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ABSTRACT 

Vibration control is one of the most critical aspects in designing safe and comfortable 

vehicle suspension systems. Traditional methods such as PID, fuzzy logic, or adaptive 

control face limitations when dealing with uncertain or incomplete data about road 

conditions or vehicle dynamics. In this paper, we propose a novel mathematical 

framework based on generalized open sets in neutrosophic soft bitopological spaces to 

model and control suspension vibrations under uncertainty. By using two separate 

neutrosophic topologies, the system's response is evaluated from dual perspectives, 

capturing both predictable and unpredictable behaviors. Additionally, we incorporate 

Quadripartitioned Single-Valued Neutrosophic (QSVN) representations to quantify truth, 

contradiction, ignorance, and falsity of vibration states. This dual-layered structure allows 

for more precise, flexible, and intelligent decision-making for suspension control. A 

complete case study using a quarter-car model demonstrates how the proposed 

framework improves system robustness, especially in environments with noisy or 

conflicting sensor data. 
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1. Introduction 
The suspension system of a vehicle plays a critical role in ensuring passenger comfort, 

vehicle stability, and safety by mitigating the impact of road irregularities. When a vehicle 

encounters uneven surfaces, such as potholes or bumps, the suspension system absorbs 

shocks and minimizes vibrations to maintain a smooth ride [1]. Over the years, various 

control strategies, including classical proportional-integral-derivative (PID) control, fuzzy 

logic systems, and adaptive control techniques, have been developed to optimize 

suspension performance [2]. These methods have proven effective under controlled 

conditions where precise and complete data about road surfaces, vehicle dynamics, and 

system parameters are available. However, real-world driving scenarios often introduce 
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uncertainties, such as incomplete sensor data, conflicting measurements, or unpredictable 

changes in vehicle load, which challenge the effectiveness of traditional control 

approaches [3]. 

 

In practical settings, the information available to suspension control systems is frequently 

uncertain, incomplete, or contradictory. For instance, sensors may produce noisy or 

conflicting signals about road roughness, or the system may fail to account for sudden 

changes in vehicle weight due to additional passengers or cargo. Conventional models, 

designed to rely on precise and deterministic inputs, struggle to handle such ambiguities, 

often leading to suboptimal performance or instability [4]. To address these challenges, 

advanced mathematical frameworks capable of modeling uncertainty and ambiguity are 

needed to enhance the robustness and adaptability of suspension control systems. 

 

This study proposes a novel approach to vibration control in vehicle suspension systems 

using neutrosophic soft bitopological spaces. Unlike traditional models, this framework 

is designed to handle uncertainty by analyzing suspension behavior from two 

independent topological perspectives simultaneously. These perspectives can represent, 

for example, the system’s response under normal road conditions and its behavior during 

unexpected events, such as hitting a pothole or experiencing a sudden load change [5]. By 

employing generalized open sets within this framework, we define flexible boundaries 

for acceptable vibration levels, allowing the system to quantify the degree of certainty or 

uncertainty in its responses. 

 

To further enhance the model’s ability to manage complex uncertainties, we incorporate 

QSVN sets. These sets assign four distinct values to each system state: truth, 

indeterminacy, contradiction, and falsity. This quadripartitioned approach provides a 

more nuanced representation of the system’s behavior compared to traditional binary or 

fuzzy logic models, which typically rely on single or dual-valued assessments [6]. By 

capturing multiple dimensions of uncertainty, QSVN sets enable the suspension system 

to evaluate ambiguous scenarios with greater precision and reliability. 

 

The primary objective of this research is to develop a robust vibration control model for a 

quarter-car suspension system that performs effectively under conditions of vague, 

inconsistent, or incomplete data. Through detailed mathematical formulations and 

simulations, we demonstrate how the proposed model enhances the system’s ability to 

respond intelligently to real-world uncertainties. The study also includes comprehensive 

calculations to validate the model’s performance, showcasing its potential to improve ride 

comfort and vehicle stability in challenging driving conditions. 

 

This introduction sets the stage for the subsequent sections, which elaborate on the 

theoretical foundations of neutrosophic soft bitopological spaces, the implementation of 

QSVN sets, and the application of the proposed model to a quarter-car suspension system. 
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By addressing the limitations of existing control strategies and introducing a novel 

framework for handling uncertainty, this research contributes to the advancement of 

intelligent suspension systems for modern vehicles. 

 

2. Mathematical Preliminaries 

In this section, we introduce the mathematical concepts needed to build our suspension 

vibration control model. These include neutrosophic sets, neutrosophic soft sets, 

bitopological spaces, and the QSVN model. Each concept is explained clearly and 

connected to how we use it later in the paper. 

 

2.1 Neutrosophic Set 

A neutrosophic set is a mathematical way to describe uncertainty. Unlike classical sets, 

where each element is either fully inside or outside the set, a neutrosophic set allows 

partial membership in three dimensions: 

Truth (T): How true it is that an element belongs to the set. 

Indeterminacy (I): How uncertain or unknown the membership is. 

Falsity (F): How false it is that the element belongs. 

Each value is between 0 and 1, and for any element x, we have: 
0 ≤ 𝑇(𝑥) + 𝐼(𝑥) + 𝐹(𝑥) ≤ 3 

Example: Suppose a road sensor reads that a shock absorber is working "acceptably". We 

can describe this using: 
𝑇(𝑥) = 0.7, 𝐼(𝑥) = 0.2, 𝐹(𝑥) = 0.1 

This means we believe it is mostly acceptable, but with some uncertainty and a small 

chance it's unacceptable. 

 

2.2 Neutrosophic Soft Set 

A neutrosophic soft set extends the neutrosophic set by adding parameters. Each 

parameter may represent a system feature like load, temperature, or road condition. 

Formally, a neutrosophic soft set over a universe 𝑋 and set of parameters 𝐸 is written as: 
(𝐻, 𝐸) = {(𝑒, {⟨𝑥, 𝑇(𝑥), 𝐼(𝑥), 𝐹(𝑥)⟩: 𝑥 ∈ 𝑋}): 𝑒 ∈ 𝐸} 

This allows each system component to be evaluated under several different conditions. 

 

2.3 Neutrosophic Soft Topological Space 

A topology is a collection of sets that defines how closeness or continuity is handled in a 

space. 

A neutrosophic soft topology is a set of neutrosophic soft sets that follow three rules: 

1. The empty set and the full set are included. 

2. The union of any number of sets in the topology is also in the topology. 

3. The intersection of any two sets in the topology is also in the topology. 

This structure helps define what system behaviors are "acceptable" or "near-optimal" 

under uncertainty. 

 

2.4 Bitopological Spaces 



Neutrosophic Sets and Systems, Vol. 91, 2025                                                                        50 

 

__________________________________________________________________________ 

Wei Su, Linqi Chen, Li Wang, Neutrosophic Bitopological Modeling for Vibration Control Performance in Vehicle 

Suspension Systems under Uncertainty 

A bitopological space uses two separate topologies on the same set. In our case, this means 

two ways to analyze the vehicle suspension: 

𝜏1 : One type of road condition (e.g., smooth or known). 

𝜏2 : Another type (e.g., rough or uncertain). 

This allows the system to model its behavior from two different views at the same time. 

 

2.5 Neutrosophic Soft Bitopological Space 

We define a neutrosophic soft bitopological space as: 
(𝑋, 𝐸, 𝜏1, 𝜏2) 

Where: 

𝑋 : The universe (e.g., system states or response values). 

𝐸 : The set of parameters (like load, speed, damping). 

𝜏1, 𝜏2 : Two different neutrosophic soft topologies. 

This structure allows us to describe suspension behavior with dual uncertainty layers, 

reflecting real road conditions better than a single-view model. 

 

2.6 Generalized Open Sets 

In this model, a generalized open set is not fully open or closed. It describes vibration 

levels that are: 

Acceptable under 𝜏1 

Possibly uncertain under 𝜏2 

Such sets let us define vibration thresholds that are flexible, rather than strict. 

Example: 

Under normal driving, a vibration amplitude of 0.3 is acceptable. 

But under unknown load, 0.3 might be too high or too low. 

We represent such mixed acceptability using generalized open sets in the bitopological 

space. 

 

2.7 QSVN Numbers   

To make the model more accurate, we use QSVN numbers, which add a fourth 

dimension: 

𝑇 : Truth 

𝐶 : Contradiction 

𝑈 : Ignorance 

F: Falsity 

Each QSVN number is written as: 
𝜔 = ⟨𝑇, 𝐶, 𝑈, 𝐹⟩, 0 ≤ 𝑇 + 𝐶 + 𝑈 + 𝐹 ≤ 4 

Example: 

A vibration reading may be evaluated as: 
𝜔 = ⟨0.6,0.1,0.2,0.1⟩ 

This means we are fairly confident the vibration is safe, with low contradiction and 

moderate uncertainty. 
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2.8 Aggregation with Prioritized Dombi Operators 

To combine multiple QSVN values from sensors or different parameters, we use a 

prioritized Dombi operator. This operator considers both the weight and order of 

importance of the inputs. 

Given several QSVN values 𝜔1, 𝜔2, … , 𝜔𝑛, and their importance levels, the operator 

merges them into one final QSVN value. This helps the suspension controller decide the 

best action under complex, uncertain data. 

 

All the concepts above allow us to: 

1. Model vibration states with partial truth, uncertainty, and even contradiction. 

2. Analyze those states under two different scenarios at once (via 𝜏1 and 𝜏2 ). 

3. Decide whether a vibration level is acceptable, risky, or unknown - not just yes/no. 

4. Make intelligent decisions even when sensors disagree or data is missing. 

These tools will form the foundation of our vibration control method in the next 

sections. 

 

3. Neutrosophic Bitopological Modeling of Suspension States 

In this section, we build a complete neutrosophic soft bitopological model to represent the 

dynamic behavior of a vehicle suspension system under road-induced vibrations. This 

model integrates the concepts introduced earlier, especially neutrosophic soft sets and 

bitopologies, and maps them onto a simplified but widely accepted physical model: the 

quarter-car suspension system. 

 

3.1 The Quarter-Car Model 

The quarter-car model is a simplified mechanical system used to describe how one wheel 

of a car interacts with the road through the suspension. 

It includes: 

Sprung mass 𝑚𝑠 : The portion of the car's body supported by the suspension. 

Unsprung mass 𝑚𝑢 : The mass of the wheel and axle. 

Suspension spring stiffness 𝑘𝑠 : Represents the suspension spring force. 

Tire stiffness 𝑘𝑡 : Represents the tire's ability to deform and return to shape. 

Suspension damping coefficient 𝑐𝑠 : Represents shock absorber resistance. 

Let: 

𝑧𝑠(𝑡) : Vertical displacement of sprung mass. 

𝑧𝑢(𝑡) : Vertical displacement of unsprung mass. 

 𝑧𝑟(𝑡) : Road input (bump height). 

The equations of motion for the system are: 
𝑚𝑠𝑧̈𝑠 = −𝑘𝑠(𝑧𝑠 − 𝑧𝑢) − 𝑐𝑠(𝑧̇𝑠 − 𝑧̇𝑢)

𝑚𝑢𝑧̈𝑢 = 𝑘𝑠(𝑧𝑠 − 𝑧𝑢) + 𝑐𝑠(𝑧̇𝑠 − 𝑧̇𝑢) − 𝑘𝑡(𝑧𝑢 − 𝑧𝑟)
 

These equations describe how the car body and the wheel move in response to road 

irregularities. 
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3.2 Uncertainty in Suspension Behavior 

In real conditions, parameters like 𝑘𝑠, 𝑐𝑠, and even 𝑚𝑠 can vary due to: 

a. Load changes (number of passengers). 

b. Road unpredictability (wet, rough, or icy). 

c. Wear and tear in the damper. 

Sensors measuring these parameters may produce imprecise or contradictory readings. A 

classical model cannot represent this well, but a neutrosophic soft bitopological model 

can. 

 

3.3 Construction of the Neutrosophic Soft Bitopological Model 

Let us define the model as: 
(𝑋, 𝐸, 𝜏1, 𝜏2) 

𝑋 : Set of system states. Each state includes variables like relative displacement, velocity, 

or acceleration. 

𝐸 : Set of parameters, e.g., {sprung mass, damping, road input}. 

𝜏1 : Neutrosophic soft topology for nominal (normal) operating conditions. 

𝜏2 : Neutrosophic soft topology for uncertain (non-ideal) conditions. 

 

3.4 Modeling a Sample Vibration State as Neutrosophic Soft Set 

Let's define a state 𝑥 ∈ 𝑋 representing a snapshot of the system: 
𝑥 = (Δ𝑧, Δ𝑧̇) = (𝑧𝑠 − 𝑧𝑢, 𝑧̇𝑠 − 𝑧̇𝑢) 

i.e., the relative displacement and velocity between the body and the wheel. 

Now, for a parameter 𝑒 = "damping" ∈ 𝐸, suppose sensor readings give the following 

neutrosophic values: 
𝑇𝑒(𝑥) = 0.7, 𝐼𝑒(𝑥) = 0.2, 𝐹𝑒(𝑥) = 0.1 

This means that, under the given damping coefficient, there is: 

70% belief that the vibration is within acceptable limits. 

20% uncertainty. 

10% belief it's not acceptable. 

This forms part of a neutrosophic soft set (H, E). 

 

3.5 Dual Topological Analysis of the State 

We now define: 

𝜏1 : Contains sets describing vibration acceptability under known/ideal parameters. 

𝜏2 : Contains sets under unknown or fluctuating conditions (e.g., sensor failure, icy 

roads). 

Suppose: 

Under 𝜏1, the vibration state 𝑥 belongs to a generalized open set 𝐺1 with: 
𝑇1(𝑥) = 0.9, 𝐼1(𝑥) = 0.05, 𝐹1(𝑥) = 0.05 

Under 𝜏2, the same state belongs to 𝐺2 with: 
𝑇2(𝑥) = 0.5, 𝐼2(𝑥) = 0.3, 𝐹2(𝑥) = 0.2 

We now intersect these two neutrosophic evaluations to get the dual-topology response: 
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𝑇12(𝑥) = min(𝑇1(𝑥), 𝑇2(𝑥)) = 0.5

𝐼12(𝑥) = max(𝐼1(𝑥), 𝐼2(𝑥)) = 0.3

𝐹12(𝑥) = max(𝐹1(𝑥), 𝐹2(𝑥)) = 0.2

 

This new triple (0.5,0.3,0.2) reflects combined certainty and uncertainty about the 

vibration being within limits. 

 

3.6 Classification using Generalized Open Sets 

Let the threshold for acceptable vibration state be modeled as a generalized open set 𝐴 ⊂

𝑋, defined as: 
𝐴 = {𝑥 ∈ 𝑋: 𝑇12(𝑥) ≥ 0.6, 𝐹12(𝑥) ≤ 0.2} 

In our example: 

𝑇12(𝑥) = 0.5 < 0.6 : Not fully acceptable. 

𝐹12(𝑥) = 0.2 : Borderline. 

So this state is near-acceptable but uncertain, and a damping adjustment might be 

needed. 

 

3.7 Numerical  Example for QSVN Representation 

We now express the same vibration state using a QSVN number: 
𝜔 = ⟨𝑇, 𝐶, 𝑈, 𝐹⟩ = ⟨0.5,0.1,0.2,0.2⟩ 

We calculate the score function 𝑆(𝜔) and accuracy functions: 

𝑆(𝜔) =
3 + 𝑇 + 𝐶 − 𝑈 − 𝐹

4
=

3 + 0.5 + 0.1 − 0.2 − 0.2

4
=

3.2

4
= 0.8

𝐴∞(𝜔) =
𝑇 + 𝐶 − 𝑈 − 𝐹

2
=

0.5 + 0.1 − 0.2 − 0.2

2
=

0.2

2
= 0.1

 

Now compare this to another state: 

𝜔′ = ⟨0.6,0.2,0.3,0.1⟩ ⇒ 𝑆(𝜔′) =
3 + 0.6 + 0.2 − 0.3 − 0.1

4
= 0.85 

We conclude that the second state 𝜔′ is preferable under the QSVN model. 

 

4. Vibration Control Framework Using Generalized Neutrosophic Open Sets 

This section presents the full control framework for reducing vibrations in vehicle 

suspension systems under uncertain conditions. The core idea is to use the neutrosophic 

bitopological analysis of the system state to guide how damping or stiffness should be 

adjusted. The system reacts not only to how strong the vibration is but also to how certain, 

uncertain, or contradictory the sensor information may be. 

 

4.1 Problem Description 

The main goal is to maintain ride comfort and road handling by keeping the relative 

displacement and velocity of the suspension system within acceptable bounds. 

Let: 

𝑥 ∈ 𝑋 : A system state (e.g., vibration profile). 

𝐴 ⊂ 𝑋 : A generalized neutrosophic soft open set representing acceptable vibration 

states. 

𝜔𝑥 = ⟨𝑇𝑥 , 𝐶𝑥 , 𝑈𝑥 , 𝐹𝑥⟩ : QSVN representation of state 𝑥. 
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The control objective is: 

Adjust suspension parameters such that 𝑥 ∈ 𝐴 as often as possible, despite uncertainty. 

 

4.2 Decision Rule Using Generalized Neutrosophic Membership 

We define the acceptance condition for a vibration state 𝑥 as: 
𝑇𝑥 ≥ 𝑇min, 𝐹𝑥 ≤ 𝐹max, 𝐶𝑥 + 𝑈𝑥 ≤ 𝛿 

Where: 

𝑇min  : Minimum truth level required. 

𝐹max  : Maximum falsity allowed. 

𝛿 : Maximum total uncertainty (contradiction + ignorance). These thresholds are tuned 

based on driving mode. For example: 

Driving Mode 𝑇min  𝐹max  𝛿 

Comfort 0.7 0.2 0.3 

Sport 0.6 0.3 0.4 

 

4.3 Control Action Based on Classification 

Based on the evaluation of 𝜔𝑥, we define three zones: 

Safe Zone (Green): 
𝑇𝑥 ≥ 𝑇min , 𝐹𝑥 ≤ 𝐹max  

Action: Maintain current damping. 

Uncertain Zone (Yellow): 

𝑇𝑥 ∈ [0.5, 𝑇min ), or 𝐶𝑥 + 𝑈𝑥 > 𝛿 

Action: Increase damping 𝑐𝑠 or apply adaptive filtering. 

Risk Zone (Red): 
𝐹𝑥 > 𝐹max , 𝑇𝑥 < 0.5 

Action: Maximize damping force, alert vehicle system. 

 

4.4 Control Algorithm 

Step 1: Measure 

Use onboard sensors to obtain data 𝑧𝑠, 𝑧𝑢, 𝑧̇𝑠, 𝑧̇𝑢, 𝑧𝑟. 

Step 2: Compute State 

Calculate relative displacement Δ𝑧 = 𝑧𝑠 − 𝑧𝑢, and velocity Δ𝑧̇ = 𝑧̇𝑠 − 𝑧̇𝑢. 

Step 3: Evaluate QSVN 

Use sensor fusion and historical data to assign: 
𝜔𝑥 = ⟨𝑇𝑥 , 𝐶𝑥 , 𝑈𝑥 , 𝐹𝑥⟩ 

Step 4: Compare with Thresholds 

Check membership in the generalized open set 𝐴. 

Step 5: Decide Action 

Use table below to apply control: 

Zone Action 
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Green No change 

Yellow Increase 𝒄𝒔 gradually 

Red Set 𝒄𝒔 to max, notify ECU 

 

Suppose a vibration state 𝑥 is observed, and the QSVN values are: 
𝜔𝑥 = ⟨0.58,0.15,0.25,0.22⟩ 

Assume comfort mode thresholds: 
𝑇min = 0.7, 𝐹max = 0.2, 𝛿 = 0.3 

Evaluate: 

𝑇𝑥 = 0.58 < 0.7 → not confident 

𝐹𝑥 = 0.22 > 0.2 → too high 

𝐶𝑥 + 𝑈𝑥 = 0.4 > 0.3 → uncertain 

Conclusion: The state is in the Red Zone. 

Action: 

Increase damping coefficient 𝑐𝑠 to maximum. 

Alert the vehicle's central controller. 

4.6 Neutrosophic Topological Justification 

In topological terms: 

The state 𝑥 ∉ 𝐴, where 𝐴 is a generalized neutrosophic open set. 

Thus, 𝑥 lies outside the system's "safe operating zone". 

Under 𝜏1, it may appear near acceptable. 

But under 𝜏2, uncertainty dominates → action is needed. 

This dual analysis captures hidden risk that a single evaluation would miss. 

 

5. Case Study  

To demonstrate the effectiveness of the proposed vibration control method, we apply it to 

a simulated quarter-car model under various road conditions. The goal is to observe how 

the system responds to uncertain inputs and whether the neutrosophic bitopological 

framework can maintain vibration levels within acceptable limits. 

  

Table 1 describes the physical parameters of a quarter-car suspension model. These values 

are typical for a mid-sized passenger vehicle and are used to simulate vertical vibration 

dynamics. 

  

Table 1. Quarter-Car Physical Parameters 

Sprung mass msm_sms 

Unsprung mass mum_umu 

Suspension stiffness ksk_sks 

Tire stiffness ktk_tkt 

Nominal damping csc_scs 
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5.1 Road Profile Input 

We consider a sinusoidal bump simulating an uneven road: 
𝑧𝜏(𝑡) = 𝐴 ⋅ sin (2𝜋𝑓𝑡), 𝐴 = 0.02 m, 𝑓 = 1.5 Hz 

The simulation runs for 5 seconds, using a sampling time of 0.01 s . 

  

From the system's differential equations (see Section 3), we compute: 
Δ𝑧 = 𝑧𝑠 − 𝑧𝑢, Δ𝑧̇ = 𝑧̇𝑠 − 𝑧̇𝑢 

We take three time points to demonstrate system behavior: 𝑡 = 1 s, 2 s, and 3 s . At each 

point, we record the relative displacement and velocity, and then evaluate the state using 

QSVN numbers. Table 2 shows the suspension system's relative displacement and 

velocity between sprung and unsprung masses at three key moments. These values 

represent the vibration state of the system under continuous road disturbance. 

 

Table 2. System Vibration States at Selected Time Points 

Time (s) Relative Displacement 𝚫𝒛( 𝐦) Relative Velocity 𝚫𝒛̇( 𝐦/𝐬) 

1.0 0.015 0.18 

2.0 0.028 0.32 

3.0 0.010 0.10 

 

5.2 QSVN Evaluation of Vibration States 

Each state is evaluated as a QSVN number 𝜔 = ⟨𝑇, 𝐶, 𝑈, 𝐹⟩, based on damping conditions, 

prior data, and sensor reliability. Table 3 presents the QSVN evaluation for each system 

state. The truth, contradiction, uncertainty, and falsity values reflect the system's 

confidence level in classifying the vibration as acceptable or not. 

 

Table 3. QSVN Representation of Vibration States | 

Time (s) 𝑻 C 𝑼 F 

1.0 0.70 0.10 0.10 0.10 

2.0 0.45 0.20 0.20 0.15 

3.0 0.80 0.05 0.05 0.10 

 

5.3 Score and Accuracy Calculation 

We now calculate the score function 𝑆(𝜔) and accuracy function 𝐴∞(𝜔) for each state, 

using the formulas: 

𝑆(𝜔) =
3 + 𝑇 + 𝐶 − 𝑈 − 𝐹

4
 ; 𝐴∞(𝜔) =

𝑇 + 𝐶 − 𝑈 − 𝐹

2
 

Table 4 contains the calculated score and accuracy values for each vibration state. A 

higher score indicates a safer and more acceptable vibration level. The accuracy function 

shows the net reliability of the classification. 

 

Table 4. Score and Accuracy of Vibration States  

Time (s) 𝑺(𝝎) 𝑨∞(𝝎) 
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1.0 0.925 0.35 

2.0 0.825 0.15 

3.0 0.975 0.45 

 

5.4 Control Zone Classification 

Using the control rule (Section 4.3) for comfort mode: 
𝑇min = 0.7 
𝐹max = 0.2 
𝐶 + 𝑈 ≤ 0.3 

Table 5 shows which zone each state belongs to and the corresponding control action. 

The state at 2.0 seconds is slightly uncertain and falls into the Yellow zone, triggering a 

damping adjustment. 

 

Table 5. Zone Classification and Control Actions 

Time (s) Zone Action 

1.0 Green Maintain damping 

2.0 Yellow Slightly increase damping 

3.0 Green Maintain damping 

 

At 1.0 s and 3.0 s, the system shows acceptable vibration levels with high truth values and 

low falsity. No action is required. At 2.0 s, the truth drops and contradiction rises, 

signaling risk. The system increases damping slightly to restore control. 

The score function helps rank the states numerically, while the QSVN breakdown explains 

why certain states are uncertain or contradictory. The proposed model provides more 

nuanced control than traditional PID, which would react only to numeric errors. 

 

6. Results and Discussion 

The simulation results show that the proposed control method successfully adjusts 

suspension response based on the quality of available data. Unlike traditional models, this 

approach does not rely only on exact values. Instead, it considers how true, uncertain, or 

contradictory the sensor data is. This makes the system more flexible in real driving 

situations. 

 

At each test point, the suspension behavior was evaluated using the neutrosophic QSVN 

model. The system used score and accuracy functions to judge whether the vibration level 

was acceptable or risky. These values were then used to place the system state into one of 

three zones: safe, uncertain, or dangerous. 

 

For instance, when the system reached a moderate level of uncertainty at 2.0 seconds, the 

controller responded by increasing the damping slightly. This prevented the vibration 

from becoming too high, even though the exact measurements were not fully reliable. This 
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behavior shows how the model uses both sensor data and logical structure to maintain 

performance. 

 

The results also show that using two topologies (τ₁ and τ₂) helps detect hidden risks. A 

state might seem safe in ideal conditions (τ₁), but under uncertain conditions (τ₂), it could 

show more risk. The bitopological model combines these two views and gives a more 

complete picture of the suspension state. 

Compared to traditional controllers like PID or fuzzy logic, this method offers two main 

advantages: 

a. It works even when data is incomplete, noisy, or partially wrong. 

b. It reacts not just to vibration size, but also to confidence in that measurement. 

These features make it suitable for modern vehicles, especially in conditions with limited 

sensor quality or unpredictable terrain. 

 

7. Conclusion 

This paper introduced a new method for controlling vehicle suspension vibrations using 

a neutrosophic soft bitopological model. The method is designed to handle uncertain, 

incomplete, or conflicting sensor data, which often occurs during real driving. 

By combining two neutrosophic topologies, the system can evaluate its state from both 

normal and uncertain perspectives. The use of generalized open sets helps define flexible 

vibration limits, and the QSVN representation adds a detailed way to measure confidence 

in the system's condition. 

The control strategy adjusts damping based on how true, uncertain, or risky a vibration 

state is, rather than relying only on fixed thresholds. This makes the model more 

intelligent and adaptable. 

The case study using a quarter-car model confirmed that the system can correctly identify 

when to adjust the damping and when to keep it unchanged. Even when the input data 

was uncertain, the system maintained safe performance. 

This work shows that using neutrosophic logic in control design is a strong step toward 

smarter, more reliable vehicle suspension systems. 
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