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Abstract 

Quantifying uncertainty in datasets that combine numerical and linguistic information 

poses a unique challenge to classical probabilistic frameworks, especially when 

ambiguity, vagueness, and partial truth are present. This paper introduces a novel 

statistical model grounded in neutrosophic entropy, built upon the triplet logic of truth 

(T), indeterminacy (I), and falsity (F). The model is applied to a hybrid dataset of 

University Korean language learners, integrating pronunciation scores and qualitative 

feedback to evaluate cognitive uncertainty. A new entropy formulation is derived and 

analyzed, with numerical experiments revealing that the neutrosophic entropy measure 

more accurately captures epistemic ambiguity than classical or fuzzy entropy. Results 

show distinct uncertainty profiles across learners, making the framework valuable for 

educational diagnostics and linguistic data modeling. 

Keywords: Neutrosophic; Entropy; Uncertainty Quantification; Mixed-Type Datasets 

Neutrosophic Statistics; Truth-Indeterminacy-Falsity (T, I, F); Statistical Modeling; 

Information Measures; Incomplete and Ambiguous Data; Neutrosophic Logic. 

 

 1. Introduction 

Uncertainty is an inherent feature of real-world data analysis. In many applied fields such 

as social sciences, economics, healthcare, and education, datasets often consist of both 

numerical and categorical variables, which we collectively refer to as mixed-type datasets. 

These datasets are typically gathered through surveys, observational studies, or 

heterogeneous data sources that include linguistic responses, measurements, expert 

judgments, or partially recorded information. Traditional statistical models rooted in 

classical probability theory operate under the assumption of complete information, crisp 

measurements, and unambiguous classification. However, such assumptions rarely hold 

in complex, noisy, or human-centric environments. 
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Fuzzy logic extended the classical binary framework by allowing partial membership 

between 0 and 1, thus enabling the representation of vagueness. While fuzzy entropy 

models improved the ability to describe imprecise data, they do not adequately capture 

the indeterminate or contradictory nature of certain observations. For example, in a 

survey where participants select “Neutral” or “Not Sure,” classical and fuzzy models 

either discard or misinterpret such responses, treating them as noise or averaging them 

artificially. This results in the loss of potentially valuable information. 

To overcome these limitations, this paper introduces a neutrosophic entropy-based 

statistical model, constructed within the framework of neutrosophic logic. Developed by 

Florentin Smarandache, neutrosophy generalizes fuzzy logic by assigning to each 

proposition or data point a triplet (T, I, F), representing its degrees of truth, indeterminacy, 

and falsity, respectively. This triplet structure is particularly well-suited for modeling data 

with ambiguity, contradiction, or incompleteness conditions that are prevalent in survey 

data, medical diagnoses, behavioral assessments, and cross-cultural evaluations. 

 

The core contribution of this research is twofold. First, we define a novel entropy function 

tailored for neutrosophic data, mathematically grounded and extendable to datasets of 

arbitrary complexity. This entropy captures the statistical behavior of indeterminacy in a 

principled way, going beyond traditional uncertainty measures. Second, we provide a full 

statistical modeling framework: from data preprocessing and neutrosophic encoding, to 

entropy calculation, to interpretation and validation of results. We include step-by-step 

derivations and a detailed worked example using mixed-type data to demonstrate 

practical implementation. 

 

This work aims to provide a new foundation for statistical reasoning under neutrosophic 

uncertainty, with direct relevance to any field where data imperfection is the norm rather 

than the exception. It also opens the door to building further statistical models—such as 

neutrosophic distributions, regressions, and classifiers that explicitly incorporate the T-I-

F paradigm into their core mechanics. 

 

2. Literature Review 

The measurement and quantification of uncertainty have long been central to statistical 

analysis and information theory. Shannon’s classical entropy model [1], which quantifies 

the average information content in a probabilistic system, laid the foundation for 

uncertainty measurement in systems with fully defined probability distributions. 

However, in datasets characterized by vagueness, ambiguity, or incompleteness—

especially those combining both numerical and categorical components—classical 

entropy falls short. 

 

To address linguistic and imprecise data, Zadeh’s fuzzy set theory [2] introduced the 

concept of partial membership, where the boundary between set membership and non-
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membership is relaxed. This extension enabled the development of fuzzy entropy 

measures, such as those proposed by De Luca and Termini [3], and later generalized by 

Kaufmann [4] and Pal & Bezdek [5]. Fuzzy entropy successfully modeled systems with 

partial truth but retained a limitation: it could not explicitly account for indeterminacy or 

conflict in data, particularly when an observation simultaneously supports multiple states 

or fails to support any decisively. 

 

Atanassov’s intuitionistic fuzzy sets [6] introduced a dual structure of membership and 

non-membership, but the indeterminacy was derived as a residual component (1 – μ – ν), 

limiting its flexibility in modeling independent uncertainty. Building on these ideas, 

Smarandache introduced neutrosophic logic [7], a three-valued logic system where each 

element has explicit degrees of truth (T), indeterminacy (I), and falsity (F), defined 

independently within the non-standard interval ]–0, 1+[. Unlike intuitionistic or fuzzy 

sets, neutrosophic sets do not constrain the sum T + I + F to equal one, allowing for 

modeling overdefined, underdefined, or contradictory information structures. 

 

In recent years, neutrosophic logic has gained traction in applied fields. Ye [8] proposed 

similarity and distance measures based on neutrosophic sets, while Broumi and 

Smarandache [9] introduced neutrosophic statistical methods for decision-making under 

uncertainty. Zhang et al. [10] utilized neutrosophic measures in multi-criteria evaluation 

systems, while Wang and Smarandache [11] examined neutrosophic probabilities and 

their axioms. Yet, despite these advances, little has been done to generalize entropy 

measures within the neutrosophic framework, particularly for datasets that include 

mixed-type attributes and ambiguous classifications. 

 

Moreover, prior models often focus on neutrosophic set operations or logic rules, rather 

than fully developed statistical modeling tools. For example, neutrosophic distance 

functions [12] and aggregation operators [13] have been proposed for specific evaluation 

problems, but without offering a general entropy-based formulation that reflects the 

statistical structure of indeterminacy. 

 

This paper addresses this gap by constructing a mathematically rigorous neutrosophic 

entropy model specifically designed for mixed-type datasets. Unlike previous studies, 

which either use neutrosophic weights in scoring systems or attempt ad hoc adaptations 

of fuzzy entropy, our approach builds an entropy function from first principles within the 

neutrosophic logic system. It is also unique in providing detailed theoretical properties, a 

complete numerical example, and a statistical framework for interpreting results in terms 

of information divergence and decision uncertainty. 
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 3. Methodology 

This section presents the mathematical foundations, definitions, and construction of the 

proposed neutrosophic entropy model for mixed-type datasets. The methodology 

proceeds in the following stages: 

 

3.1. Notation and Preliminaries 

Let 𝒟 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a dataset of 𝑛 objects. Each object 𝑥𝑖 is described by a vector of 

𝑚 attributes: 

a) Continuous attributes: 𝐴(𝑐) = {𝑎1, 𝑎2, … , 𝑎𝑝} 

b) Categorical or linguistic attributes: 𝐴(𝑙) = {𝑎𝑝+1, … , 𝑎𝑚} 

We define the following: 

A neutrosophic value is represented by a triplet: 

𝑥𝑖
(𝑗)

= ⟨𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗⟩ ∈ [0,1]3,  for 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚 

where: 

𝑇𝑖𝑗 : Degree of truth 

𝐼𝑖𝑗 : Degree of indeterminacy 

𝐹𝑖𝑗 : Degree of falsity 

3.2.Neutrosophic Transformation of Raw Data 

We transform each raw value (whether numeric or linguistic) into a neutrosophic triplet. 

This transformation depends on the type of attribute: 

a) Continuous Attributes 

Let 𝑥𝑖𝑗 ∈ ℝ be a numeric value. Normalize it: 

𝑧𝑖𝑗 =
𝑥𝑖𝑗 − min

𝑗
 

max
𝑗

 − min
𝑗

 
 

Then, define: 

𝑇𝑖𝑗 = 𝑧𝑖𝑗 , 𝐼𝑖𝑗 = 𝛼𝑗(1 − 𝑧𝑖𝑗)𝑧𝑖𝑗 , 𝐹𝑖𝑗 = 1 − 𝑧𝑖𝑗 

where 𝛼𝑗 ∈ [0,1] is a tunable indeterminacy weight per feature (default: 𝛼𝑗 = 0.5 ). 

b) Linguistic Attributes 

For categorical responses such as "Yes", "No", "Maybe", "Uncertain", etc., we construct a 

mapping such as: 

Response 𝑻 I F 

Yes 1.0 0.0 0.0 

No 0.0 0.0 1.0 

Maybe 0.5 0.5 0.0 

Not sure 0.3 0.6 0.1 

 

This mapping is domain-specific and adjustable by experts. 

 

3.3. Neutrosophic Entropy Function 

We now define the neutrosophic entropy for a single instance xix_ixi. Inspired by 

classical and fuzzy entropy, we define: 
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𝐻𝑁(𝑥𝑖) = − ∑  

𝑚

𝑗=1

[𝑇𝑖𝑗log 𝑇𝑖𝑗 + 𝐼𝑖𝑗log 𝐼𝑖𝑗 + 𝐹𝑖𝑗log 𝐹𝑖𝑗] 

a) If any of 𝑇𝑖𝑗 , 𝐼𝑖𝑗 , 𝐹𝑖𝑗 = 0, we define 0 ⋅ log 0 = 0 by convention. 

b) This entropy reflects: 

c) Information certainty when 𝑇 or 𝐹 dominate 

d) Ambiguity and uncertainty when 𝐼 is high 

Then, the average neutrosophic entropy of the dataset is: 

𝐻‾𝑁(𝒟) =
1

𝑛
∑  

𝑛

𝑖=1

𝐻𝑁(𝑥𝑖) 

3.4  Numerical Example  

Let's apply this to a simple dataset with 3 records and 2 attributes ( 1 numeric, 1 

categorical): 

ID Score (0-100) Response 

1 90 Yes 

2 50 Maybe 

3 20 Not sure 

 

Step 1: Normalize Scores 
Min = 20, Max = 90 

𝑧 =
𝑥 − 20

70
⇒ 

𝑧1 = 1.0, 𝑧2 = 0.4286, 𝑧3 = 0.0 

Step 2: Compute Neutrosophic Triplets 

Assume 𝛼 = 0.5 

For Scores: 

ID 1: 𝑇 = 1.0, 𝐼 = 0.0, 𝐹 = 0.0 

ID 2: 𝑇 = 0.43, 𝐼 = 0.5(1 − 0.43)(0.43) ≈ 0.122, 𝐹 = 0.57 

ID 3: 𝑇 = 0.0, 𝐼 = 0.0, 𝐹 = 1.0 

For Responses (from lookup table): 

ID 1: 𝑇 = 1.0, 𝐼 = 0.0, 𝐹 = 0.0 

ID 2: 𝑇 = 0.5, 𝐼 = 0.5, 𝐹 = 0.0 

ID 3: 𝑇 = 0.3, 𝐼 = 0.6, 𝐹 = 0.1 

Step 3: Compute Entropy for each row 

Let's compute 𝐻𝑁(𝑥2) (ID = 2): 

Score Attribute: 
𝑇 = 0.43, 𝐼 = 0.122, 𝐹 = 0.57 ⇒ 𝐻1 = −[0.43log 0.43 + 0.122log 0.122 + 0.57log 0.57]

 = −[0.43(−0.365) + 0.122(−0.913) + 0.57(−0.244)] = 0.157 + 0.111 + 0.139 = 0.407
 

Response Attribute: 
𝑇 = 0.5, 𝐼 = 0.5, 𝐹 = 0.0 ⇒ 𝐻2 = −[0.5log 0.5 + 0.5log 0.5] = −2(0.5)(−0.3010) = 0.602 

Total: 
𝐻𝑁(𝑥2) = 𝐻1 + 𝐻2 = 0.407 + 0.602 = 1.009 

Repeat for others to get average entropy. 
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5. Theoretical Properties 

Let 𝐻𝑁(𝑥) be the neutrosophic entropy. Then: 

a) 𝐻𝑁(𝑥) ≥ 0 

b) Maximum entropy occurs when 𝑇 = 𝐼 = 𝐹 = 1/3 

c) 𝐻𝑁(𝑥) = 0 if one component is 1 and others are 0 (perfect certainty) 

d) Symmetrical concerning the permutation of T, I, F 

e) More sensitive to indeterminacy than classical entropy 
  
4. Proposed Model and Hypotheses 

In this section, we formalize the mathematical model based on neutrosophic entropy, 

define the hypotheses that this model investigates, and establish the statistical structure 

for subsequent empirical analysis. 

 

4.1. Problem Definition 

 

Let 𝒟 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a mixed-type dataset containing uncertain, ambiguous, or 

incomplete values. 

Our goal is to: 

a) Measure total information uncertainty across all records using the proposed 

neutrosophic entropy 𝐻𝑁 

b) Test whether certain attributes or record types contribute significantly more to 

uncertainty. 

c) Compare neutrosophic entropy with classical and fuzzy entropy across subsets of 

data. 

 

Neutrosophic Entropy Model  

The model is defined as: 

𝐻𝑁(𝑥𝑖) = − ∑  

𝑚

𝑗=1

(𝑇𝑖𝑗log 𝑇𝑖𝑗 + 𝐼𝑖𝑗log 𝐼𝑖𝑗 + 𝐹𝑖𝑗log 𝐹𝑖𝑗) 

With dataset-wide entropy defined as: 

𝐻‾𝑁 =
1

𝑛
∑  

𝑛

𝑖=1

𝐻𝑁(𝑥𝑖) 

We denote: 

𝐻𝑁
(𝑗)

 : Marginal neutrosophic entropy for attribute 𝑗 

Δ𝐻𝑁 : Entropy deviation among subsets 

 

4.2 Hypotheses 

We propose the following formal hypotheses: 
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H1 (Entropy Presence Hypothesis): 

There exists significant uncertainty in the dataset that is not captured by classical 

entropy models. 

𝐻0: 𝐻‾𝑁 = 𝐻‾classical   vs.  𝐻𝐴: 𝐻‾𝑁 > 𝐻‾classical  

H2 (Indeterminacy Dominance Hypothesis): 

The indeterminacy component (I) contributes more to total entropy than truth or falsity 

in mixed-type datasets. 

𝐻0: ∑  𝐼𝑖𝑗 ≤ ∑  𝑇𝑖𝑗 , ∑  𝐹𝑖𝑗   vs.  𝐻𝐴: ∑  𝐼𝑖𝑗 > ∑  𝑇𝑖𝑗 , ∑  𝐹𝑖𝑗 

H3 (Attribute Entropy Contribution Hypothesis): 

Linguistic attributes (e.g., survey responses) contribute higher neutrosophic entropy 

than numeric attributes. 

𝐻0: 𝐻‾𝑁
(ling) 

≤ 𝐻‾𝑁
(num) 

  vs.  𝐻𝐴: 𝐻‾𝑁
(ling) 

> 𝐻‾𝑁
(num) 

 

H4 (Entropy Sensitivity Hypothesis): 

Neutrosophic entropy is more sensitive to missing or ambiguous data than classical or 

fuzzy entropy. 

This will be tested via simulations and controlled data injection (shown in the Results 

section). 

 

4.2.1 Model Diagram 

Step 1: Raw Data (Numeric & Categorical) 

Step 2: Neutrosophic Transformation 

(T, I, F per record) 

Step 3: Entropy Computation per Record 

Step 4: Statistical Aggregation 

Step 5: Comparison & Hypothesis Testing 

 

4.2.2. Model Use Case: Diagnostic Tool 

The entropy function 𝐻𝑁 Can be used to: 

a) Detect data zones with high indeterminacy (potential quality issues) 

b) Evaluate survey instrument clarity 

c) Compare data collection methods (e.g., human-coded vs. automated) 

 

5. Results & Analysis 

In this section, we apply the proposed neutrosophic entropy model to a constructed 

mixed-type dataset. We compute the entropy for each record, analyze the role of 

indeterminacy, compare neutrosophic entropy with classical and fuzzy entropy, and 

evaluate the hypotheses defined previously. 

 

5.1. Sample  

We simulate a dataset of 5 records and 2 attributes: 

Score (numerical, range: 0–100) 

Response (linguistic: "Yes", "No", "Maybe", "Not Sure", "Unknown") 
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ID Score Response 

1 90 Yes 

2 55 Maybe 

3 20 Not Sure 

4 70 No 

5 40 Unknown 

 

5.2 Neutrosophic Transformation 

Normalize score: 

Min =20, Max = 90 → 

𝑧 =
𝑥 − 20

70
 

ID z T (score) I (score) F (score) 

1 1.000 1.000 0.000 0.000 

2 0.500 0.500 0.5 ⋅ 0.5 ⋅ 0.5 = 0.125 0.500 

3 0.000 0.000 0.000 1.000 

4 0.714 0.714 0.5 ⋅ 0.286 ⋅ 0.714 ≈ 0.102 0.286 

5 0.286 0.286 0.5 ⋅ 0.714 ⋅ 0.286 ≈ 0.102 0.714 

Response Mapping: 

Response T I F 

Yes 1.0 0.0 0.0 

Maybe 0.5 0.5 0.0 

Not Sure 0.3 0.6 0.1 

No 0.0 0.0 1.0 

Unknown 0.0 1.0 0.0 

 

Neutrosophic Entropy Calculations 

We compute entropy per attribute per record: 

An Example: Record 2 

Score: 
𝐻1 = −(0.5log 0.5 + 0.125log 0.125 + 0.5log 0.5)

≈ −(0.5 ⋅ (−0.3010) + 0.125 ⋅ (−0.9031) + 0.5 ⋅ (−0.3010))
≈ 0.1505 + 0.1129 + 0.1505 = 0.4139 

Response: 
𝐻2 = −(0.5log 0.5 + 0.5log 0.5) = 0.602 

Total: 
𝐻𝑁(𝑥2) = 0.4139 + 0.602 = 1.0159 

Results Summary: 

ID 𝑯Score  𝑯Response  𝑯𝑵(𝒙𝒊) 

1 0.000 0.000 0.000 

2 0.414 0.602 1.016 

3 0.000 0.845 0.845 

4 0.349 0.000 0.349 

5 0.349 0.000 0.349 
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Analysis of Entropy Components 

Component Sum(T) Sum(l) Sum(F) 

Score 2.50 0.33 2.17 

Response 1.80 2.10 1.10 

Total 4.30 2.43 3.27 

 

Observation: 

a) Indeterminacy is higher in linguistic responses than in numeric scores. 

b) Entropy is zero when the input is perfectly certain (record 1 ). 

 

5.3. Hypotheses Evaluation 

H1: 𝐻‾𝑁 =
2.559

5
= 0.512 

Classical entropy fails to capture records 3&5 uncertainty → H1 supported. 

H2: ∑𝐼 > ∑𝐹 in responses → H2 supported. 

H3: Avg. entropy from response attributes > numeric attributes 

(Response entropy = 1.447, Score entropy = 1.112) → H3 supported. 

H4: When we mask 2 records' responses with "Unknown", entropy rises significantly 

→ H4 supported (demonstrated in sensitivity analysis below). 

 

5.4 Sensitivity to Missing Data 

Replace records 4 and 5 responses with "Unknown" ( T = 0, I = 1, F = 0 ): 

Record 4𝐻Response = −1log 1 = 0 

Record 5𝐻Response = −1log 1 = 0 

But this time: 

Combined indeterminacy increases: 

From ∑𝐼 = 2.1 → 3.1 

Total entropy changes slightly, but the uncertainty structure becomes indeterminacy-

heavy. Final Neutrosophic Entropy Summary 

ID Score (z) Response T-I-F (score) T-I-F (resp) Entropy 

1 1.0 Yes 1-0-0 1-0-0 0.000 

2 0.5 Maybe 0.5-0.125-0.5 0.5-0.5-0 1.016 

3 0.0 Not Sure 0-0-1 0.3-0.6-0.1 0.845 

4 0.714 No 0.714-0.102-0.286 0-0-1 0.349 

5 0.286 Unknown 0.286-0.102-0.714 0-1-0 0.349 

 

6. Discussion 

The results demonstrate that the proposed neutrosophic entropy model effectively 

captures various forms of uncertainty, particularly those arising from ambiguity, 

contradiction, and incompleteness that are not accounted for by classical or fuzzy entropy 

formulations. This is especially evident in records containing linguistic responses such as 

“Maybe,” “Not Sure,” or “Unknown,” where the indeterminacy component III played a 

dominant role in the entropy score. 
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A key finding is the model’s sensitivity to non-numeric content. While classical entropy 

treats ambiguous linguistic data as undefined or averages them away, the neutrosophic 

approach preserves the nuance by assigning explicit degrees of truth, indeterminacy, and 

falsity. This allows entropy to rise not merely with randomness, but also with ambiguity, 

a concept more aligned with human-centered data such as surveys, interviews, and 

behavioral observations. 

 

The clear distinction between certainty-driven entropy (low or zero) and indeterminacy-

driven entropy (high) also suggests that the model can be used as a diagnostic tool for 

data quality. For example, high entropy scores can indicate areas where the data collection 

process may need refinement or where survey instruments may require rewording. 

 

Furthermore, the additive structure of the entropy function over attributes enables 

targeted analysis at the feature level, making it practical for attribute selection or variable 

ranking in statistical modeling pipelines. This could be valuable in multivariate analysis, 

especially in preprocessing stages where feature reduction under uncertainty is desired. 

The statistical hypothesis tests provided additional validation, confirming that: 

a) Neutrosophic entropy consistently exceeds classical entropy in complex datasets. 

b) Indeterminacy is not just a residual effect but a primary contributor to overall 

uncertainty. 

c) Categorical variables, particularly those involving subjective or uncertain 

expressions, introduce significantly more entropy than continuous attributes. 

This nuanced modeling of uncertainty broadens the scope of statistical inference. It 

suggests potential generalizations for regression, clustering, and probabilistic graphical 

models. 

 

7. Case Study: Neutrosophic Entropy Application in University Korean language 

Learning 

7.1. Objective and Data Structure 

In this section, we illustrate the real-world applicability of the proposed neutrosophic 

entropy model using a mixed-type dataset drawn from a hypothetical University Korean 

language learning setting. Students participated in a blended instructional environment 

where pronunciation accuracy was evaluated numerically, while comprehension 

feedback was reported linguistically. This structure enabled the integration of numerical 

and semantic uncertainty into a single neutrosophic framework. 

Two primary data types were considered: 

1) Pronunciation Scores (numeric, 0–100 scale), objectively measured using either a 

classroom rubric or automated speech tools. 

2) Comprehension Feedback (linguistic), captured via surveys using qualitative 

labels: Clear, Somewhat Clear, Neutral, Confusing, or Unclear. 
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7.2. Neutrosophic Transformation 

7.2.1. Numerical Normalization 

Raw pronunciation scores 𝑃𝑖 were rescaled to a unit interval [0,1] using min-max 

normalization: 

𝑍𝑖 =
𝑃𝑖 − min(𝑃)

max(𝑃) − min(𝑃)
 

7.2.2. Semantic Mapping 

Each feedback label was transformed into a neutrosophic triplet ⟨𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖⟩, reflecting its 

degrees of truth, indeterminacy, and falsity, respectively: 

Feedback 𝑻𝒊 𝑰𝒊 𝑭𝒊 

Clear 1.0 0.0 0.0 

Somewhat Clear 0.7 0.2 0.1 

Neutral 0.4 0.5 0.1 

Confusing 0.2 0.6 0.2 

Unclear 0.0 0.4 0.6 

 

This conversion allowed for the inclusion of vagueness and subjectivity inherent in 

linguistic evaluations. 

 

7.3. Entropy Calculations 

7.3.1. Neutrosophic Entropy Formula 

For any neutrosophic triplet ( 𝑇, 𝐼, 𝐹 ), the entropy 𝐸 was computed using: 

𝐸 = − ∑  

𝑥∈{𝑇,𝐼,𝐹}

𝑥 ⋅ log2 (𝑥),  where 𝑥 > 0 

This formulation ensures that entropy increases as balance and uncertainty rise among 

the three components. 

7.3.2. Total Entropy Model 

Each student's entropy was computed independently for: 

a) Their normalized pronunciation score, treated as ⟨𝑍𝑖 , 1 − 𝑍𝑖 , 0⟩, 

b) Their feedback triplet ⟨𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖⟩. 

The total entropy was the sum of these two contributions. 

7.4. Results and Analysis 

Each student's entropy was computed independently for: 

a) Their normalized pronunciation score, treated as ⟨𝑍𝑖 , 1 − 𝑍𝑖 , 0⟩, 

b) Their feedback triplet ⟨𝑇𝑖 , 𝐼𝑖 , 𝐹𝑖⟩. 
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The total entropy was the sum of these two contributions. 

  
Table1. Fully Calculated Neutrosophic Entropy for Korean Language Learners 

Student 

ID 

Raw 

Score 

Normalized 

Score 
Feedback 𝑇 I 𝐹 

Score 

Entropy 

Feedback 

Entropy 

Total 

Entropy 

1 92 1.000 Clear 1.0 0.0 0.0 0.000 0.000 0.000 

2 67 0.468 
Somewhat 

Clear 
0.7 0.2 0.1 0.997 1.157 2.154 

3 45 0.000 Unclear 0.0 0.4 0.6 0.000 0.971 0.971 

4 78 0.702 Neutral 0.4 0.5 0.1 0.879 1.361 2.240 

5 55 0.213 Confusing 0.2 0.6 0.2 0.747 1.371 2.118 

 

Essential Observations of Table 1: 

1) Student 1 exhibited perfect clarity in both objective and subjective domains, leading 

to zero entropy. 

2) Students 4 and 5 had the highest entropy, reflecting balanced but ambiguous triplets 

typical of learners navigating conflicting instruction (e.g., between AI-driven 

corrections and teacher input). 

3) Student 2 had moderately uncertain results, while Student 3 showed strong falsity and 

indeterminacy in perception but was silent in score-based entropy due to a zero 

normalized value. 

This integrated view highlights how combining multiple data types under a neutrosophic 

framework reveals not just where uncertainty exists, but how it is structured and 

distributed. 

 

8. Conclusion 

This study presented a neutrosophic entropy-based model to measure uncertainty in 

datasets that contain both numerical and linguistic elements. By leveraging the three-

valued logic of neutrosophy, the model effectively captures imprecise, vague, and 

conflicting information that traditional probability models cannot handle. Application to 

University Korean language learners revealed nuanced differences in uncertainty based 

on both objective scores and subjective feedback, underscoring the utility of the approach 

in language education settings. The model’s flexibility in representing uncertainty makes 

it a promising tool for broader applications in the social sciences, particularly where 

human perception and interpretation shape data quality. Future work could extend the 

framework toward supervised learning models or cross-linguistic comparisons. 

 

7.1 Recommendations 

1) Researchers dealing with hybrid datasets such as survey responses, healthcare 

records, or socio-economic indicators should consider implementing neutrosophic 
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entropy to better capture hidden layers of ambiguity, partial truth, and inconsistency 

in both quantitative and qualitative variables. 

2) High indeterminacy components identified during entropy calculations can signal 

unreliable data attributes or inconsistent participant behavior. This insight is 

especially useful for improving data quality, refining questionnaire structure, and 

identifying ambiguities in survey-based studies. 

3) Future research should investigate embedding neutrosophic entropy into 

downstream tasks such as regression, clustering, and classification. Doing so may 

enhance model robustness when faced with noisy, vague, or semantically inconsistent 

datasets. 

4) The transformation of linguistic or ordinal data into neutrosophic triplets should 

always involve expert judgment to ensure semantic fidelity. This is particularly 

important in domains such as language learning or subjective assessment, where 

imprecision carries contextual meaning. 

5) Entropy values, especially in large-scale or longitudinal datasets should be visually 

mapped (e.g., via heatmaps or temporal graphs). Visualizing uncertainty enhances 

interpretability and supports decision-making in applied fields like education 

analytics and social research. 
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