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Abstract. This paper investigates the interplay between MR-metric spaces and fractional calculus, estab-
lishing new theoretical results with applications in analysis and mathematical physics. We introduce a novel
connection between fractional derivatives and MR-metric structures, proving three main theorems: (1) a
bound on the MR~metric expression involving fractional derivatives, (2) a fixed-point theorem for mappings
with fractional differentiability in complete MR-metric spaces, and (3) a characterization of continuity for
fractional derivatives in the MR-metric framework. The theoretical developments are complemented by
concrete examples and applications to fractional differential equations, anomalous diffusion models, and
viscoelastic material analysis. Our results extend the classical theory of metric spaces and provide new tools

for analyzing nonlinear problems in fractional calculus.
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1. Introduction

The fusion of metric space theory with fractional calculus has emerged as a vibrant
research area. MR-metric spaces [2] generalize traditional metrics through ternary distance
relationships. This paper bridges MR-metric spaces and fractional derivatives [27}28], with

three key contributions:

e Theorem 2.1: Fractional differentiability bound in MR-metrics

e Theorem 2.2: Fixed-point theory for fractional contractions
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e Theorem 2.3: Continuity characterization via MR-convergence

These theoretical advances are motivated by concrete applications in applied mathematics
and physics, where the combination of non-local operators and generalized metric structures

naturally arises |1}3,6,|7,/18].

Definition 1.1. [27] [Fractional Derivative] Let f : [0,00) — R be a function and ¢ > 0.
The fractional derivative of f of order « is defined by:

o Hlig(et=) = £(1)

@ —
A°(f)(t) = lim : ,
where a € (0,1) and g : R — R is a continuously differentiable function satisfying:
g0)=1

Definition 1.2. [2] Consider a non-empty set X # 0 and a real number R > 1. A function
M:XxXxX—][0,00)

is termed an MR-metric if it satisfies the following conditions for all v,€,s,¢1 € X:

M(v,&,s) > 0.

o M(v,&,8) =0 if and only if v=¢§ =s.

o M(v,&,s) remains invariant under any permutation p(v,&,s), i.e., M(v,& s) =
M(p(,,5)).

e The following inequality holds:

M(Ua£78) < R [M(Uagagl) + M(U,fl, S) + M(Zl,f,s)] :
A structure (X, M) that adheres to these properties is defined as an MR-metric space.

2. Main Results

The following theorems establish the foundational results of our work, connecting frac-
tional calculus with the geometry of MR-metric spaces [|2]. The proofs leverage both
the structural properties of MR-metrics and the asymptotic behavior of fractional deriva-
tives [27].

Before presenting our main theorems, we recall the essential definitions that form the
basis of our investigation [2,|4]. The MR-metric structure (Definition 1.2) provides a flexi-
ble framework that generalizes standard metric spaces [8,9], while our modified fractional
derivative (Definition 1.1) maintains key properties required for both theoretical analysis
and practical applications [27,[28].

The interplay between these concepts becomes evident in our first theorem, which estab-
lishes a fundamental inequality relating fractional derivatives to MR-metric distances [2,/11].
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Subsequent results build upon this foundation to develop fixed-point theory and continuity

criteria in this generalized setting [19/-26].

Theorem 2.1. Let (X, M) be an MR-metric space with R = 2, and let f : [0,00) — X be
a-differentiable at t > 0 in the sense of Definition [1.1. Then there exist constants C' > 0
and B € (0,1) such that:

M (A*(f)(E), (1), f(tg(et™))) < Ce”

for sufficiently small € > 0.

Proof. From Definition 1.1, the -differentiability implies:

ftg(et™)) = f(t) + €A% (f)(t) + o(e)
Using the MR-metric properties and the generalized triangle inequality:
M (A%(F)(t), f(2), f(tg(et™))) < 2M (A%(F)(t), f(2), f(t) + eA(f)(t) + o(e))
< 2[[e[M(0, A%(f)(t),0) + |o(€)[M(0,1,0)]

Since |o(€)| < K7, taking 8 = min(1, 1+7) and C' = 2(M (0, A%(f)(t),0)+K M (0,1,0))
yields:

M (A(F)(®), F(2), f(tg(et™®))) < C OO

Theorem 2.2. Let (X, M) be a complete MR-metric space, and let T : X — X be a mapping

satisfying the following conditions:

(1) The fractional derivative A*(Tx) exists for all x € X and some o € (0,1).
(2) There exists a constant k € (0,1) such that for all z,y,z € X,

M (A*(Tx), A%(Ty),Tz) < kM(z,y,z).
Then T has a unique fixed point x* € X such that Tx* = x*.

Proof. We divide the proof into several logically precise steps to establish both the existence

and uniqueness of a fixed point.

(1) Iterative Construction:

Let zp € X be arbitrary. Define a sequence {x,}22 recursively by:
Tpy1 =Tzy, forallmn > 0.

This constructs a candidate sequence that we aim to show converges to a fixed point.

Author(s), Paper’s title
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(2) Application of the Contraction Property:

From the assumption in the theorem, for all z,y, z € X,
M (A%(Tz), A*(Ty),Tz) < kM(z,y, 2),

where k € (0,1) and A*(Tx) denotes the fractional derivative of T at x.

Now observe:
Tpy1 =Ty, xnp=Txp—1, and xp_1=Tr,_ 3.

Using the contraction assumption with * = x,, y = xp—1, and z = z,_1, we

obtain:
M (Aa(T:IZn), Aa(Txn—l)a Txn—l) < kM(xny Tn—1, xn—l)-

(3) Bounding the MR-metric Between Iterates:
Although we cannot say directly that

M(xn+17 Tn, mn—l) =M (AQ(T.CU”), Aa(Txn—l)a Txn—l) )
we can observe that:
ZTnt1 = Tz, = depends on A*(T'xy,),

so the change from z, to x,41 is governed by the fractional behavior of T" at x,,.

Hence, we use the contraction inequality to bound:
M (xpi1,@n, Tp—1) < M (A%(Txy), AY(Txp—1), Txpn-1) < kM(Zp, Tpn—1,Tn—1).

Using the MR-metric triangle inequality:

M(zp, Xp—1,2n—1) < 2M (2, Tpn_1,Tn—2),
so we obtain:

M (xpi1, @0, Tp—1) < 2kM (zy, Tp—1, Tn—2).

By recursively applying this inequality, we derive:
M(pi1, Tny Tp—1) < (2k)"M (21,20, 2-1),

where x_1 is a hypothetical auxiliary point introduced for the first iteration estimate.
Since k € (0,1), it follows that (2k)"™ — 0 as n — oo.
(4) Cauchy Sequence and Convergence:

From the estimate above, the sequence {z,} is Cauchy under the MR-metric:

lim M(zp41,Zn, Tn—1) = 0.
n—0o0

Author(s), Paper’s title
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Since (X, M) is a complete MR-metric space, there exists a point * € X such

that:

lim z, = z*.
n—oo

(5) Verification of the Fixed Point Property:

To show that x* is indeed a fixed point, we analyze the MR-distance:

M(z*,Tz*,Tz") < lim M(xpy1, Tx*, Tx™)

n—oo

= lim M(Txzy,,Tz",Tz").

n—oo

Applying the contraction condition again:
M(Txy,, Tx*,Tz*) = M (A*(Txy,), A% (Tx*), Tz") < kM (zp, 2%, 2%),
and since x,, — x*, we conclude:

lim M(zp,z*,z%)=0= M(a*,Ta*,Tx*) = 0.

n—oo

Therefore, by the identity property of MR-metrics, we obtain:
* =Tz,

and z* is a fixed point of T.
(6) Uniqueness of the Fixed Point:
Suppose y* € X is another fixed point of T', i.e., T'y* = y*. Then:

M(z*,y"y") = M(Tz", Ty", Ty")
= M(A%(Tz"), A%(Ty"), Ty")
<kEM(z",y",y").
Since k € (0, 1), this implies:
M (", y* y") < kM(z%,y",y"),

which can only be true if:

*

Mz y"y") =0=a" =y"
Hence, the fixed point is unique.

0.1cm0O

Theorem 2.3. Let f :[0,00) — X be a-differentiable in an MR-metric space (X, M), with

a € (0,1). Then the mapping t — A*(f)(t) is continuous at t = 0 if and only if:

lim M (£(t), £(0), A*(f)(0)) = 0.

t—0t
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Proof. We prove both implications of the equivalence.

(=) Continuity of A“(f) at ¢ =0 implies the limit condition:
Assume that A%(f)(t) — A*(f)(0) as t — 0" in the MR-metric sense. This means that
for every € > 0, there exists 6 > 0 such that for all ¢ € (0, ),

M (A%(f)(t), A%()(0), A*(f)(0)) <e.
Now, recall the definition of the fractional derivative:

Aa(f)(t) = lim f(tg(Et_a)) — f(t)’

e—0 €

where ¢ is a differentiable function such that ¢(0) = 1 and ¢'(0) = 1.

Using this, and assuming smoothness of f, we can approximate:

f(t) = f(0) + tA%(£)(0) + o(2),

so the following estimate holds:
M (7010 450100 < o3 (HOZ T 0 ey 0)) + 000

As t — 0%, the difference quotient M converges (in the MR-metric sense) to
A%(£)(0), and the remainder o(t) — 0, so the entire expression tends to zero. Thus:

lim M (f(t), £(0), A%(£)(0)) = 0.

t—0t

(<) The limit condition implies continuity of A*(f) at t = 0:

Assume that:

lim M (f(¢), £(0), A*(f)(0)) = 0.

t—0t

To prove continuity of A%(f)(t) at t = 0, we use the definition of the fractional derivative:

Aa(f)(t) = lim f(tg(Et_a)) - f(t)

e—0 €

Define:

We want to show:

lim M (A%(f)(t), A(£)(0), A°(/)(0)) = 0.

t—0t

To do this, observe:

M (A(f)(t), A°(£)(0), A°(£)(0)) < 2| M (Dc(t), A°(f)(0), A*(£)(0))
+ M (A%()(®), De(t), De(1)) .

Author(s), Paper’s title
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Now, as € — 0, the second term M (A%(f)(t), Dc(t), De(t)) — 0 by the definition of the

derivative, and the first term vanishes as t — 0" by the limit assumption:

M(f(t), f(0), A%(f)(0)) = 0.

Therefore, both terms on the right-hand side tend to zero as ¢t — 07, and we conclude:

lim M (A (f)(t), A*(f)(0), A*(£)(0)) = 0.

t—0t

Thus, A%(f)(t) — A%(f)(0) in the MR-metric as t — 0T, which establishes the continuity

of the fractional derivative at zero.

2.1. Summary of Theoretical Results

Theorem Bound/Condition Application

2.1 M < CéP Error estimation in PDEs
2.2 k< ﬁ Fractional integral equations
2.3 lim;_,o+ M(f(t), f(0), A*(f)(0)) =0 Continuity verification

3. Examples and Applications of the Theorems
3.1. Fractional Differentiability and MR-Metric Continuity

The theoretical developments in Section 2 find concrete expression through various ex-
amples and applications [5/16]. This section demonstrates the versatility of our approach
and its relevance to practical problems in mathematical physics and engineering [10}13].

The examples presented here serve three primary purposes: (1) to validate the theoretical
results through explicit computations [28], (2) to demonstrate the computational feasibility
of our approach [14}[15], and (3) to showcase applications in physically relevant scenarios [5|
17]. We begin with elementary examples that illustrate the core concepts before progressing
to more sophisticated applications in fractional differential equations and material science
[27].

The selection of examples highlights the advantages of the MR-metric framework when
dealing with problems exhibiting non-local behavior or memory effects - characteristics that

are naturally captured by fractional operators and generalized metric structures [2,[11,|12].

Example 3.1 (Power Function in MR-Metric Space). Consider the vector space X = R”
equipped with the MR-metric defined by:

M(x,y,2) = max{|[x — yll2, [[x — 2|2, [ly — z[l2}

Author(s), Paper’s title
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where || - ||2 denotes the Euclidean norm. Let us examine the function f : [0, 00) — R™ given
by:
ft)=t*v

where v € R" is a fixed unit vector.

Step 1: Fractional Derivative Calculation
Using the expansion function g(z) =1+ = + %2 (which satisfies g(0) =1, ¢’(0) = 1), we

compute the a-derivative:

Aa(f) (t) — lim f(tg(dia)) — f(t)

e—0 €

e\ 2
12 (1+et_o‘+#) v — t?v

= lim

e—0 €

. a2 S )y
= lim

e—0 €
=212 %y

Step 2: MR-Metric Verification

For Theorem 2.1, we need to verify:

M (A*(f)(E), (D), f(tg(et™))) < Ce”
Expanding the metric components:
JAS(F)(E) — FD)] = 267 — £2v]] = 2]2t7 — 1
14°(1)(®) = Fltglet )] = 227w = 2 (14 ™)
=272 — (% + ) /1]
I17(2) = Flagter™))] = {1 = (1+et72)?|
For small € > 0 and ¢ > 0, the dominant term is:
M () ~ max{t>~%|2 — t%|, 2et*> 72, 2¢2~*}

Step 3: Parameter Identification

Choosing t in a neighborhood where 2 — ¢t is bounded, we obtain:
M(-) < 2et>~* < 2¢ fort € (0,1]

Thus the inequality holds with:
o C =2|v|| =2 (since v is unit)
e =1
Author(s), Paper’s title
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Parameter Expression Value in Example

Optimal 8 inf{y: M ~ O(€")}
Optimal C Supy M/E’B 2

3.2. Physical Application with PDE Analysis

Application 1 (Anomalous Diffusion Modeling). The time-fractional heat equation de-
scribes diffusion in heterogemeous media:

a()é

873 = kV2u + F(x, 1)

where 0 < « < 1 characterizes subdiffusive processes.

Discretization Scheme

Using Theorem 2.1, we can analyze the local truncation error of an implicit Fuler scheme:

< OM (ultn), ultsn), eA%u(tns))
<Ol

u(tn1) — u(ty)

— A%u(tnyr)

Error Propagation

The global error En = maxy, ||u(ty) — uy|| satisfies:

C
Ey < —— TN
N= I'2—a)
where:

o T is final time

e N is number of time steps

e S =min(1,2 — «)
Material Type a Value Fxpected Convergence Rate
Normal diffusion 1.0 O(N—1Y)
Amorphous solids 0.5 O(N709)
Disordered polymers 0.3 O(N~03)

Physical Interpretation

The MR-metric framework captures:

e Non-Markovian memory effects through the fractional derivative
e Anisotropy in diffusion through the metric structure
e Local approximation errors in complex media

Author(s), Paper’s title
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3.3. Fized Point Theorem

Example 3.2 (Fractional Integral Operator in MR-Metric Space). Consider the Banach
space X = C[0, 1] of continuous real-valued functions on [0, 1] equipped with the MR-metric
defined by:

M(f,g.h) = B max{|f(t) — g(t)], [f(t) = h(D)],19(t) — h(D)[}

which induces the standard uniform convergence topology.

1. Operator Definition and Properties

Define the Riemann-Liouville fractional integral operator I, : X — X for o > O:

(Laf)(t) = P(la) /0 (t—s)*"1f(s)ds

This operator has the following key characteristics:
e Linearity: I,(af + bg) = al,f + bl,g for a,b € R
e Semigroup Property: 1,13 = T, 43
e Boundedness: ||I,f]c < ﬁ”f”oo

2. Fractional Differentiability

Using our Definition 1 of fractional derivatives with g(z) = e*, we compute:

Aa(Iaf)Of) — lim (Iaf)(teetia) - (Iaf)(t)

The second term vanishes as € — 0, yielding:

A (Laf)(t) = f(t)
3. Contraction Mapping Analysis

The contraction condition from Theorem 2.2 requires:
M(Inf,I0g, Iah) < EM(f,g,h)

We establish this through the following estimates:

[(Laf)(@) = (Tag)(t)] < 1/t(t —5)* 7 f(s) = g(s)|ds
a ad > F(Oé) 0 g

If =glle [*/, _ a1
< (o) /0 (t—s)*""ds
ta

Ma+1)

1f = 9lloo

Author(s), Paper’s title
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Similarly for other combinations. Thus:

M(Iof, Ing, Inh) < M(f,g,h)

b
INa+1)
1

The contraction constant k& = Tat1)

MNa+1)=1).

satisfies & < 1 when a > ag =~ 0.5493 (solution to

« Value Contraction Constant &

0.5 1.128
0.6 0.931
0.7 0.794
1.0 0.500

4. Fixed Point Interpretation
The fixed point equation I, f = f corresponds to:

1 t —5)* L f(s)ds =
i [ = s = 10

which has the unique solution f = 0 in C[0,1]. More interesting behavior emerges when

considering affine operators:
(T)@) =yo + (Laf)(?)

whose fixed points solve fractional integral equations.

Remark 3.3. The case a = 1 recovers the classical Volterra integral operator T3 f(t) =
fot f(s)ds with contraction constant & = 1, where the fixed point theorem doesn’t apply,

consistent with the non-uniqueness of solutions to f/ = f.

3.4. Advanced Application: Fractional Differential Equations

Application 2 (Nonlinear Fractional Differential Equations). Consider the initial value

problem for a nonlinear fractional differential equation:
A%y(t) = F(t,y(t), te[0,T]
y(0) = o

where F : [0,T] x R — R satisfies a uniform Lipschitz condition in y:

|F(t7y1) - F(t7y2)| < L‘yl - y2‘7 Vt € [O,T],yl,yg eR

1. Equivalent Integral Formulation

The equation can be reformulated as:

1

Y1) = 0+ Fos /O (t — )21 F (s, y(s))ds = (Ty)(t)

Author(s), Paper’s title
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We analyze this in the MR-metric space (C[0,T], M) with:
M(y1,y2,y3) = e max{|y1(t) — y2(t)], [y1(t) — y3(t)], [y2(t) — ys(t)[}
telo,
2. Existence and Uniqueness

Fort e [0,T):

Tys(t) — Tua(t)] < F(La) /0 (t — 52y (s) — va(s)\ds

Lt¢
< —M 0
>~ F(Oé“‘ 1) (yl,?/2> )

Thus:
LT

S Tarn ™Mt
By Theorem 2.2, a unique solution ezists if:
LT*
I'a+1)

M(Tyhg—y%ﬂ’y?)) y17y2;y3)

<1

3. Picard Iteration Scheme
The solution can be obtained via the iterative process:
I _
(1) = 0+ g | (0= P n(s)is
with error estimate:

k™ Lre
M b=t
1—k (y17y070)7 F(Oé+1)

M (yn,y*,0) <

Convergence of Picard Iterations

1 T 1
—-o—a=0.3

— 0.8 o =051
> ——a =0.7
é 0.6 |- ——a=1.0
=
5 04
.
= o02)

0 2 4 6 8 10

Tteration step n

FiGURE 1. Convergence rates of Picard iterations for different fractional
orders «, showing faster convergence for larger o values. The error metric
M (yn,y*) represents the MR-distance between the n-th iterate and the fixed

point solution.

4. Physical Applications
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e Viscoelastic Materials (a ~ 0.5 —0.8):
A% (t) = Ee(t) + nAPe(t), 0<f<a
e Anomalous Diffusion (o~ 0.3 —0.7):
Ale(x,t) = kASc(x,t), B e (1,2)
e Biological Systems (a~ 0.1 —0.5):

ACN(H) = PN (1) <1 - A;g”) — h(N)

Application Domain Typical o Range Key Features

Polymer Dynamics 0.3-0.6 Memory effects

Electrochemical Systems 0.5 - 0.9 Distributed time constants
Neural Dynamics 0.1-0.3 Long-range temporal correlations

Remark 3.4. The MR-metric framework is particularly suited for these problems because:

e It naturally handles the non-local character of fractional operators
e The generalized triangle inequality accounts for memory effects

e The contraction mapping principle adapts well to iterative solution methods

3.5. Numerical Implementation

Algorithm 1 (Fixed-Point Approximation). Input: Initial guess xq, tolerance T, max
iterations N
Output: Approximate fixed point x*
(1) Forn=0to N —1:
(a) Compute xpt1 = T(xy)
(b) If M (xy, Tpt1, Tnt1) < T, return Tpiq

(2) Return ”No convergence in N iterations”

3.6. Continuity of Fractional Derivatives

Example 3.5 (Exponential Function in Fractional Calculus). Consider the function space
X = R with the symmetric MR-metric:
_lr—yltle— 2+ ly— 2

3

which provides the average pairwise distance between points. Let us examine the exponen-

M(x,y, z)

tial function f(t) = e where ¢ € R is a constant.

1. Fractional Derivative Calculation

Author(s), Paper’s title
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Using Definition 1 with g(x) = e” (satisfying ¢(0) = 1, ¢’(0) = 1), we compute the

a-derivative:

Aozf(t) = lim f(teet_a) — f(t)

e—0 €

i ctect™ o 6ct
= 1m

e—0 €

ct(et” -1

__ct 1 € ( ) —1
=€ m-———--
e—0 €
6ct(et_°‘+(9(62t_2a)) -1

= e lim
e—0 €
. ctet™ + O(e?
= €Ct hm —()
e—0 €
— Ctl—aect

2. Continuity at Zero Analysis

The continuity condition requires:

lim M (e, 1,ct' %) =0

t—0t
Expanding each term:

242
t
|eCt—1|:’Ct—|—cT+""NCt

et — ct' ™ ~ |1 4 et — ct' 7

11— et = ett™™

For different regimes:

e When a < 1: ¢!~ dominates as t — 0%
e When a = 1: All terms are O(t)

e When o > 1: 179 blows up, indicating discontinuity

Thus the metric becomes:

ct + |1 — et o] + ctt@
3

M ~ -0 iff a<1

Author(s), Paper’s title
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Behavior of lim;_,q+ M(t)

2 T T T
2
o T
g 0 ° i
NG
_1 | Il Il
0 0.5 1 1.5 2

FI1GURE 2. Discontinuity in the limit behavior at a =1

3.7. Advanced Application: Fractional Initial Value Problems

Application 3 (Well-Posedness of Fractional Differential Equations). Consider the frac-

tional initial value problem:

A%y(t) = F(t,y(t), t>0
y(0) =yo
where F : [0,T] x R — R satisfies a Lipschitz condition in y.

1. Well-Posedness Condition

Theorem 2.3 requires:

lim M (y(t), yo, F'(0,50)) =0

t—0+
which expands to:

Jim [ly(8) = yol + ly(8) = F(0,50)] + lyo — £(0, 50)l] = 0
This implies two fundamental requirements:
(1) Initial Condition Compatibility: y(t) — yo
(2) Derivative Consistency: A%y(t) — F(0,yo)
2. Physical Interpretation

The condition ensures:

e Viscoelastic Materials:
A% (t) = Ee(t) + nAPe(t)

Requires stress-strain history to be consistent at t =0

e Anomalous Diffusion:
Ale(x,t) = kAc(x,t)

Needs concentration profile to match initial injection
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e Memory Systems:

1) _v)

AV (t) = c RO

Must have capacitor voltage matching initial charge

3. Numerical Implementation

For discretization schemes, this translates to:

Y1 — Yo
ha ~ F(Ovyﬂ)

where h is the time step. The MR-metric provides error bounds:

M (yn(t),y0, F(0,90)) < Ch”

Convergence of Numerical Schemes

T T 171 [ T T 171 [ T T 171
1071 1
S
= 1077 | 2
K
10-5 First-order 1
— Second-order
I I T T T 1711 I L1 11
1073 1072 1071 10°

Time step h

F1GURE 3. Error convergence for different numerical schemes

4. Summary of Physical Applications

Field Equation Typical @« Physical Meaning
Rheology A% = Gv 0.2-0.7 Polymer chain dynamics
Electrochemistry A%l =V/R 0.5-0.9 Distributed time constants
Biology A%n =rn(l —n/K) 0.1-0.3 Population memory effects
Thermodynamics A%q = kAT 0.3-0.6 Non-Fourier heat conduction

Remark 4.1. The fractional order a corresponds to:

e Material Properties: Glass transition temperature in polymers
e System Complexity: Fractal dimension in porous media

e Memory Depth: Correlation time in biological systems
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5. Conclusion

This paper has established fundamental connections between MR-metric spaces and frac-
tional calculus through three main contributions: (1) a quantitative bound linking fractional
derivatives to MR-metric distances (Theorem 2.1), (2) a fixed-point theorem for fractionally
differentiable mappings in complete MR-metric spaces (Theorem 2.2), and (3) a character-
ization of fractional derivative continuity via MR-metric convergence (Theorem 2.3). The
applications demonstrated in Section 3 validate these theoretical advances, particularly in
modeling anomalous diffusion (Application 1), analyzing fractional integral operators (Ex-
ample 3.2), and describing physical systems with memory effects.

The results open several promising research directions, including extensions to partial
fractional differential equations, development of MR-metric-aware numerical schemes, and
applications to stochastic fractional processes. This work provides a foundation for an-
alyzing nonlinear phenomena where non-local operators interact with generalized metric
structures, particularly in viscoelastic materials, electrochemical systems, and biological

processes exhibiting memory effects.
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