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Abstract: The objective of the paper ARE to introduce single-valued
trapezoidal neutrosophic numbers(SVTrNNs), which is a special
case of single-valued neutrosophic numbers and to develop a ranking
method for ranking SVTrNNs. Some operational rules as well as cut
sets of SVTrNNs have been introduced. The value and ambiguity
indices of truth, indeterminacy, and falsity membership functions of

SVTrNNs have been defined. A new ranking method has been pro-
posed by using these two indices and applied the ranking method to
multi attribute decision making problem in which the ratings of the
alternatives over the attributes are expressed in terms of TrNFNs. Fi-
nally, an illustrative example has been provided to demonstrate the
validity and applicability of the proposed approach.
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1 Introduction

Fuzzy set [1] is capable of dealing with imprecise or vague
information in decision making process, whose basic compo-
nent is a membership function lying in the unit interval [0, 1].
Fuzzy number [2, 3] is a fuzzy subset of real numbers rep-
resenting the expansion of assurance. Fuzzy numbers can be
used to represent vagueness in multi-attribute decision making
(MADM) [4, 5, 6, 7], data mining, pattern recognition, medical
diagnosis, etc. However, in fuzzy numbers independence of non-
membership function is not considered although it is equally im-
portant to represent imprecise numerical values in a flexible way.
Intuitionistic fuzzy number [8], a generalization of fuzzy num-
bers, can present ill-known information with membership and
non-membership function in the case where the available infor-
mation is not sufficient to be expressed with fuzzy numbers. Shu
et al.[9] defined a triangular intuitionistic fuzzy number(TIFN)
and applied to fault tree analysis on printed board circuit as-
sembly. Wang [10] extended TIFN to the trapezoidal intuition-
istic fuzzy number(TrIFN) in a similar way as that of the fuzzy
number. The concept of ranking of intuitionistic fuzzy numbers
[11, 12, 13, 14, 15] has been employed in MADM under intu-
itionistic fuzzy environment. Li [16] proposed a ranking method
for TIFNs by defining a ratio of value index to ambiguity index
of TIFNSs and applied it to MADM problem. Zeng et al.[17] ex-
tended this ranking method by incorporating TrIFN and utilized
it in MADM problems. For intuitionistic fuzzy number, indeter-
minate information is partially lost although hesitant information
is taken into account by default. Therefore, indeterminate infor-

mation should be considered in decision making process.

Smarandache [18, 19] defined neutrosophic set that can handle
indeterminate and inconsistent information. Wang et al.[20] de-
fined single valued neutrosophic set (SVNS), an instance of neu-
trosophic set, which simply represents uncertainty, imprecise, in-
complete, indeterminate and inconsistent information. However,
the domain of SVNSs is a discrete set where the truth member-
ship degrees, indeterminacy membership degrees, and the falsity
membership membership degrees are only expressed with fuzzy
concept like “very good”,“good”, “bad”, etc. Taking the uni-
verse as a real line, we can develop the concept of single val-
ued neutrosophic number (SVNN) whose domain is to be con-
sidered as a consecutive set. Hence, we can consider SVNNs as
a special case of single-valued neutrosophic sets. These numbers
can express ill-known quantity with uncertain numerical values
in decision making problems. The nature of truth membership,
indeterminacy membership, and falsity membership functions of
SVNN may have different shape such as triangular shaped, trape-
zoidal shaped, bell shaped, etc. In the present study, we present
only the case of trapezoidal shaped and leave others for future
work. We define single-valued trapezoidal neutrosophic numbers
(SVTrNN) in which its truth membership, indeterminacy mem-
bership, and falsity membership functions can be expressed as
trapezoidal fuzzy numbers. Recently, the research on SVNNs has
received a little attention and several definitions of SVNNs and
its operational rules have been proposed. Ye [21] studied multi-
ple attribute decision making problem by introducing trapezoidal
fuzzy neutrosophic set. In his study Ye [21] also defined score
function, accuracy function, and some operational rules of trape-
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zoidal fuzzy neutrosophic sets. Biswas et al. [22] defined trape-
zoidal fuzzy neutrosophic number and their membership func-
tions. Biswas et al. [22] also proposed relative expected value
and cosine similarity measure for solving multiple attribute deci-
sion making problem.

Ranking method of SVTrNNs can play an important role
in decision making problems involving indeterminate informa-
tion which is beyond the scope of fuzzy numbers, intuitionis-
tic fuzzy numbers. Literature review reflects that little attention
has been received to the researchers regarding ranking method
of SVTrNNs. Recently, Deli and Şubaş [23] proposed a rank-
ing method for generalized SVTrNNs and presented a numeri-
cal example to solve multi-attribute decision making problem in
neutrosophic environment. In the present study, We define nor-
malized SVTrNNs and develop a ranking method of SVTrNNs
to solve multi attribute decision making problem in neutrosophic
environment.

Rest of the paper has been organized as follows: Section 2 pro-
vides some basic definitions of fuzzy sets, fuzzy numbers, single-
valued neutrosophic sets. In Section 3, we propose SVNNs,
SVTrNNs and study some of their properties. In Section 4, we
present some arithmetic operations of SVTrNNs. Section 5 is de-
voted to present the concept of value index and ambiguity index
of SVTrNNs and a ranking method of SVTrNNs. In Section 6,
we formulate MADM model with the proposed ranking method
of TrNNs. Section 7 presents an illustrative example. In Section
8, we present concluding remarks and future scope of research.

2 Preliminaries

In this Section, we recall some basic concepts of fuzzy sets, fuzzy
number, single valued neutrosophic set.

Definition 1. [1, 3] A fuzzy set Ã in a universe of discourse X is
defined by Ã={〈x, µÃ(x)〉 |x ∈ X}, where, µÃ(x): X → [0, 1]

is called the membership function of Ã and the value of µÃ(x) is
called the degree of membership for x ∈ X .

The α−cut of the fuzzy setA is the crisp setAα given byAα =
{x ∈ X : µA(x) ≥ α}, α ∈ [0, 1].

Definition 2. [3] A fuzzy set Ã of the real line R with membership
function µÃ(x) : R→ [0, 1] is called a fuzzy number if

1. Ã is normal, i.e. there exists an element x0 such that
µÃ(x0) = 1,

2. Ã is convex, i.e. µÃ(λx1 + (1 − λ)x2) ≥
min
(
µÃ(x1), µÃ(x2)

)
for all x1, x2 ∈ R and λ ∈ [0, 1],

3. µÃ is upper semi continuous, and

4. the support of Ã, i.e. S(Ã)={x ∈ X : µÃ(x) > 0} is
bounded.

Definition 3. [2] A fuzzy number Ã is called a trapezoidal fuzzy
number(TrFN), if its membership function is defined by

µÃ(x) =



x− a1
a2 − a1

, a1 ≤ x ≤ a2
1, a2 ≤ x ≤ a3
a4 − x
a4 − a3

, a3 ≤ x ≤ a4
0, otherwise.

Figure 1: Trapezoidal fuzzy number Ã

The TrFN Ã is denoted by the quadruplet Ã=(a1, a2, a3, a4)
where a1,a2,a3,a4 are the real numbers and a1 ≤ a2 ≤ a3 ≤
a4. The value of x at [a2, a3] gives the maximum of µÃ(x), i.e.,
µÃ(x) =1; it is the most probable value of the evaluation data.
The value of x outside the interval [a1, a4] gives the minimum
of µÃ(x), i.e., µÃ(x) = 0; it is the least probable value of the
evaluation data. Constants a1 and a4 are the lower and upper
bounds of the available area for the evaluation data. The α−cut
of TrFN Ã=(a1, a2, a3, a4) is the closed interval

Aα = [Lα(Ã), Rα(Ã)]

= [(a2 − a1)α+ a1,−(a4 − a3)α+ a4], α ∈ [0, 1].

Definition 4. [20] A single valued neutrosophic set Ã in a uni-
verse of discourse X is given by

Ã =
{〈
x, TÃ(x), IÃ(x), FÃ(x)

〉
|x ∈ X

}
,

where, TÃ : X → [0, 1], IÃ : X → [0, 1] and FÃ : X → [0, 1],
with the condition

0 ≤ TÃ(x) + IÃ(x) + FÃ(x) ≤ 3, for all x ∈ X.

The numbers TÃ(x), IÃ(x) and FÃ(x) respectively represent the
truth membership, indeterminacy membership and falsity mem-
bership degree of the element x to the set Ã.

Definition 5. An (α, β, γ)-cut set of SVNS Ã, a crisp subset of R
is defined by

Ãα,β,γ =
{
x|TÃ(x) ≥ α, IÃ(x) ≤ β, FÃ(x) ≤ γ

}
(1)

where, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, and 0 ≤ α+β+ γ ≤
3.

Definition 6. A single-valued neutrosophic set
Ã=
{〈
x, TÃ(x), IÃ(x), FÃ(x)

〉
|x ∈ X

}
is called neut-

normal, if there exist at least three points x0, x1, x2 ∈ X such
that TÃ(x0) = 1, IÃ(x1) = 1, FÃ(x2) = 1.

Definition 7. A single-valued neutrosophic set
Ã=
{〈
x, TÃ(x), IÃ(x), FÃ(x)

〉
|x ∈ X

}
is a subset of the
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real line, called neut-convex if for all x1, x2 ∈ R and λ ∈ [0, 1]
the following conditions are satisfied

1. TÃ(λx1 + (1− λ)x2) ≥ min
(
TÃ(x1), TÃ(x2)

)
;

2. IÃ(λx1 + (1− λ)x2) ≤ max
(
IÃ(x1), IÃ(x2)

)
;

3. FÃ(λx1 + (1− λ)x2) ≤ max
(
FÃ(x1), FÃ(x2)

)
.

That is Ã is neut-convex if its truth membership function is fuzzy
convex, indeterminacy membership function is fuzzy concave and
falsity membership function is fuzzy concave.

3 Single-valued neutrosophic number
and some arithmetic operations

Single valued neutrosophic set is a flexible and practical tool to
handle incomplete, indeterminate or uncertain type information.
However, it is often hard to express this information with the
truth membership degree, the indeterminacy degree, and the fal-
sity degree represented by the exact real values. Thus extension
of SVNSs is required to deal the issues.

Definition 8. A single-valued neutrosophic set
Ã=
{〈
x, TÃ(x), IÃ(x), FÃ(x)

〉
|x ∈ X

}
, subset of the real

line, is called single-valued neutrosophic number if

1. Ã is neut-normal,

2. Ã is neut-convex,

3. TA(x) is upper semi continuous, IA(x) is lower semi con-
tinuous, and FA(x) is lower semi continuous, and

4. the support of Ã, i.e. S(Ã)={x ∈ X : TÃ(x) > 0, IÃ(x) <
1, FÃ(x) < 1} is bounded.

Thus for any SVNNs Ã, there exist twelve numbers a11, a21,
a31, a41, b11, b21, b31, b41, c11, c21, c31, c41 ∈ R such that
c11 ≤ b11 ≤ a11 ≤ c21 ≤ b21 ≤ a21 ≤ a31 ≤ b31 ≤ c31 ≤
a41 ≤ b41 ≤ c41 and the six functions TL

Ã
(x), TR

Ã
(x),IL

Ã
(x),

IR
Ã
(x),FL

Ã
(x), FR

Ã
(x) : R → [0, 1] to represent the truth mem-

bership, indeterminacy membership,and falsity membership de-
gree of Ã. The three non decreasing functions TL

Ã
(x), IL

Ã
(x),

and FL
Ã
(x) represent the left side of truth, indeterminacy, and

falsity membership functions of a SVNN Ã respectively. Simi-
larly, the three non increasing functions TR

Ã
(x), IR

Ã
(x), FR

Ã
(x)

represent the right side of truth membership, indeterminacy, and
falsity membership functions of a SVNN Ã, respectively.

Then the truth membership, indeterminacy membership and
falsity membership functions of Ã can be defined in the following
form:

TÃ(x) =


TL
Ã
(x), a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,
TU
Ã
(x), a31 ≤ x ≤ a41,

0, otherwise.

(2)

IÃ(x) =


IL
Ã
(x), b11 ≤ x ≤ b21,

1, b21 ≤ x ≤ b31,
IU
Ã
(x), b31 ≤ x ≤ b41,

0, otherwise,

(3)

FÃ(x) =


FL
Ã
(x), c11 ≤ x ≤ c21,

1, c21 ≤ x ≤ c31,
FU
Ã
(x), c31 ≤ x ≤ c41,

0, otherwise.

(4)

The sum of three independent membership degrees of a SVNN
Ã lie between the interval [0, 3] i.e,

0 ≤ TU
Ã
(x) + IU

Ã
(x) + FU

Ã
(x) ≤ 3, x ∈ Ã.

Definition 9. A single-valued trapezoidal neutrosophic number
(SVTrNN) Ã with the set of parameters c11 ≤ b11 ≤ a11 ≤
c21 ≤ b21 ≤ a21 ≤ a31 ≤ b31 ≤ c31 ≤ a41 ≤ b41 ≤ c41 is
denoted as
Ã= 〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
in the set of real numbers R. The truth membership, indeter-
minacy membership and falsity membership degree of Ã can be
defined as follows:

TÃ(x) =



x− a11
a21 − a11

, a11 ≤ x ≤ a21,

1, a21 ≤ x ≤ a31,
a41 − x
a41 − a31

, a31 ≤ x ≤ a41,

0, otherwise.

(5)

IÃ(x) =



x− b11
b21 − b11

, b11 ≤ x ≤ b21,

1, b21 ≤ x ≤ b31,
x− b31
b41 − b31

, b31 ≤ x ≤ b41,

0, otherwise.

(6)

FÃ(x) =



x− c11
c21 − c11

, c11 ≤ x ≤ c21,

1, c21 ≤ x ≤ c31,
x− c31
c41 − c31

, c31 ≤ x ≤ c41,

0, otherwise.

(7)

For a SVTrNN Ã, a21=a31 for truth membership, b21=b31
for indeterminacy membership, and c21=c31 for falsity member-
ship degree yield a single-valued triangular neutrosophic num-
bers which is a special case of SVTrNNs.
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3.1 Cuts of single-valued trapezoidal neutro-
sophic numbers

Let Ã =
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

be the SVTrNN in the set of real numbers R,
where TÃ(x), IÃ(x), and FÃ(x) be the truth, indeterminacy and
falsity membership functions.

Definition 10. A α-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is
a crisp subset of R defined by Ãα=

{
x|TÃ(x) ≥ α

}
, where 0 ≤ α ≤ 1.

According to the definition of SVTrNN of Ã and Definition 1, it can
be shown that Ãα is a closed interval. This interval is denoted by
Ãα=

[
Lα(Ã), Rα(Ã)

]
and defined by[

Lα(Ã), Rα(Ã)
]
=
[
a11 + α(a21 − a11), a41 − α(a41 − a31)

]
. (8)

Definition 11. A β-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is
a crisp subset of R defined by Ãβ=

{
x|TÃ(x) ≤ β

}
, where 0 ≤ β ≤ 1.

Similarly, the close interval is denoted by Ãβ=
[
Lβ(Ã), Rβ(Ã)

]
and

defined by[
Lβ(Ã), Rβ(Ã)

]
=
[
b21 + β(b21 − b11), b31 + β(b41 − b31)

]
. (9)

Definition 12. A γ-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is
a crisp subset of R defined by Ãα=

{
x|TÃ(x) ≤ γ

}
, where 0 ≤ γ ≤ 1.

The close interval obtained from Ã is denoted by Ãγ=
[
Lγ(Ã), Rγ(Ã)

]
and defined by[
Lγ(Ã), Rγ(Ã)

]
=
[
c21 + γ(c21 − c11), c31 + γ(c41 − c31)

]
. (10)

The (α, β, γ)-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉
can be defined by using Eqs.(8),(9), and (10) simultaneously.

Definition 13. An (α, β, γ)-cut set of SVTrNN
Ã=〈(a11, a21, a31, a41), (b11, b21, b31, b41), (c11, c21, c31, c41)〉 is
a crisp subset of R, which is defined by

Ãα,β,γ =
{
x|TÃ(x) ≥ α, IÃ(x) ≤ β, FÃ(x) ≤ γ

}
=

{[
Lα(Ã), Rα(Ã)

]
,
[
Lγ(Ã), Rγ(Ã)

]
,[

Lγ(Ã), Rγ(Ã)
] } (11)

=


[
a11 + α(a21 − a11), a41 − α(a41 − a31)

]
,[

b21 + β(b21 − b11), b31 + β(b41 − b31)
]
,[

c21 + γ(c21 − c11), c31 + γ(c41 − c31)
]
 (12)

where, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, and 0 ≤ α+ β + γ ≤ 3.
We observe for the (α, β, γ)-cut set of SVTrNN Ã that

1. dLα(Ã)
dα

> 0, dRα(Ã)
dα

< 0 for all α ∈ [0, 1], thus L1(Ã) ≥
R1(Ã),

2. dLβ(Ã)
dβ

< 0, dRβ(Ã)
dβ

> 0 for all β ∈ [0, 1], thus L0(Ã) ≤
R0(Ã),

3. dLγ(Ã)
dγ

< 0, dRγ(Ã)
dγ

> 0 for all γ ∈ [0, 1], thus L0(Ã) ≤
R0(Ã).

4 Some arithmetic operations of single-
valued trapezoidal neutrosophic num-
bers

In this section, some arithmetic operations of SVTrNNs have been
presented by using neutrosophic extension principle and (α, β, γ)-cuts
method.

4.1 Arithmetic Operations of single-valued neu-
trosophic numbers based on extension princi-
ple

The arithmetic operation (∗) of two SVTrNNs is a mapping of an input
vectorX = [x1, x2]

T defined in the Cartesian product space R×R on to
an output y defined in the real space R. Let Ã and B̃ be two SVTrNNs,
then their outcome of arithmetic operation is also an SVTrNN defined
by the form

(
Ã ∗ B̃

)
(y) =



(
y, sup
y=x1∗x2

[
min

(
TÃ(x1), TB̃(x1)

)]
,

inf
y=x1∗x2

[
max

(
IÃ(x1), IB̃(x1)

)]
,

inf
y=x1∗x2

[
max

(
FÃ(x1), FB̃(x1)

)])
,


. (13)

for all x1, x2 in R.

To calculate the arithmetic operation of NTrFNs, it is sufficient to
determine truth, indeterminacy and falsity membership function of re-
sultant NTrFN as

TÃ∗B̃(y) = sup
y=x1∗x2

[
min

(
TÃ(x1), TB̃(x1)

)]
;

IÃ∗B̃(y) = inf
y=x1∗x2

[
max

(
IÃ(x1), IB̃(x1)

)]
and FÃ∗B̃(y) = inf

y=x1∗x2

[
max

(
FÃ(x1), FB̃(x1)

)]
.

4.2 Arithmetic operations of single-valued trape-
zoidal neutrosophic numbers based on
(α, β, γ)-cuts method

Some properties of SVTrNNs in the set of real numbers are presented
here.

Property 1. If Ã=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and B̃=
〈
(a12, a22, a32, a42),

(b12, b22, b32, b42), (c12, c22, c32, c42)
〉

be two SVTrNNs in the set of
real numbers R then, C̃ = Ã⊕ B̃ is also a SVTrNN and

Ã⊕ B̃ =

〈 (a11 + a12, a21 + a22, a31 + a32, a41 + a42),

(b11 + b12, b21 + b22, b31 + b32, b41 + b42),

(c11 + c12, c21 + c22, c31 + c32, c41 + c42)

〉
. (14)

Proof. Based on the extensible principle of single valued neutrosophic
set and (α, β, γ)-cut sets of Ã and B̃ for α, β, γ ∈ [0, 1], it sufficient
to prove that Aα,β,γ + Bα,β,γ = (A + B)α,β,γ . Using Eq.(12), the
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summation of (α, β, γ)-cut sets of Ã and B̃ is

Aα,β,γ +Bα,β,γ

=


[
a11 + α(a21 − a11), a41 − α(a41 − a31)

]
,[

b21 + β(b21 − b11), b31 + β(b41 − b31)
]
,[

c21 + γ(c21 − c11), c31 + γ(c41 − c31)
]
 (15)

+


[
a12 + α(a22 − a12), a42 − α(a42 − a32)

]
,[

b22 + β(b22 − b12), b32 + β(b42 − b32)
]
,[

c22 + γ(c22 − c12), c32 + γ(c42 − c32)
]


=



[
a11 + a12 + α(a21 + a22 − a11 − a12),

a41 + a42 − α(a41 + a42 − a31 − a32)
]
,[

b21 + b22 + β(b21 + b22 − b11 − b12),
b31 + b32 + β(b41 + b42 − b31 − b32)

]
,[

c21 + c22 + γ(c21 + c22 − c11 − c12),
c31 + c32 + γ(c41 + c42 − c31 − c32)

]


= (A+B)α,β,γ . (16)

This establishes the property.

Property 2. If Ã=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

be a SVTrNN in the set of real numbers R
and k be a real number then, kÃ is also a SVTrNN and

kÃ =



〈
(ka11, ka21, ka31, ka41), (kb11, kb21, kb31, b41),

(kc11, kc21, kc31, kc41)

〉
〈
(ka41, ka31, ka21, ka11), (kb41, kb31, kb21, b11),

(kc41, kc31, kc21, kc11)

〉
,

(17)
for k > 0 and k < 0 respectively.

Proof. To establish this property, it has to be proved that
kÃα,β,γ=(kÃ)α,β,γ .
From Eq.(12), the (α, β, γ)-cut sets of Ã multiplied with the real num-
ber k > 0 can be taken as

kÃα,β,γ = k


[
a11 + α(a21 − a11), a41 − α(a41 − a31)

]
,[

b21 + β(b21 − b11), b31 + β(b41 − b31)
]
,[

c21 + γ(c21 − c11), c31 + γ(c41 − c31)
]


=

 [ka11 + α(ka21 − ka11), ka41 − α(ka41 − ka31)],
[kb21 + β(kb21 − kb11), kb31 + β(kb41 − kb31)],
[kc21 + γ(kc21 − kc11), kc31 + γ(kc41 − kc31)]


= (kÃ)α,β,γ .

Similarly, it can be shown that kÃα,β,γ=(kÃ)α,β,γ for real number k <
0. The two results for k > 0 and k < 0 prove this property.

Now we define some arithmetical operation of SVTrNN.

Definition 14. If Ã=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

be a SVTrNN in the set of real numbers R and k be
a real number, then the following operations are valid:

1. Ã⊕ B̃ =

〈 (a11 + a12, a21 + a22, a31 + a32, a41 + a42),

(b11 + b12, b21 + b22, b31 + b32, b41 + b42),

(c11 + c12, c21 + c22, c31 + c32, c41 + c42)

〉

2. Ã⊗ B̃ =

〈 (a11a12, a21a22, a31a32, a41a42),
(b11b12, b21b22, b31b32, b41b42),
(c11c12, c21c22, c31c32, c41c42)

〉

3. λÃ =

〈 (λa11, λa21, λa31, λa41),
(λb11, λb21, λb31, λb41),
(λc11, λc21, λc31, λc41)

〉

4. Ãλ =

〈
(aλ11, a

λ
21, a

λ
31, a

λ
41), (b

λ
11, b

λ
21, b

λ
31, b

λ
41),

(cλ11, c
λ
21, c

λ
31, c

λ
41)

〉

5 Value and ambiguity index based
ranking method for SVTrNNs

Definition 15. Let Ãα, Ãβ , and Ãγ be the α-cut, β-cut, and γ-cut sets
of a SVTrNN Ã . Then the value of truth(TÃ(x)), indeterminacy(IÃ(x)),
and falsity(TÃ(x)) membership degree of Ã are respectively defined by

VT (Ã) =

∫ 1

0

(
Lα(Ã) +Rα(Ã)

)
f(α)dα; (18)

VI(Ã) =

∫ 1

0

(
Lβ(Ã) +Rβ(Ã)

)
g(β)dβ; (19)

VF (Ã) =

∫ 1

0

(
Lγ(Ã) +Rγ(Ã)

)
h(γ)dγ. (20)

Weighting functions f(α), g(β) and h(γ) can be set according to na-
ture of decision making in real situations. The function f(α) = α(α ∈
[0, 1]) gives different weights to elements in different α-cut sets which
make less the contribution of the lower α-cut sets as these cut sets aris-
ing from values of TÃ(x) have a considerable amount of uncertainty.
Thus, VT (Ã) synthetically reflects the information on every membership
degree and may be regarded as a central value that represents from the
membership function point of view. Similarly, the function g(β) = 1−β
has the effect of weighting on the different β-cut sets. g(β) diminishes
the contribution of the higher β-cut sets, which is reasonable since these
cut sets arising from values of IÃ(x) have a considerable amount of
uncertainty. VT (Ã) synthetically reflects the information on every inde-
terminacy degree and may be regarded as a central value that represents
from the indeterminacy function point of view. Similarly, the function
h(γ) = 1−γ has the effect of weighting on the different γ-cut sets. g(γ)
diminishes the contribution of the higher γ-cut sets, which is reasonable
since these cut sets arising from values of FÃ(x) have a considerable
amount of uncertainty. VF (Ã) synthetically reflects the information on
every falsity degree and may be regarded as a central value that repre-
sents from the falsity membership function point of view.

Taking f(α) = α in Eq.(18), the value of truth membership function
can be obtained as:

VT =

∫ 1

0

(
LÃ(α) +RÃ(α)

)
f(α) dα

=

∫ 1

0

[
a11 + α(a21 − a11) + a41 − α(a21 − a11)

]
αdα

=
1

6

(
a11 + 2a21 + 2a31 + a41

)
. (21)

Similarly, considering g(β) = 1− β in Eq.(19), the value of indetermi-
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nacy membership function can be defined as:

VI =

∫ 1

0

(
LÃ(α) +RÃ(α)

)
g(β) dβ

=

∫ 1

0

[
b21 − γ(b21 − b11) + b31 + γ(b41 − b31)

]
(1− β)dβ

=
1

6

(
b11 + 2b21 + 2b31 + b41

)
. (22)

and by considering h(γ) = 1 − γ in Eq.(20), the value of falsity mem-
bership function is defined by

VF =

∫ 1

0

(
LÃ(γ) +RÃ(γ)

)
g(γ) dγ

=

∫ 1

0

[
c21 − γ(c21 − c11) + c31 + γ(c41 − c31)

]
(1− γ)dγ

=
1

6

(
c11 + 2c21 + 2c31 + c41

)
. (23)

Definition 16. Let Ãα, Ãβ , and Ãγ be the α-cut, β-cut, and γ-
cut sets of a SVTrNN Ã . Then the ambiguity of truth(TÃ(x)),
indeterminacy(IÃ(x)), and falsity(TÃ(x)) membership function of a
SVTrNN Ã are respectively defined by

AT (Ã) =

∫ 1

0

(
Rα(Ã)− Lα(Ã)

)
f(α)dα; (24)

AI(Ã) =

∫ 1

0

(
Rβ(Ã)− Lβ(Ã)

)
g(β)dβ; (25)

AF (Ã) =

∫ 1

0

(
Rγ(Ã)− Lγ(Ã)

)
h(γ)dγ. (26)

It is observed that Rα(Ã)−Lα(Ã), Rβ(Ã)−Lβ(Ã), and Rγ(Ã)−
Lγ(Ã) represent the length of the intervals of Ãα, Ãβ , and Ãγ respec-
tively. Thus, AT (Ã), AI(Ã), and AF (Ã) can be regarded as the global
spreads of the truth, indeterminacy, and falsity membership function re-
spectively. The ambiguity of three membership functions determine the
measure of vagueness of Ã.

Now, putting the values of α-cut of Ã and f(α) = α in Eq.(24), the
ambiguity of membership function TÃ(x) can be determined as:

AT (Ã) =

∫ 1

0

(
Rα(Ã)− Lα(Ã)

)
f(α)dα

=

∫ 1

0

[
a41 − α(a41 − a31)− a11 − α(a21 − a11)

]
αdα

=
1

6

(
−a11 − 2a21 + 2a31 + a41

)
. (27)

Similarly, putting the values of β-cut of Ã and f(β) = 1−β in Eq.(25),
the ambiguity of membership function IÃ(x) can be determined as:

AT (Ã) =

∫ 1

0

(
Rβ(Ã)− Lα(Ã)

)
f(β)dβ

=

∫ 1

0

[
b31 + β(b41 − b31)− b21

+ β(b21 − b11)

]
(1− β)dβ

=
1

6

(
−b11 − 2b21 + 2b31 + b41

)
; (28)

and setting the values of γ-cut of Ã and f(γ) = 1 − γ in Eq.(26), the

ambiguity of membership function IÃ(x) can be determined as:

AT (Ã) =

∫ 1

0

(
Rβ(Ã)− Lα(Ã)

)
f(γ)dγ

=

∫ 1

0

[
b31 + γ(b41 − b31)− b21

+ γ(b21 − b11)

]
(1− γ)dγ

=
1

6

(
−c11 − 2c21 + 2c31 + c41

)
. (29)

Definition 17. Let Ã =
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

be a SVTrNN. A value index and ambiguity index
for Ã can be defined by

Vλ,µ,ν = λVT + µVI + νVF (30)

=
λ

6

(
a11 + 2a21 + 2a31 + a41

)
+
µ

6

(
b11 + 2b21 + 2b31 + b41

)
+
ν

6

(
c11 + 2c21 + 2c31 + c41

) (31)

Aλ,µ,ν = λAT + µAI + νAF (32)

=
λ

6

(
−a11 − 2a21 + 2a31 + a41

)
+
µ

6

(
−b11 − 2b21 + 2b31 + b41

)
+
ν

6

(
−c11 − 2c21 + 2c31 + c41

) (33)

where, the co-efficients λ, µ, ν of Vλ,µ,ν and Aλ,µ,ν represent the deci-
sion makers’ preference value with the condition λ + µ + ν = 1. The
decision maker may intend to take decision pessimistically in uncertain
environment for λ ∈ [0, 1

3
] and µ + ν ∈ [ 1

3
, 1]. On the contrary, the

decision maker may intend to take decision optimistically in uncertain
environment for λ ∈ [ 2

3
, 1] and µ + ν ∈ [0, 1

3
]. The impact of truth,

indeterminacy, and falsity degree are same to the decision maker for
λ = µ = ν = 1

3
. Therefore, the value index and the ambiguity index

may reflect the decision makers attitude for SVTrNN.

In the following, some properties regarding value and ambiguity in-
dex have been presented.

Theorem 3. Let Ã1 =
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈
(a12, a22, a32, a42),

(b12, b22, b32, b42), (c12, c22, c32, c42)
〉

be two SVTrNN in the set
of real numbers R. Then for λ, µ, ν ∈ [0, 1] and ψ ∈ R, the following
results hold good.

Vλ,µ,ν
(
Ã1 + Ã2

)
=Vλ,µ,ν

(
Ã1

)
+ Vλ,µ,ν

(
Ã2

)
(34)

Vλ,µ,ν
(
φÃ1

)
=φVλ,µ,ν

(
Ã1

)
(35)

Proof. From definition-14, the sum of two NTrFNs Ã1 and Ã2 can be
written as follows:

Ã⊕ B̃ =
〈
(a11 + a12 − a11a12, a21 + a22 − a21a22,

a31 + a32 − a31a32, a41 + a42 − a41a42),
(b11b12, b21b22, b31b32, b41b42),

(c11c12, c21c22, c31c32, c41c42)
〉

Now, by Eq.(31) the value index of the sum of two SVTrNNs Ã1 and
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Ã2 can be written as follows:

Vλ,µ,ν
(
Ã1 + Ã2

)
(36)

= λVT
(
Ã1 + Ã2

)
+ µVI

(
Ã1 + Ã2

)
+ νVF

(
Ã1 + Ã2

)
(37)

=


λ

6

[
(a11 + a21) + 2(a12 + a22) + 2(a13 + a23) + (a14 + a24)

]
+
µ

6

[
(b11 + b21) + 2(b12 + b22) + 2(b13 + b23) + (b14 + b24)

]
+
ν

6

[
(c11 + c21) + 2(c12 + c22) + 2(c13 + c23) + (c14 + c24)

]


(38)

=
λ

6

(
a11 + 2a12 + 2a13 + a14

)
+
λ

6

(
a21 + 2a22 + 2a23 + a24

)
+
µ

6

(
b11 + 2b12 + 2b13 + b14

)
+
µ

6

(
b21 + 2b22 + 2b23 + b24

)
+
ν

6

(
c11 + 2c12 + 2c13 + c14

)
+
ν

6

(
c21 + 2c22 + 2c23 + c24

)
= Vλ,µ,ν

(
Ã1

)
+ Vλ,µ,ν

(
Ã2

)
(39)

For the second part of the theorem,

Vλ,µ,ν
(
φÃ1

)
(40)

= λVT
(
φÃ1

)
+ µVI

(
φÃ1

)
+ νVI

(
φÃ1

)

=


λ

6

(
φa11 + 2φa12 + 2φa13 + φa14

)
+
µ

6

(
φb11 + 2φb12 + 2φb13 + φb14

)
+
ν

6

(
φc11 + 2φc12 + 2φc13 + φc14

)



= φ


λ

6

(
a11 + 2a12 + 2a13 + a14

)
+
µ

6

(
b11 + 2b12 + 2b13 + b14

)
+
ν

6

(
c11 + 2c12 + 2c13 + c14

)


= φVλ,µ,ν

(
Ã1

)
(41)

Therefore, Vλ,µ,ν
(
Ã1 + Ã2

)
=Vλ,µ,ν

(
Ã1

)
+ Vλ,µ,ν

(
Ã2

)
and

Vλ,µ,ν
(
φÃ1

)
= φVλ,µ,ν

(
Ã1

)
.

Theorem 4. Let Ã1=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈
(a12, a22, a32, a42),

(b12, b22, b32, b42), (c12, c22, c32, c42)
〉

be two SVTrNNs in the set
of real numbers R. Then for λ, µ, ν ∈ [0, 1] and ψ ∈ R, the following
equations hold good.

Aλ,µ,ν
(
Ã1 + Ã2

)
=Aλ,µ,ν

(
Ã1

)
+Aλ,µ,ν

(
Ã2

)
(42)

Aλ,µ,ν
(
φÃ1

)
=φAλ,µ,ν

(
Ã1

)
(43)

Proof. From definition-14, the sum of two SVTrNNs Ã1 and Ã2 , the
ambiguity index of the sum of two SVTrNNs Ã1 and Ã2 can be written

as:

Aλ,µ,ν
(
Ã1 + Ã2

)
(44)

= λAT
(
Ã1 + Ã2

)
+ µAI

(
Ã1 + Ã2

)
+ νAF

(
Ã1 + Ã2

)
(45)

=


λ

6

[
−(a11 + a21)− 2(a12 + a22) + 2(a13 + a23) + (a14 + a24)

]
+
µ

6

[
−(b11 + b21)− 2(b12 + b22) + 2(b13 + b23) + (b14 + b24)

]
+
ν

6

[
−(c11 + c21)− 2(c12 + c22) + 2(c13 + c23) + (c14 + c24)

]


(46)

=
λ

6

(
−a11 − 2a12 + 2a13 + a14

)
+
λ

6

(
−a21 − 2a22 + 2a23 + a24

)
+
µ

6

(
−b11 − 2b12 + 2b13 + b14

)
+
µ

6

(
−b21 − 2b22 + 2b23 + b24

)
+
ν

6

(
−c11 − 2c12 + 2c13 + c14

)
+
ν

6

(
−c21 − 2c22 + 2c23 + c24

)
= Aλ,µ,ν

(
Ã1

)
+Aλ,µ,ν

(
Ã2

)
For the second part of the theorem,

Aλ,µ,ν
(
φÃ1

)
(47)

= λAT
(
φÃ1

)
+ µAI

(
φÃ1

)
+ νAI

(
φÃ1

)

=


λ

6

(
− φa11 − 2φa12 + 2φa13 + φa14

)
+
µ

6

(
−φb11 − 2φb12 + 2φb13 + φb14

)
+
ν

6

(
−φc11 − 2φc12 + 2φc13 + φc14

)



= φ


λ

6

(
−a11 − 2a12 + 2a13 + a14

)
+
µ

6

(
−b11 − 2b12 + 2b13 + b14

)
+
ν

6

(
−c11 − 2c12 + 2c13 + c14

)


= φAλ,µ,ν

(
Ã1

)
(48)

Therefore, Aλ,µ,ν
(
Ã1 + Ã2

)
=Aλ,µ,ν

(
Ã1

)
+ Vλ,µ,ν

(
Ã2

)
and

Aλ,µ,ν
(
φÃ1

)
= φAλ,µ,ν

(
Ã1

)
.

Proposition 1. Let Ã1=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈
(a12, a22, a32, a42),

(b12, b22, b32, b42), (c12, c22, c32, c42)
〉

be two SVTrNNs in the set
of real numbers R. Then ranking of two SVTrNNs Ã1 and Ã2 can be
done by using the value and ambiguity of SVTrNN. The procedures have
been defined as follows:

P1. If Vλ,µ,ν
(
A1

)
≤ Vλ,µ,ν

(
A1

)
, then Ã1 is smaller than Ã2, i.e,

Ã1 ≺ Ã2.

P2. If Vλ,µ,ν
(
A1

)
≥ Vλ,µ,ν

(
A1

)
, then Ã1 is greater than Ã2, i.e,

Ã1 � Ã2.

P3. If Vλ,µ,ν
(
A1

)
= Vλ,µ,ν

(
A1

)
and Aλ,µ,ν

(
A1

)
≥ Vλ,µ,ν

(
A1

)
,

then Ã1 is smaller than Ã2, i.e, Ã1 ≺ Ã2.

P4. If Vλ,µ,ν
(
A1

)
= Vλ,µ,ν

(
A1

)
and Aλ,µ,ν

(
A1

)
≤ Vλ,µ,ν

(
A1

)
,

then Ã1 is grater than Ã2, i.e, Ã1 � Ã2.

P5. If Vλ,µ,ν
(
A1

)
= Vλ,µ,ν

(
A1

)
and Aλ,µ,ν

(
A1

)
= Vλ,µ,ν

(
A1

)
,

then Ã1 is equal Ã2, i.e, Ã1 ≈ Ã2.

Theorem 5. Let Ã1=
〈
(a11, a21, a31, a41), (b11, b21, b31, b41),

(c11, c21, c31, c41)
〉

and Ã2 =
〈
(a12, a22, a32, a42),
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(b12, b22, b32, b42), (c12, c22, c32, c42)
〉

be two NTrFNs in the set
of real numbers R.If a11 > a42, b11 > b42 and c11 > c42 then
Ã1 > Ã2.

Proof. We can obtain the following results from Eq.(21), (22) and (23):

VT (Ã1) =
λ

6

(
a11 + 2a21 + 2a31 + a41

)
> a11,

VT (Ã2) =
λ

6

(
a12 + 2a22 + 2a32 + a42

)
< a42

VI(Ã1) =
λ

6

(
b11 + 2b21 + 2b31 + b41

)
> b11,

VI(Ã2) =
λ

6

(
b12 + 2b22 + 2b32 + b42

)
< b42

and VF (Ã1) =
λ

6

(
c11 + 2c21 + 2c31 + c41

)
> c11,

VF (Ã2) =
λ

6

(
c12 + 2c22 + 2c32 + c42

)
< c42

With the relations a11 > a42, b11 > b42 and c11 > c42, it follows
that VT (Ã1) > VT (Ã2), VI(Ã1) > VI(Ã2), and VF (Ã1) > VF (Ã2).
Therefore from Eq.(30), we can obtain

Vλ,µ,ν(Ã1) = λVT (Ã1) + µVI(Ã1) + νVF (Ã1)

> λVT (Ã2) + µVI(Ã2) + νVF (Ã2) = Vλ,µ,ν(Ã2)

This completes the proof.

Theorem 6. Let A1, A2 and A3 be three SVTrNNs, where
Ãi=〈(a1i, a2i, a3i, a4i), (b1i, b2i, b3i, b4i), (c1i, c2i, c3i, c4i)〉 for i =
1, 2, 3. If Ã1 > Ã2, then Ã1 + Ã3 > Ã2 + Ã3.

Proof. For A1, A2 and A3, we can write the following results from
Eq.(30):

Vλ,µ,ν(Ã1 + Ã2) = Vλ,µ,ν(Ã1) + Vλ,µ,ν(Ã2)

and Vλ,µ,ν(Ã2 + Ã3) = Vλ,µ,ν(Ã2) + Vλ,µ,ν(Ã3).

Since Ã1 > Ã2, then we have

Vλ,µ,ν(Ã1 + Ã2) = Vλ,µ,ν(Ã1) + Vλ,µ,ν(Ã2)

> Vλ,µ,ν(Ã2) + Vλ,µ,ν(Ã3)

= Vλ,µ,ν(Ã2 + Ã3).

This completes the proof.

6 Formulation of MADM model under
SVTrNNs information

In this section, we present value and ambiguity based ranking
method to MADM in which the ratings of alternatives over the at-
tributes have been expressed with NTrFNs. Assume that for a
MADM problem, A = {A1, A2, . . . , Am} be a set of m alter-
natives, C = {C1, C2, . . . , Cn} be a set of n attributes. The
weight vector of the attributes provided the decision makers is W
= (w1, w2, . . . , wn)

T , where wj ∈ [0, 1],
∑n
j=1 wj = 1 and wj

is the degree of importance for the attribute Cj . The rating of al-
ternative Ai with respect to attribute Cj has been expressed with
NTrFN dij=

〈
(a1ij , a

2
ij , a

3
ij , a

4
ij), (b

1
ij , b

2
ij , b

3
ij , b

4
ij), (c

1
ij , c

2
ij , c

3
ij , c

4
ij)
〉
,

where a1ij , a
2
ij , a

3
ij , a

4
ij , b

1
ij , b

2
ij , b

3
ij , b

4
ij , c

1
ij , c

2
ij , c

3
ij , c

4
ij ∈ R and

c1ij ≤ b1ij ≤ a1ij ≤ c2ij ≤ b2ij ≤ a2ij ≤ a3ij ≤ b3ij ≤ c3ij ≤
a4ij ≤ b4ij ≤ c4ij for i = 1, 2, . . . ,m; j = 1, 2, . . . , n. The compo-
nent (a1ij , a

2
ij , a

3
ij , a

4
ij), (b

1
ij , b

2
ij , b

3
ij , b

4
ij), and (c1ij , c

2
ij , c

3
ij , c

4
ij) repre-

sent the truth membership degree, the indeterminacy membership de-
gree and the falsity membership degree, respectively, of the alternative
Ai with respect to the attribute Cj .

In a MADM problem, the rating values
d̃ij=

〈
(a1ij , a

2
ij , a

3
ij , a

4
ij), (b

1
ij , b

2
ij , b

3
ij , b

4
ij), (c

1
ij , c

2
ij , c

3
ij , c

4
ij)
〉

can
be arranged in a matrix format, we call it neutrosophic decision matrix
D=
(
d̃ij
)
m×n where,

(
d̃ij
)
m×n=

C1 C2 · · · Cn
A1 d̃11 d̃12 · · · d̃13
A2 d̃21 d̃22 · · · d̃2n
...

...
...

...
...

Am d̃m1 d̃m2 · · · d̃mn

(49)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Here, value index and ambi-
guity index of SVTrNN have been applied to solve a MADM problem
with SVTrNN by the following steps:

Step 1. Normalization of SVTrNNs based decision matrix

The decision matrix
(
d̃ij
)
m×n needs to be normalized

into
(
r̃ij
)
m×n to eliminate the effect of different physi-

cal dimensions during final decision making process, where
r̃ij=

〈
(x1ij , x

2
ij , x

3
ij , x

4
ij), (y

1
ij , y

2
ij , y

3
ij , y

4
ij), (z

1
ij , z

2
ij , z

3
ij , z

4
ij)
〉
. Linear

normalization technique has been used to normalize the decision matrix
for the benefit type attribute (B) and cost type attribute (C) by the
following formulas:

r̃ij =

〈(
x1ij

x4+j
,
x2ij

x4+j
,
x3ij

x4+j
,
x4ij

x4+j

)
,

(
y1ij

y4+j
,
y2ij

y4+j
,
y3ij

y4+j
,
y4ij

y4+j

)
,(

z1ij

z4+j
,
z2ij

z4+j
,
z3ij

z4+j
,
z4ij

z4+j

)〉
for j ∈ B;

(50)

r̃ij =

〈(
x1−j
x1ij

,
x1−j
x2ij

,
x1−j
x3ij

,
x1−j
x4ij

)
,

(
y1−j
y1ij

,
y1−j
y2ij

,
y1−j
y3ij

,
y1−j
y4ij

)
,(

z1−j
z1ij

,
z1−j
z2ij

,
z1−j
z3ij

,
z1−j
z4ij

)〉
for j ∈ C

(51)

where, x4+j =max
i

(x4ij), y4+j =max
i

(y4ij), z4+j =max
i

(z4ij),

x1−j =max
i

(x1ij), y1−j =max
i

(y1ij), and z1−j =max
i

(z1ij) for

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 2. Aggregation of the weighted rating values of alternatives

According to definition-14, the aggregated weighted rating values of the
alternatives Ai(i = 1, 2, . . . ,m) can be determined as

S̃i =

n∑
j=1

wj r̃ij , (52)

respectively. Here, the aggregated weighted rating values S̃i(i =
1, 2, . . . ,m) are considered as SVTrNNs.

Step 3. Ranking of all alternatives

According to Eq.(52) and Proposition-1, ranking of all alternatives
can be determined to the non-increasing order of SVTrNNs Ãi(i =
1, 2, . . . ,m) by using the value and ambiguity index of SVTrNN.
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7 An illustrative Example
Consider a decision making problem in which a customer intends to
buy a tablet from the set of primarily chosen five tablets Ai(i =
1, 2, 3, 4, 5).The customer takes into account of the four attributes
namely:

1. features (C1);

2. hardware specification (C2);

3. affordable price (C3);

4. customer care (C4).

Assume that the weight vector of the four attribute is
W={0.25, 0.25, 0.30, 0.20} and the evaluations of the five alter-
natives with respect to the four attributes have been considered as
SVTrNNs. Then we have a SVTrNNs based decision matrix

(
d̃ij
)
5×4

presented in Table-1.

Table 1: NTrFNs based decision matrix
C1

A1

〈
(0.5, 0.6, 0.7, 0.8), (0.1, 0.1, 0.2, 0.3), (0.1, 0.2, 0.2, 0.3)

〉
A2

〈
(0.3, 0.4, 0.5, 0.5), (0.1, 0.2, 0.2, 0.4), (0.1, 0.1, 0.2, 0.3)

〉
A3

〈
(0.3, 0.3, 0.3, 0.3), (0.2, 0.3, 0.4, 0.4), (0.6, 0.7, 0.8, 0.9)

〉
A4

〈
(0.7, 0.8, 0.8, 0.9), (0.1, 0.2, 0.3, 0.3), (0.2, 0.2, 0.2, 0.2)

〉
A5

〈
(0.1, 0.2, 0.2, 0.3), (0.2, 0.2, 0.3, 0.4), (0.6, 0.6, 0.7, 0.8)

〉
C2

A1

〈
(0.1, 0.1, 0.2, 0.3), (0.2, 0.2, 0.3, 0.4), (0.4, 0.5, 0.6, 0.7)

〉
A2

〈
(0.2, 0.3, 0.4, 0.5), (0.1, 0.1, 0.2, 0.3), (0.2, 0.2, 0.3, 0.3)

〉
A3

〈
(0.1, 0.2, 0.2, 0.3), (0.2, 0.3, 0.3, 0.4), (0.4, 0.5, 0.6, 0.6)

〉
A4

〈
(0.5, 0.6, 0.7, 0.7), (0.2, 0.2, 0.2, 0.2), (0.1, 0.1, 0.2, 0.2)

〉
A5

〈
(0.5, 0.6, 0.6, 0.7), (0.1, 0.2, 0.3, 0.4), (0.2, 0.2, 0.3, 0.4)

〉
C3

A1

〈
(0.3, 0.4, 0.4, 0.5), (0.1, 0.2, 0.2, 0.3), (0.2, 0.2, 0.3, 0.4)

〉
A2

〈
(0.2, 0.2, 0.2, 0.2), (0.1, 0.1, 0.1, 0.1), (0.6, 0.7, 0.8, 0.8)

〉
A3

〈
(0.2, 0.3, 0.4, 0.5), (0.2, 0.3, 0.3, 0.4), (0.3, 0.4, 0.4, 0.5)

〉
A4

〈
(0.3, 0.4, 0.4, 0.5), (0.1, 0.2, 0.2, 0.3), (0.1, 0.2, 0.3, 0.4)

〉
A5

〈
(0.6, 0.7, 0.8, 0.8), (0.2, 0.2, 0.3, 0.3), (0.1, 0.1, 0.2, 0.3)

〉
C4

A1

〈
(0.4, 0.5, 0.6, 0.7), (0.2, 0.2, 0.3, 0.4), (0.1, 0.2, 0.3, 0.4)

〉
A2

〈
(0.4, 0.5, 0.6, 0.6), (0.2, 0.2, 0.3, 0.3), (0.2, 0.3, 0.4, 0.4)

〉
A3

〈
(0.2, 0.2, 0.3, 0.4), (0.3, 0.3, 0.3, 0.3), (0.3, 0.4, 0.5, 0.6)

〉
A4

〈
(0.1, 0.2, 0.3, 0.4), (0.2, 0.2, 0.3, 0.3), (0.5, 0.6, 0.7, 0.8)

〉
A5

〈
(0.2, 0.3, 0.4, 0.4), (0.1, 0.2, 0.3, 0.4), (0.3, 0.4, 0.4, 0.5)

〉

Step 1. Normalization of SVTrNNs based decision matrix

Using Eq.(50), the decision matrix
(
d̃ij
)
5×4

has been normalized to the

decision matrix
(
d̃Nij

)
5×4

by considering the selected four attributes as

benefit type attributes. Then the normalized decision matrix
(
d̃Nij

)
5×4

can be obtained in Table-2.

Step 2. Aggregation of the weighted normalized rating values of alter-
natives

The weighted normalized rating values of the alternative Ai(i =
1, 2, 3, 4, 5) can be determined by using Eq.(52). Table-3 shows the
aggregated weighted normalized rating values of alternatives.

Step 3. Ranking of all alternatives

The value index and ambiguity index of NTrFNs Ãi(i = 1, 2, . . . ,m)
are determined by using Definition-17 and Proposition-1 as

Vλ,µ,ν(A1) = 0.5428λ+ 0.5542µ+ 0.4536ν;

Vλ,µ,ν(A2) = 0.6041λ+ 0.4396µ+ 0.5365ν;

Vλ,µ,ν(A3) = 0.5667λ+ 0.7708µ+ 0.5898ν;

Vλ,µ,ν(A4) = 0.5871λ+ 0.7278µ+ 0.3656ν;

Vλ,µ,ν(A5) = 0.6083λ+ 0.6354µ+ 0.4542ν;

and

Aλ,µ,ν(A1) = 0.0802λ+ 0.1417µ+ 0.0941ν

Aλ,µ,ν(A2) = 0.0847λ+ 0.0979µ+ 0.1260ν

Aλ,µ,ν(A3) = 0.0933λ+ 0.0875µ+ 0.0713ν

Aλ,µ,ν(A4) = 0.0574λ+ 0.1222µ+ 0.0677ν

Aλ,µ,ν(A5) = 0.0625λ+ 0.1729µ+ 0.0750ν.

To rank the alternatives Ai(i = 1, 2, 3, 4, 5), the value index and ambi-
guity index of each alternative have been examined for different values
for λ, µ, ν ∈ [0, 1]. The results have been shown in the Table-4. For
different values of λ, µ, ν ∈ [0, 1], the ranking order of alternatives has
been obtained as follows:

A3 � A5 � A4 � A2 � A1.

Thus A5 is the best alternative.

8 Conclusions
In the present study, we have introduced the concept of SVTrNN and de-
fined some operational rules. We have also defined value index and am-
biguity index of SVTrNN and established some of their properties. Then
we have proposed a ranking method SVTrNN by using these two indices
of SVTrNN. The proposed method has been applied to MADM problem
with SVTrNN information. The method is simple, attractive and effec-
tive to determine the ranking order of alternatives used in neutrosophic
MADM problems. The proposed concept can be easily extended to rank
single-valued triangular neutrosophic numbers. The proposed MADM
approach can be extended to solve the problem of medical diagnosis,
pattern recognition, personal selection, etc.
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Table 2: SVTrNNs based normalized decision matrix
C1

A1

〈
(0.6250, 0.7500, 0.8750, 1.000), (0.2500, 0.2500, 0.5000, 0.7500), (0.1429, 0.2857, 0.2857, 0.4286)

〉
A2

〈
(0.5000, 0.6667, 0.8333, 0.8333), (0.2500, 0.5000, 0.5000, 1.0000), (0.1250, 0.1250, 0.2500, 0.3750)

〉
A3

〈
(0.6000, 0.6000, 0.6000, 0.6000), (0.5000, 0.7500, 1.0000, 1.0000), (0.6667, 0.7778, 0.8889, 1.0000)

〉
A4

〈
(0.7778, 0.8889, 0.8889, 1.0000), (0.3333, 0.6667, 1.0000, 1.0000), (0.2500, 0.2500, 0.2500, 0.2500)

〉
A5

〈
(0.1250, 0.2500, 0.2500, 0.3750), (0.5000, 0.5000, 0.7500, 1.0000), (0.7500, 0.7500, 0.8750, 1.0000)

〉
C2

A1

〈
(0.1250, 0.1250, 0.2500, 0.3750), (0.5000, 0.5000, 0.7500, 1.0000), (0.5714, 0.7143, 0.8571, 1.0000)

〉
A2

〈
(0.3333, 0.5000, 0.6667, 0.8333), (0.2500, 0.2500, 0.5000, 0.7500), (0.2500, 0.2500, 0.3750, 0.3750)

〉
A3

〈
(0.2000, 0.4000, 0.4000, 0.6000), (0.5000, 0.7500, 0.7500, 1.0000), (0.4444, 0.5556, 0.6667, 0.6667)

〉
A4

〈
(0.5556, 0.6667, 0.7778, 0.7778), (0.6667, 0.6667, 0.6667, 0.6667), (0.1250, 0.1250, 0.2500, 0.2500)

〉
A5

〈
(0.6250, 0.7500, 0.7500, 0.8750), (0.2500, 0.5000, 0.7500, 1.0000), (0.2500, 0.2500, 0.3750, 0.5000)

〉
C3

A1

〈
(0.3750, 0.5000, 0.5000, 0.6250), (0.2500, 0.5000, 0.5000, 0.7500), (0.2857, 0.2857, 0.4286, 0.5714)

〉
A2

〈
(0.3333, 0.3333, 0.3333, 0.3333), (0.2500, 0.2500, 0.2500, 0.2500), (0.7500, 0.8750, 1.0000, 1.0000)

〉
A3

〈
(0.4000, 0.6000, 0.8000, 1.0000), (0.5000, 0.7500, 0.7500, 1.0000), (0.3333, 0.4444, 0.4444, 0.5556)

〉
A4

〈
(0.3333, 0.4444, 0.4444, 0.5556), (0.3333, 0.6667, 0.6667, 1.0000), (0.1250, 0.2500, 0.3750, 0.5000)

〉
A5

〈
(0.7500, 0.8750, 1.0000, 1.0000), (0.5000, 0.5000, 0.7500, 0.7500), (0.1250, 0.1250, 0.2500, 0.3750)

〉
C4

A1

〈
(0.5000, 0.6250, 0.7500, 0.8750), (0.5000, 0.5000, 0.7500, 1.0000), (0.1429, 0.2857, 0.4286, 0.5714)

〉
A2

〈
(0.6667, 0.8333, 1.0000, 1.0000), (0.5000, 0.5000, 0.7500, 0.7500), (0.2500, 0.3750, 0.5000, 0.5000)

〉
A3

〈
(0.4000, 0.4000, 0.6000, 0.8000), (0.7500, 0.7500, 0.7500, 0.7500), (0.3333, 0.4444, 0.5556, 0.6667)

〉
A4

〈
(0.1111, 0.2222, 0.3333, 0.4444), (0.6667, 0.6667, 1.0000, 1.0000), (0.6250, 0.7500, 0.8750, 1.0000)

〉
A5

〈
(0.2500, 0.3750, 0.5000, 0.5000), (0.2500, 0.5000, 0.7500, 1.0000), (0.3750, 0.5000, 0.5000, 0.6250)

〉

Table 3: Aggregated rating values of attributes

Alternative Aggregated rating values of Attributes
A1

〈
(0.4000, 0.4938, 0.5813, 0.7063), (0.3625, 0.4375, 0.6125, 0.8625), (0.2929, 0.3928, 0.5000, 0.6429)

〉
A2

〈
(0.4417, 0.5583, 0.6750, 0.7166), (0.3000, 0.3625, 0.4750, 0.6625), (0.3688, 0.4313, 0.5563, 0.8750)

〉
A3

〈
(0.4000, 0.5100, 0.6100, 0.7600), (0.5500, 0.7500, 0.8125, 0.9500), (0.4444, 0.5556, 0.6333, 0.7167)

〉
A4

〈
(0.4556, 0.5667, 0.6167, 0.7000), (0.4833, 0.6667, 0.8167, 0.9167), (0.2563, 0.3188, 0.4125, 0.4750)

〉
A5

〈
(0.4625, 0.5875, 0.6500, 0.7125), (0.3875, 0.5000, 0.7500, 0.9250), (0.3625, 0.3875, 0.4875, 0.6125)

〉
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Table 4: Ranking results for alternatives

Alternative Value of λ, µ, ν Value index Ambiguity index Ranking order
A1 0.5027 0.1117
A2 0.5045 0.1107
A3 λ = .10;µ = .40; 0.6599 0.0800 A3 � A5 � A4 � A2 � A1

A4 ν = .50 0.5327 0.0885
A5 0.5421 0.1129

A1 0.5125 0.1051
A2 0.5258 0.1046
A3 λ = .30;µ = .32; 0.6408 0.0831 A3 � A5 � A4 � A2 � A1

A4 ν = .38 0.5480 0.0821
A5 0.5584 0.1026

A1 0.5168 0.1053
A2 0.5267 0.1029
A3 λ = 1

3 ;µ = 1
3 ; 0.6424 0.0840 A3 � A5 � A4 � A2 � A1

A4 ν = 1
3 0.5602 0.0824

A5 0.5660 0.1035

A1 0.5283 0.1014
A2 0.5412 0.0969
A3 λ = .50;µ = .30; 0.6325 0.0872 A3 � A5 � A4 � A2 � A1

A4 ν = .20 0.5850 0.0789
A5 0.5856 0.0981

A1 0.5361 0.0939
A2 0.5645 0.0915
A3 λ = .70;µ = .20; 0.6098 0.0900 A3 � A5 � A4 � A2 � A1

A4 ν = .10 0.5931 0.0714
A5 0.5983 0.0858
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