for 𝔪̈, 𝔫̈ ∈ 𝔊̈. 

Then it’s clear based on above discation we get  

Π𝒜
+ (𝔪̈ ∗ 𝔫̈−1) ≥ min {Π𝒜

+ (𝔪̈), Π𝒜
+ (𝔫̈−1)} = min {Π𝒜

+ (𝔪̈), Π𝒜
+ (𝔫̈)} and  

Π𝒜
− (𝔪̈ ∗ 𝔫̈−1) ≤ min {Π𝒜

− (𝔪̈), Π𝒜
− (𝔫̈−1)} = min {Π𝒜

− (𝔪̈), Π𝒜
− (𝔫̈)} 

Thus for other terms,  

Ξ𝒜
+ (𝔪̈ ∗ 𝔫̈−1) ≥ min {Ξ𝒜

+ (𝔪̈), Ξ𝒜
+ (𝔫̈−1)} = min {Ξ𝒜

+ (𝔪̈), Ξ𝒜
+ (𝔫̈)} and  

Ξ𝒜
− (𝔪̈ ∗ 𝔫̈−1) ≤ min {Ξ𝒜

− (𝔪̈), Ξ𝒜
− (𝔫̈−1)} = min {Ξ𝒜

− (𝔪̈), Ξ𝒜
− (𝔫̈)}, 

Σ𝒜
+ (𝔪̈ ∗ 𝔫̈−1) ≤  max {Σ𝒜

+ (𝔪̈), Σ𝒜
+ (𝔫̈−1)} = max {Σ𝒜

+ (𝔪̈), Σ𝒜
+ (𝔫̈)} and  

Σ𝒜
− (𝔪̈ ∗ 𝔫̈−1) ≥ min {Σ𝒜

− (𝔪̈), Σ𝒜
− (𝔫̈−1)} = max {Σ𝒜

− (𝔪̈), Σ𝒜
− (𝔫̈)}, 

Hence 

𝒜(𝔪̈ ∗ 𝔫̈−1) = (Π𝒜
+ (𝔪̈ ∗ 𝔫̈−1), Ξ𝒜

+ (𝔪̈ ∗ 𝔫̈−1), Σ𝒜
+ (𝔪̈ ∗ 𝔫̈−1), Π𝒜

− (𝔪̈ ∗ 𝔫̈−1), Ξ𝒜
− (𝔪̈ ∗ 𝔫̈−1), Σ𝒜

− (𝔪̈ ∗ 𝔫̈−1)) 

≥ (𝑚𝑖𝑛{Π𝒜
+ (𝔪̈), Π𝒜

+ (𝔫̈)},𝑚𝑖𝑛{Ξ𝒜
+ (𝔪̈), Ξ𝒜

+ (𝔫̈)},𝑚𝑎𝑥{Σ𝒜
+ (𝔪̈), Σ𝒜

+ (𝔫̈)}, 

𝑚𝑎𝑥{Π𝒜
− (𝔪̈), Π𝒜

− (𝔫̈)},𝑚𝑎𝑥{Ξ𝒜
− (𝔪̈), Ξ𝒜

− (𝔫̈)},𝑚𝑖𝑛{Σ𝒜
− (𝔪̈), Σ𝒜

− (𝔫̈)}) 

= 𝑚𝑖𝑛({Π𝒜
+ (𝔪̈), Ξ𝒜

+ (𝔪̈), Σ𝒜
+ (𝔪̈)}, {Π𝒜

+ (𝔫̈), Ξ𝒜
+ (𝔫̈), Σ𝒜

+ (𝔫̈)}), 

𝑚𝑎𝑥({Π𝒜
− (𝔪̈), Ξ𝒜

− (𝔪̈), Σ𝒜
− (𝔪̈)}, {Π𝒜

− (𝔫̈), Ξ𝒜
− (𝔫̈), Σ𝒜

− (𝔫̈)}) 

= min {𝒜+(𝔪̈),𝒜+(𝔫̈)} and max {𝒜−(𝔪̈),𝒜−(𝔫̈)} 
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Conversely, let 𝔢̈ be the identity element of classical group 𝔊̈.Then  

Ξ𝒜
+ (𝔫̈−1) = Ξ𝒜

+ (𝔢̈ ∗ 𝔫̈−1) ≥ min {Ξ𝒜
+ (𝔢̈), Ξ𝒜

+ (𝔫̈−1)} = min {Ξ𝒜
+ (𝔫̈ ∗ 𝔫̈−1), Ξ𝒜

+ (𝔫̈−1)} 

≥ min {Ξ𝒜
+ (𝔫̈), Ξ𝒜

+ (𝔫̈), Ξ𝒜
+ (𝔫̈)} = Ξ𝒜

+ (𝔫̈). 

And with similar steps with the rest of the borders we get 𝒜 ∈ 𝐵𝑁𝑆(𝔊̈). 

Theorem 3.13.  Assume that 𝔊̈ is a traditional group and 𝒜 and ℬ are two  bipolar neutrosophic 

set on 𝔊̈, if 𝒜  and ℬ  are two  bipolar neutrosophic subgroup of 𝔊,̈  then 𝒜⋂ℬ  is also bipolar 

neutrosophic subgroup of 𝔊̈. 

Proof. Let 𝔪̈, 𝔫̈ ∈ 𝔊̈ and by theorem 3.4, we have , 

𝒜⋂ℬ(𝔪̈ ∗ 𝔫̈−1) ≥ 𝑚𝑖𝑛{𝒜⋂ℬ(𝔪̈),𝒜⋂ℬ(𝔫̈)}, such that  

Π𝒜⋂ℬ
+ (𝔪̈ ∗ 𝔫̈−1) ≥ 𝑚𝑖𝑛{Π𝒜⋂ℬ

+ (𝔪̈), Π𝒜⋂ℬ
+ (𝔫̈)}, 

Ξ𝒜⋂ℬ
+ (𝔪̈ ∗ 𝔫̈−1) ≥ 𝑚𝑖𝑛{Ξ𝒜⋂ℬ

+ (𝔪̈), Ξ𝒜⋂ℬ
+ (𝔫̈)}, 

Σ𝒜⋂ℬ
+ (𝔪̈ ∗ 𝔫̈−1) ≤ 𝑚𝑎𝑥{Σ𝒜⋂ℬ

+ (𝔪̈), Σ𝒜⋂ℬ
+ (𝔫̈)}. 

Now, reflect on the positive truth membership degree of the intersection as follows, and the other 

inequalities are likewise proved. 

Π𝒜⋂ℬ
+ (𝔪̈ ∗ 𝔫̈−1) = 𝑚𝑖𝑛{Π𝒜

+ (𝔪̈ ∗ 𝔫̈−1), Πℬ
+(𝔪̈ ∗ 𝔫̈−1)} 

≥ (𝑚𝑖𝑛{𝑚𝑖𝑛{Π𝒜
+ (𝔪̈), Π𝒜

+ (𝔫̈)},𝑚𝑖𝑛{Πℬ
+(𝔪̈), Πℬ

+(𝔫̈)}}) 

= (𝑚𝑖𝑛{𝑚𝑖𝑛{Π𝒜
+ (𝔪̈), Πℬ

+(𝔪̈)},𝑚𝑖𝑛{Π𝒜
+ (𝔫̈), Πℬ

+(𝔫̈)}}) 

= 𝑚𝑖𝑛{Π𝒜⋂ℬ
+ (𝔪̈), Π𝒜⋂ℬ

+ (𝔫̈)}. 

Therefor 𝒜⋂ℬ ∈ 𝐵𝑁𝑆. 

Proposition 3.14. Let 𝔊̈ be a traditional group and 𝒜 be a bipolar neutrosophic set of 𝔊̈ if and only 

if for all 𝛽 ∈ [−1,1] ,  𝛽 − levelset of 𝒜 Π(𝒜)𝛽
+  ,Π(𝒜)𝛽

− ,  Ξ(𝒜)𝛽
+ ,  Ξ(𝒜)𝛽

− ,  Σ(𝒜)𝛽
+ ,  Σ(𝒜)𝛽

−  are classical 

subgroups of traditional group 𝔊̈. 

Proof. In this proof we will only deal with the positive and negative true membership side and the 

rest of the sides the proof is similar based on above definitions. Therefor, 

Let 𝒜 be a bipolar neutrosophic subgroup of 𝔊̈, 𝛽 ∈ [−1,1] and for 𝔪̈, 𝔫̈ ∈  Π(𝒜)𝛽
+  . Then, by the 

assumption, we have: 

Π𝒜
+ (𝔪̈ ∗ 𝔫̈−1) ≥ 𝑚𝑖𝑛{Π𝒜

+ (𝔪̈ ∗ 𝔫̈−1), Πℬ
+(𝔪̈ ∗ 𝔫̈−1)} 

≥ 𝑚𝑖𝑛{𝛽, 𝛽} = 𝛽 

And  

Π𝒜
− (𝔪̈ ∗ 𝔫̈−1) ≤ 𝑚𝑎𝑥{Π𝒜

+ (𝔪̈ ∗ 𝔫̈−1), Πℬ
+(𝔪̈ ∗ 𝔫̈−1)} 

≤ 𝑚𝑎𝑥{𝛽, 𝛽} = 𝛽 

 

Hence, we conclude Π(𝒜)𝛽
+  , Π(𝒜)𝛽

− are a classical subgroups of 𝔊̈ for each 𝛽 ∈ [−1,1]. 

Conversely, Assume that Π(𝒜)𝛽
+  , Π(𝒜)𝛽

−  are a classical subgroups of 𝔊̈ for each 𝛽 ∈ [−1,1]. Let 

𝔪̈, 𝔫̈ ∈ 𝔊̈, 𝛽 = min {Π(𝒜)𝛽
+ (𝔪̈), Π(𝒜)𝛽

+ (𝔫̈)} and 𝛿 = Π(𝒜)
+ (𝔪̈). 

Since Π(𝒜)𝛽
+  and Π(𝒜)𝛿

+  are a classical subgroups of 𝔊̈, then 𝔪̈ ∗ 𝔫̈ ∈ Π(𝒜)𝛽
+   and 𝔪̈−1 ∈ Π(𝒜)𝛿

+ . 

Thus, Π(𝒜)
+ (𝔪̈ ∗ 𝔫̈) ≥ 𝛽 = min {Π(𝒜)𝛽

+ (𝔪̈), Π(𝒜)𝛽
+ (𝔫̈)} and Π(𝒜)

+ (𝔪̈−1) ≥ 𝛽 = Π(𝒜)
+ (𝔪̈). 

Hence, the conditions given in Definition 3.1 are satisfied. 
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Theorem 3.15. Let ℱ be a homomorphism mapping from classical groups 𝔊̈1 to classical groups 𝔊̈2 

and 𝒜 be a BN-subgroup of 𝔊̈1, then the image of 𝒜,i.e ℱ(𝔊̈1) is a BN-subgroup of 𝔊̈2. 

Proof. In this proof we will only deal with the positive memberships side and the rest of the sides the 

proof is similar based on above definitions. Therefor, 

Assume that 𝔪̈1 ,  𝔪̈2 ∈ 𝔊̈1 such that ℱ(𝔪̈1) = 𝔫̈1    and ℱ(𝔪̈2) =  𝔫̈2 . Since ℱ  be a group 

homomorphism, then:  

ℱ(Π(𝒜)
+ )(𝔫̈ ∗ 𝔫̈−1) = min

𝔫̈∗𝔫̈−1=ℱ(𝔪̈)
Π(𝒜)
+ (𝔪̈) ≥Π(𝒜)

+ (𝔪̈ ∗ 𝔪̈−1), 

ℱ(Ξ(𝒜)
+ )(𝔫̈ ∗ 𝔫̈−1) = min

𝔫̈∗𝔫̈−1=ℱ(𝔪̈)
Ξ(𝒜)
+ (𝔪̈) ≥Ξ(𝒜)

+ (𝔪̈ ∗ 𝔪̈−1), 

ℱ(Σ(𝒜)
+ )(𝔫̈ ∗ 𝔫̈−1) = max

𝔫̈∗𝔫̈−1=ℱ(𝔪̈)
Σ(𝒜)
+ (𝔪̈) ≤ Σ(𝒜)

+ (𝔪̈ ∗ 𝔪̈−1) 

Now we will work to prove that ℱ(𝒜)(𝔫̈1 ∗ 𝔫̈2
−1) ≥ 𝑚𝑖𝑛{ℱ(𝒜)(𝔫̈1), ℱ(𝒜)(𝔫̈2)}, 

ℱ(𝒜)(𝔫̈1 ∗ 𝔫̈2
−1) = (ℱ(Π(𝒜)

+ )(𝔫̈1 ∗ 𝔫̈2
−1), ℱ(Ξ(𝒜)

+ )(𝔫̈1 ∗ 𝔫̈2
−1), ℱ(Σ(𝒜)

+ )(𝔫̈1 ∗ 𝔫̈2
−1)) 

= ( min
𝔫̈∗𝔫̈−1=ℱ(𝔪̈)

Π(𝒜)
+ (𝔪̈), min

𝔫̈∗𝔫̈−1=ℱ(𝔪̈)
Ξ(𝒜)
+ (𝔪̈), max

𝔫̈∗𝔫̈−1=ℱ(𝔪̈)
Σ(𝒜)
+ (𝔪̈)) 

≥ (Π(𝒜)
+ (𝔪̈ ∗ 𝔪̈−1), Ξ(𝒜)

+ (𝔪̈ ∗ 𝔪̈−1), Σ(𝒜)
+ (𝔪̈ ∗ 𝔪̈−1)) 

≥ (𝑚𝑖𝑛{Π(𝒜)
+ (𝔪̈1), Π(𝒜)

+ (𝔪̈2)},𝑚𝑖𝑛{Ξ(𝒜)
+ (𝔪̈1), Ξ(𝒜)

+ (𝔪̈2)},𝑚𝑎𝑥{Σ(𝒜)
+ (𝔪̈1), Σ(𝒜)

+ (𝔪̈2)}) 

= (𝑚𝑖𝑛 {(Π(𝒜)
+ (𝔪̈1), Ξ(𝒜)

+ (𝔪̈1), Σ(𝒜)
+ (𝔪̈1)) , (Π(𝒜)

+ (𝔪̈2), Ξ(𝒜)
+ (𝔪̈2), Σ(𝒜)

+ (𝔪̈2))}) 

This fluffed for each  𝔪̈1, 𝔪̈2 ∈ 𝔊̈1 with ℱ(𝔪̈1) = 𝔫̈1 and ℱ(𝔪̈2) =  𝔫̈2. Then we get the following: 

ℱ(𝒜)(𝔫̈1 ∗ 𝔫̈2
−1) ≥ 𝑚𝑖𝑛 {( ⋁ Π(𝒜)

+ (𝔪̈1)

ℱ(𝔪̈1)=𝔫̈1

, ⋁ Ξ(𝒜)
+ (𝔪̈1), ⋀ Ξ(𝒜)

+ (𝔪̈1)

ℱ(𝔪̈1)=𝔫̈1

)

ℱ(𝔪̈1)=𝔫̈1

 

( ⋁ Π(𝒜)
+ (𝔪̈2)

ℱ(𝔪̈2)=𝔫̈2

, ⋁ Ξ(𝒜)
+ (𝔪̈2), ⋀ Ξ(𝒜)

+ (𝔪̈2)

ℱ(𝔪̈2)=𝔫̈2ℱ(𝔪̈2)=𝔫̈2

)} 

 

= (𝑚𝑖𝑛 {(Π(𝒜)
+ (𝔫̈1), Ξ(𝒜)

+ (𝔫̈1), Σ(𝒜)
+ (𝔫̈1)) , (Π(𝒜)

+ (𝔫̈2), Ξ(𝒜)
+ (𝔫̈2), Σ(𝒜)

+ (𝔫̈2))}) 

= {ℱ(𝒜)(𝔫̈1), ℱ(𝒜)(𝔫̈2)}. 

Hence, the image of a BN-subgroup is also a BN-subgroup. 

Theorem 3.16. Let ℱ be a homomorphism mapping from classical groups 𝔊̈1 to classical groups 𝔊̈2 

and ℬ be a BN-subgroup of 𝔊̈2, then the preimage of 𝒜,i.e ℱ−1(𝔊̈2) is a BN-subgroup of 𝔊̈1. 

Proof. In this proof we will only deal with the positive memberships side and the rest of the sides the 

proof is similar based on above definitions. Therefor, 

Assume that 𝔪̈1 ,  𝔪̈2 ∈ 𝔊̈1 such that ℱ(𝔪̈1) = 𝔫̈1    and ℱ(𝔪̈2) =  𝔫̈2 . Since ℱ  be a group 

homomorphism, then:  
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ℱ 1(ℬ)(𝔪1 ∗ 𝔪2
1) 

= (Π(ℬ)
+ (ℱ(𝔪̈1 ∗ 𝔪̈2

−1)) , Ξ(ℬ)
+ (ℱ(𝔪̈1 ∗ 𝔪̈2

−1)) , Σ(ℬ)
+ (ℱ(𝔪̈1 ∗ 𝔪̈2

−1))) 

= (Π(ℬ)
+ (ℱ(𝔪̈1) ∗ ℱ(𝔪̈2

−1)) , Ξ(ℬ)
+ (ℱ(𝔪̈1) ∗ ℱ(𝔪̈2

−1)), 

Σ(ℬ)
+ (ℱ(𝔪̈1) ∗ ℱ(𝔪̈2

−1))) 

≥ (𝑚𝑖𝑛{Π(ℬ)
+ (ℱ(𝔪̈1)), Π(ℬ)

+ (ℱ(𝔪̈2))},𝑚𝑖𝑛{Ξ(ℬ)
+ (ℱ(𝔪̈1)), Ξ(ℬ)

+ (ℱ(𝔪̈2))}, 

𝑚𝑎𝑥{Σ(ℬ)
+ (ℱ(𝔪̈1)), Σ(ℬ)

+ (ℱ(𝔪̈2))}) 

= 𝑚𝑖𝑛 (Π(ℬ)
+ (ℱ(𝔪̈1)), Ξ(ℬ)

+ (ℱ(𝔪̈1)), Σ(ℬ)
+ (ℱ(𝔪̈1)), Π(ℬ)

+ (ℱ(𝔪̈2)), Ξ(ℬ)
+ (ℱ(𝔪̈2)), Σ(ℬ)

+ (ℱ(𝔪̈2))) 

= 𝑚𝑖𝑛{ℱ−1(ℬ)(𝔪̈1), ℱ
−1(ℬ)(𝔪̈2)} 

Therefor, ℱ−1(ℬ) ∈ 𝐵𝑁(𝔊̈1). 

Corollary 3.17. Let ℱ be a homomorphism mapping from classical groups 𝔊̈1 to classical groups 

𝔊̈2 and 𝒜 be a BN-subgroup of 𝔊̈1, then ℱ−1(ℱ(𝒜 )) = 𝒜 . 

Corollary 3.18. Let ℱ be a homomorphism mapping from classical groups 𝔊̈1 to classical groups 

𝔊̈2 and 𝒜 be a BN-subgroup of 𝔊̈1, then ℱ(𝒜 ) = 𝒜 if and only if  ℱ−1(𝒜 ) = 𝒜 . 

 

4. Bipolar neutrosophic normal subgroup (BNNSG) 

Definition 4. 1. Let (𝔊̈,∗) be a classical group and 𝒜 be a bipolar neutrosophic set on classical group 

𝔊̈  . Then 𝒜  is named bipolar neutrosophic normal subgroup (BNNSG) of 𝔊̈  if the following 

condition satisfies 𝒜(𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ 𝒜(𝔫̈) for all 𝔪̈, 𝔫̈ ∈ 𝔊̈. That means 

Π𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ Π𝒜

+ (𝔫̈), Ξ𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ Ξ𝒜

+ (𝔫̈) and  Σ𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≤ Σ𝒜

+ (𝔫̈). 

Π𝒜
− (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≤ Π𝒜

− (𝔫̈), Ξ𝒜
− (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≤ Ξ𝒜

− (𝔫̈) and  Σ𝒜
− (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ Σ𝒜

− (𝔫̈). 

Here, the collection of all the bipolar neutrosophic normal subgroups of classical group 𝔊 ̈ is 

indicated by BNNS(𝔊̈). 

 

Example 4.2. Assume that the classical group (𝔊̈ = {1, −1, 𝑖, −𝑖}, . ) Where . is natural 

multiplication. Then the bipolar neutrosophic set 𝒜 on 𝔊̈ given as following: 

 

𝒜 = {
〈0.3,0.4,0.5, −0.4,−0.6, −0.7〉

1
,
〈0.3,0.4,0.5, −0.4, −0.6, −0.7〉

−1
, 

〈0.3,0.4,0.5, −0.4, −0.6, −0.7〉

𝑖
,
〈0.3,0.4,0.5, −0.4, −0.6, −0.7〉

−𝑖
} 

Based on definition 4.1, it is clear that the bipolar neutrosophic set 𝒜 is a bipolar neutrosophic 

normal subgroup of 𝔊̈. 

 

Theorem 4.3. Let 𝔊̈ be a traditional group and 𝒜,ℬ ∈ BNNS(𝔊̈)then 𝒜⋂ℬ ∈ BNNS(𝔊̈) also. 
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Proof. In this proof we will only deal with the positive memberships side and the rest of the sides the 

proof is similar based on above definitions. Therefor, 

Since 𝒜,ℬ ∈ BNNS(𝔊̈),then  

Π𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ Π𝒜

+ (𝔫̈) and Πℬ
+(𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ Πℬ

+(𝔫̈) 

Now based on the definition of ⋂ then, 

Π𝒜⋂ℬ
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) = 𝑚𝑖𝑛{Π𝒜

+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1), Πℬ
+(𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1)} 

≥ 𝑚𝑖𝑛{Π𝒜
+ (𝔫̈), Πℬ

+(𝔫̈)}=Π𝒜⋂ℬ
+ (𝔫̈). 

By a similar step result, we get 

Ξ𝒜⋂ℬ
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥=Ξ𝒜⋂ℬ

+ (𝔫̈) and Σ𝒜⋂ℬ
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥=Σ𝒜⋂ℬ

+ (𝔫̈). 

Therefore, the intersection of two BNNSGs is also a BNNSG. 

Proposition 4.4. Assume that (𝔊̈,∗) be a classical group and 𝒜  is a bipolar neutrosophic set on 

classical group 𝔊̈. Then the following point are fulfilled. 

i. 𝒜 ∈ 𝐵𝑁𝑁𝑆(𝔊). 

ii. 𝒜(𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ 𝒜(𝔫̈) for all 𝔪̈, 𝔫̈ ∈ 𝔊̈. 

iii. 𝒜(𝔪̈ ∗ 𝔫̈) = 𝒜(𝔫̈ ∗ 𝔪̈) for all 𝔪̈, 𝔫̈ ∈ 𝔊̈. 

Proof. In this proof we will only deal with the positive memberships side and the rest of the sides the 

proof is similar based on above definitions. Therefor, 

(i) ⇒ (ii): Let  𝒜 is a bipolar neutrosophic normal subgroup of classical group 𝔊̈ and for all 𝔪̈, 𝔫̈ ∈

𝔊̈. Then by definition  

Π𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ Π𝒜

+ (𝔫̈), , Ξ𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≥ Ξ𝒜

+ (𝔫̈) and  Σ𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≤ Σ𝒜

+ (𝔫̈). 

Thus, taking advantage of 𝔊̈, i.e., the arbitrary property of 𝔪̈, the following is obtained for the 

truth-membership of 𝒜. 

Π𝒜
+ (𝔪̈−1̈ ∗ 𝔫̈ ∗ 𝔪) = Π𝒜

+ (𝔪̈−1 ∗ 𝔫̈ ∗ (𝔪̈−1)−1) ≥ Π𝒜
+ (𝔫̈) 

Therefor, Π𝒜
+ (𝔫̈) = Π𝒜

+ (𝔪̈−1 ∗ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ∗ 𝔪̈) ≤ Π𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) ≤ Π𝒜

+ (𝔫̈), 

i.e., Π𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) = Π𝒜

+ (𝔫̈). 

And with steps similar to the rest of the borders,  

Ξ𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) = Ξ𝒜

+ (𝔫̈) and and  Σ𝒜
+ (𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) = Σ𝒜

+ (𝔫̈). 

Now, (ii) →(iii) It can be accessed directly through substitution 𝔫̈ for 𝔫̈ ∗ 𝔪̈ in proof steps of (ii) . 

Now, (iii)  → (i) regarding 𝒜(𝔪̈ ∗ 𝔫̈) = 𝒜(𝔫̈ ∗ 𝔪̈)  for all 𝔪̈, 𝔫̈ ∈ 𝔊̈ . Then 𝒜(𝔪̈ ∗ 𝔫̈ ∗ 𝔪̈−1) = 𝒜(𝔪̈ ∗

𝔪̈−1 ∗ 𝔫̈) = 𝒜(𝔫̈) ≥ 𝒜(𝔫̈). 

Hence it satisfied. 

Proposition 4.5. Let 𝔊̈ be a traditional group and 𝒜 be a bipolar neutrosophic normal subgroup of 

𝔊̈ if and only if for all 𝛽 ∈ [−1,1], 𝛽 −levelset of 𝒜 Π(𝒜)𝛽
+  ,Π(𝒜)𝛽

− , Ξ(𝒜)𝛽
+ , Ξ(𝒜)𝛽

− , Σ(𝒜)𝛽
+ , Σ(𝒜)𝛽

−  are 

classical subgroups of traditional group 𝔊̈. 

Proof. Clear and similar to the proof steps mentioned in above Proposition. 

 

Definition 4. 6. Let (𝔊̈,∗) be a classical group and 𝒜 be a bipolar neutrosophic set on classical group 

𝔊̈. The the normalizer of a BN-subgroup and 𝒜 classical group 𝔊̈ is given as following: 
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𝑁(𝒜) = {𝔫̈ ∈ 𝔊̈,𝒜(𝔫̈−1 ∗ 𝔪̈ ∗ 𝔫̈) ≥ 𝑚𝑖𝑛{𝒜(𝔪̈),𝒜(𝔫̈−1 ∗ 𝔪̈ ∗ 𝔫̈)} ≤ 𝒜(𝔪̈), ∀𝔪̈ ∈ 𝔊̈} 

 

Theorem 4.7. Let 𝔊̈ be a traditional group and 𝒜 ∈ BNSG(𝔊̈), then 

i. 𝑁(𝒜) is subgroup of 𝔊̈. 

ii. 𝒜 BNNSG of 𝔊̈ if and only if 𝑁(𝒜) = 𝔊̈. 

Proof (i). In this proof we will only deal with the positive and negative true memberships side and 

the rest of the sides the proof is similar based on above definitions. Therefor, 

Suppose that 𝔫̈1, 𝔫̈2 ∈  𝑁(𝒜) and to prove that 𝔫̈1𝔫̈2
−1 ∈  𝑁(𝒜). 

Therefor for any 𝔪̈ ∈ 𝔊̈ we have, 

Ξ𝒜
+ ((𝔫̈1𝔫̈2

−1)
−1
𝔪̈(𝔫̈1𝔫̈2

−1)
−1
) = Ξ𝒜

+ ((𝔫̈2𝔫̈1
−1)𝔪̈(𝔫̈1𝔫̈2

−1)) 

 

Ξ𝒜
+ (𝔫̈2(𝔫̈1

−1𝔪̈𝔫̈1)𝔫̈2
−1) ≥ Ξ𝒜

+ (𝔫̈1
−1𝔪̈𝔫̈1) ≥ Ξ𝒜

+ (𝔪̈) 

and, 

Ξ𝒜
− ((𝔫̈1𝔫̈2

−1)
−1
𝔪̈(𝔫̈1𝔫̈2

−1)
−1
) = Ξ𝒜

− ((𝔫̈2𝔫̈1
−1)𝔪̈(𝔫̈1𝔫̈2

−1)) 

 

Ξ𝒜
− (𝔫̈2(𝔫̈1

−1𝔪̈𝔫̈1)𝔫̈2
−1) ≤ Ξ𝒜

− (𝔫̈1
−1𝔪̈𝔫̈1) ≤ Ξ𝒜

− (𝔪̈) 

Thus, we got  

𝔫̈1𝔫̈2
−1 ∈  𝑁(𝒜)⇒ (𝒜) is subgroup of 𝔊̈. 

Proof (ii). Direct depending on the definition of BNNSG of 𝔊̈ mention above. 

5. Conclusion 

In continuation of the recent research work presented in the fuzzy algebraic environment, and to 

explains the apparatus of operation of the bipolar system in the fuzzy algebraic environment. In this 

studied, we applied this idea in an algebraic environment when we initiated the novel concept of 

bipolar single value neutrosophic subgroups and proved that every bipolar single value neutrosophic 

subgroup generates two bipolar single value neutrosophic subgroups. we explained the level set, 

support, kernel for bipolar single value neutrosophic set, bipolar single value neutrosophic 

characteristic function, and bipolar single value neutrosophic point. Then, we illuminated the bipolar 

single value neutrosophic subgroup, bipolar single value neutrosophic normal subgroup, bipolar 

single value neutrosophic conjugate, normalizer for bipolar single value neutrosophic subgroup, 

bipolar single value neutrosophic abelian subgroup, and bipolar single value neutrosophic factor 

group. Furthermore, we presented the linked theorems and examples and prove these theorems. 

Finally, we discussed the image and pre-image of bipolar single-value neutrosophic subgroups under 

homomorphism and proved the related theorems. However, the result presented in this work has 

some limitations as well, and the investigated work cannot be employed for the examination of 

molecule structures. BN subgroups can be generalised to bipolar complex neutrosophic subgroups, 

bipolar complex picture fuzzy subgroups, bipolar complex neutrosophic soft groups, etc. In the 

future, we aim to expand this research to bipolar bipolar complex neutrosophic soft sets [31,32], and 

complex bipolar complex neutrosophic N-soft sets [33-35]. We hope that these concepts will form the 

basis for innovative research on subgroups. 
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