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Abstract. In the present study, we introduce a new subclass of bi-univalent analytic functions defined on the

open unit disk i, generated via the generalized neutrosophic %-Poisson distribution (NqPD) series in conjunction

with the structural framework of the %-Fibonacci sequence. A detailed analysis is carried out on the Taylor–

Maclaurin coefficients associated with functions in this class, leading to the derivation of sharp Fekete–Szeg

type inequalities that precisely estimate the initial coefficients. This unified approach not only extends several

well-known results from the theory of bi-univalent functions but also uncovers new properties through a variety

of corollaries and illustrative special cases. The proposed construction offers deep insights into the geometric

behavior of the function class and lays a foundation for further exploration in areas such as mathematical

modeling, theoretical physics, and information science.

Keywords: Analytic functions; Neutrosophic %-Poisson distribution; Fibonacci numbers; Fekete–Szegö in-
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1. Introduction

Classic analysis (CA) has played a key role in the development of geometric function the-

ory (GFT), which provides a solid base to study analytical and analogous mapping. The

strong relationship between approximately and GFT is largely due to their shared interest

in border -related problems, as well as the spectral properties of both linear and not -linear

differential operators. These devices are important in complex analysis in search of geometric

changes, quasi-conformal maps and functional rooms. Over time, this close relationship has

led to significant theoretical progress and expanded the selection of practical applications in

mathematics.

Although CA methods are powerful, they often encounter boundaries when used on real

world systems that include uncertainty, impenetrable or indefinite behavior. Many traditional

models are based on ideal perceptions and are responsible for random or unclear structures

found in natural, social or engineering systems. To address these intervals, various general-

izations have been introduced - especially unclear set theory and neutrosophically set theory.

These structures go beyond approximately by enabling modeling of more complex scenarios by

incorporating uncertainty, such as geometric non-euclidion, irregular domains and generalized

harmonious functions.

A big step in this direction was taken in the 1980s when Florentine Smarandache started

neutrosophy, a philosophical basis that gave birth to a neutrosophic logic. This argument

extends the unclear logic by introducing three independent components for any statement:

degree (t), degree of uncertainty (i), and false degree (f), independent interval [0, 1]. This

traditional system has found meaningful applications in various fields such as law, medicine,

psychology, engineering science, economics and decision -making science, where it is important

to handle ambiguity and incomplete information.

In light of these developments, the present work aims to extend classical tools in harmonic

and geometric analysis by proposing a new analytic framework based on the neutrosophic

%-Poisson distribution (NqPD) series. This leads to the construction of a new subclass of

bi-univalent analytic functions defined on the open unit disk. By incorporating q-calculusa

generalization that includes a deformation parameter %we are able to capture more nuanced

behavior in systems that are discrete, dynamic, or uncertain. The %-Fibonacci sequence, in

particular, plays a key role in generating the coefficients of this function class and in deriving

sharp bounds via Fekete–Szeg type inequalities.

In light of this development, the current feature is aimed at neutrosophic %-Poison Distri-

bution (NqPD) to expand classic units in hormonic and geometric analysis by suggesting a

new analysis structure based on a series. This leads to the creation of a new subcontinent of
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two-oriented analytical functions defined on the open device disc. By including %-Calculus-A-

Generalization containing a deformation parameter %, we can capture more nice behavior in

systems that are wound up, dynamic or unsafe.

2. Preliminaries

Consider the collection A consisting of all functions that are analytic within the open unit

disk

i = {= = a+ ib ∈ C : |=| < 1} .

Each function £ ∈ A is normalized such that

£(0) = 0 and £′(0) = 1.

Each function £ ∈ A , being analytic in the unit disk, can be expressed through its Taylor–

Maclaurin series as

£(=) = =+

∞∑
ι=2

ηι=ι, (= ∈ i). (1)

where the coefficients ηι ∈ C encode essential information about the function’s behavior in i.

Consider the class S, consisting of all functions £ ∈ A that are univalent (i.e., injective) in

the open unit disk i. Let P denote the class of functions in A having positive real part in

i, and represented by the series

Υ(=) = 1 +
∞∑
ι=1

Υι=ι = 1 + Υ1=+ Υ2=2 + Υ3=3 + . . . , (= ∈ i), (2)

where

|Υι| ≤ 2, for all ι ≥ 1. (3)

in accordance with the celebrated Carathodory Lemma (see, for instance, [1]). A function

ϕ ∈P if and only if it is subordinate to the Mbius function (1 + =)/(1−=), ∀(= ∈ i).

The class of starlike functions, denoted by ι∗, can be characterized through various ap-

proaches, one of which is based on the concept of subordination. A particularly elegant and

unifying formulation was introduced by Ma and Minda [2], who defined the generalized starlike

class as

S∗(Ω) =

{
£ ∈ A :

=£′(=)

£(=)
≺ Ω(=), (= ∈ i)

}
.

By selecting suitable functions Ω, this definition captures numerous well-known subclasses

of starlike functions and serves as an effective tool for exploring the geometric attributes of

analytic functions. Various choices of Ω lead to distinct subclasses of S∗, as outlined in Table 1,

each reflecting a unique geometric or analytic constraint.
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Table 1. A summary of various subclasses of starlike functions characterized

via the subordination principle.

Starlike function family in the unit disk Author/s Ref.

S∗
(
1+=
1−=

)
=
{
£ ∈ A : =£

′(=)
£(=) ≺

1+=
1−=

}
Janowski [3, 4]

SL(ϑ) =
{
£ ∈ A : =£

′(=)
£(=) ≺

1+ϑ2=2

1−ϑ=−ϑ2=2 , ϑ = 1−
√
5

2

}
Sokl [5]

S∗(ϑ) =
{
£ ∈ A : =£

′(=)
£(=) ≺

1+(1−2ϑ)=
1−= , 0 ≤ ϑ < 1

}
Robertson [6]

SK(ϑ) =
{
£ ∈ A : =£

′(=)
£(=) ≺

3
3+(ϑ−3)=−ϑ2=2 , ϑ ∈ (−3, 1]

}
Sokl [7]

The class P, often regarded as foundational in GFT, plays a central role in the development

of numerous significant subclasses of analytic functions. For any function £ in the subclass

S ⊂ A , the univalence of £ guarantees the existence £−1. This inverse function satisfies the

classical functional identities:

= = £−1(£(=)) and ς = £(£−1(ς)), (r0(£) ≥ 0.25; |ς| < r0(£);= ∈ i) . (4)

Serving as a cornerstone in AFT, the class P provides a foundational framework from which

many significant subclasses emerge. For any function £ belonging to the univalent subclass

S ⊂ A , the existence of an inverse function £−1 is guaranteed in some neighborhood of the

origin, owing to the injectivity of £. This inverse function satisfies the fundamental identities:

£−1(ς) = χ(ς) = ς − η2 ς2 +
(
2η22 − η3

)
ς3 −

(
5η32 + η4 − 5η3η2

)
ς4 + · · · . (5)

A function £ ∈ S is said to be bi-univalent if both £ and its inverse £−1 are univalent in

the open unit disk. The collection of all such functions forms a distinguished subclass of S,

denoted by
∑

.

Quantum calculus, or %-calculus, is a modern extension of classical analysis that replaces

limits with discrete %-difference operators. Originating from Jackson’s foundational work [8,9],

and later expanded by researchers such as Aral and Gupta [10–12], %-calculus has grown

into a powerful tool, particularly in GFT. With the deformation parameter % controlling the
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granularity of the calculus, this framework allows for greater analytical flexibility and is well-

suited to studying starlike and convex functions. Beyond theory, it also finds applications in

quantum models, numerical methods, and %-series expansions.

Definition 2.1. [13] The %-number, also known as the %-bracket, denoted by 〈µ〉%, is defined

by

〈µ〉% =



1−%µ
1−% , 0 < % < 1, µ ∈ C∗ = C \ {0}

1, % 7→ 0+, µ ∈ C∗

µ, % 7→ 1−, µ ∈ C∗

τ−1∑
ι=0

%ι, 0 < % < 1, µ = τ ∈ {1, 2, 3, · · · }.

Definition 2.2. [13] The %-difference operator, also known as the Jackson %-derivative, is an

operator acting on a function £ that generalizes the classical derivative by incorporating the

parameter %, and is formally given by

f%〈£(=)〉 =



£(=)−£(%=)
=−%= , if 0 < % < 1, = 6= 0,

£′(=), if % 7→ 1−, = 6= 0,

£′(0), if = = 0.

.

Remark 2.3. For £ ∈ A of the form (1), it is straightforward to verify that

f%〈£(=)〉 = 1 +
∞∑
ι=2

〈ι〉% ηι=ι−1, (= ∈ i),

and for the inverse function £−1 corresponding to the representation in (4), we have the

expansion

f%〈£−1(ς)〉 = 1− 〈2〉%η2ς + 〈3〉%
(
2η22 − η3

)
ς2 − 〈4〉%

(
5η32 + η4 − 5η3η2

)
ς3 + · · · .

More recently, building upon the framework of %-Jackson difference operators, Alsoboh et

al. [14] introduced a significant subclass of analytic functions known as the %-starlike functions,

denoted by SL%. This class extends the classical notion of starlikeness within the context of

%-calculus, providing novel insights into the geometric behavior of analytic functions under

%-deformations.

The class SL% is precisely characterized by the subordination condition

SL% =

{
£ ∈ A :

=f%〈£(=)〉
£(=)

≺ Π(=; %) (= ∈ i)

}
, (6)

where f% denotes the %-Jackson difference operator and ≺ indicates subordination (for in-

stance, see [1]).
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The function Π(=; %) is explicitly given by

Π(=; %) =
1 + %ϑ2%=2

1− ϑ%=− %ϑ2%=2
, (7)

and

ϑ% =
1−
√

4%+ 1

2%
. (8)

In this context, ϑ% denotes the %-analogue of the classical Fibonacci numbers, reflecting a

discrete deformation rooted in the structure of q-calculus. In a recent contribution, Alsoboh et

al. [14] revealed a significant connection between these %-Fibonacci numbers ϑ% and a family

of associated Fibonacci-type polynomials, denoted by ϕn(%). To formalize this relationship,

consider the generating function

Π(=; %) = 1 +
∞∑
ι=1

Υ̂ι=ι,

where the coefficients Υ̂ι encode the combinatorial and analytic structure derived from the

%-Fibonacci sequence. These coefficients are governed by the following recurrence relation:

Υ̂ι =



ϑ%, if ι = 1,

(2%+ 1)ϑ2%, if ι = 2,

(3%+ 1)ϑ3%, if ι = 3,

(ϕι+1(%) + %ϕι−1(%))ϑι%, if ι ≥ 4.

(9)

This recurrence relation highlights the interplay between the %-Fibonacci numbers and the

polynomial family ϕn(%), thereby enriching the algebraic and analytical foundations necessary

for exploring subclasses of analytic functions within the %-calculus framework. The %-Fibonacci

polynomials ϕι(%) are defined as

ϕι(%) =
(1− %ϑ%)ι − (ϑ%)

ι

√
4%+ 1

, ι ∈ N. (10)

In 2021, Mustafa and Nezir [44] introduced several novel subclasses of analytic and univalent

functions defined on the open unit disk i. Their study further explored the application of the

%-Poisson distribution series in the context of analytic function theory (AFT). Specifically, a

discrete random variable ` is characterized as following a %-Poisson distribution if it takes

values in the set {0, 1, 2, . . .} with associated probabilities defined by

e−µ
%
,
µe−µ

%

〈1〉% !
,
µ2e−µ

%

〈2〉% !
,
µ3e−µ

%

〈3〉% !
,
µ4e−µ

%

〈4〉% !
, . . . ,

respectively, where µ denotes the distribution parameter and

e`
%

= 1 +
`
〈1〉% !

+
`2

〈2〉% !
+

`3

〈3〉% !
+ · · ·+ `µ

〈µ〉% !
+ · · · =

∞∑
m=0

`m

〈m〉% !
,
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and

〈a〉% ! = 〈a〉% .〈a− 1〉% · · · 〈2〉%〈1〉% .

Therefore, within the framework of the %-Poisson distribution, the probability that the discrete

random variable ` assumes the value a is expressed by

P%

(
` = a

)
=

µa

〈a〉% !
e−µ
%
, a = 0, 1, 2, · · · .

The %-Poisson distribution series can be expressed as

=+
∞∑
ι=2

µa−1e−µ
%

〈a− 1〉% !
=a, = ∈ i. (11)

where µ serves as the distribution parameter. Applying the ratio test confirms that this power

series converges for all complex numbers =, implying its radius of convergence is infinite (see,

e.g., [16]).

Introduced by Smarandache in 1995, neutrosophic theory extends traditional and fuzzy logic

frameworks by explicitly integrating the notion of indeterminacy into both logical reasoning

and mathematical modeling [17]. Within this framework, the neutrosophic %-Poisson distribu-

tion emerges as a generalized form of the classical %-Poisson model, wherein the distribution

parameter a is treated as uncertain. Specifically, a is represented by an interval or a finite-

valued set, capturing partial truth and imprecision in a natural way.

The probability mass function of the neutrosophic %-Poisson distribution is given by

N P%(` = µ) =
(aℵ)µ

〈µ〉% !
e−aℵ
%

, µ ∈ N ∪ {0},

where aℵ is the neutrosophic parameter and coincides with both the neutrosophic mean and

variance:

N E (`) = N V (`) = aℵ ,

Here, aℵ = `+ z is called a neutrosophic statistical number, consisting of a determinate part

` and an indeterminacy component z [17].

In a more recent development, Alsoboh et al. [18] proposed a linear transformation Baℵ :

A → A , defined as

Baℵ

(
£(=)

)
= =+

∞∑
ι=2

(aℵ)ι−1e−aℵ%

〈ι− 1〉% !
ηι=ι, ς ∈ i. (12)

As mathematical experts, we observe that the emergence of %-calculus has significantly

enriched AFT by enabling the construction of new subclasses endowed with intricate geometric

and algebraic properties. This advancement underscores the adaptability of %-calculus in

extending classical frameworks and revealing novel mathematical phenomena. Its influence

spans both theoretical and applied aspects, offering a solid foundation for continued research

and innovation in the field [14,19–39].
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3. Bi-Univalent Function Class linked with Neutrosophic %-Poisson Distribution

The framework of %-calculusparticularly through the lens of %-Fibonacci numbers and the

Neutrosophic %-Poisson distributionoffers a powerful and adaptable foundation for the formu-

lation of new subclasses of
∑

. Inspired by the algebraic and structural properties of these

tools, we introduce two novel subclasses within the class
∑

, denoted by LM∑(Π(=; %)) and

KM∑(Π(=; %)).

Definition 3.1. A bi-univalent function £, represented by the series expansion in (1) belong

to the class LM∑(Π(z; %)) if and only if

Baℵ

(
£(=)

)
=

≺ Π(=; %) =
1 + %ϑ2%=2

1− ϑ%=− %ϑ2%=2
, (13)

and

Baℵ

(
χ(ς)

)
ς

≺ Π(ς; %) =
1 + %ϑ2%ς

2

1− ϑ% ς − %ϑ2%ς2
, (14)

where χ = £−1, ϑ% and Baℵ are given by, (5), (8), (12), respectively, and =, ς ∈ i.

Definition 3.2. A bi-univalent function £, represented by the series expansion in (1) belong

to the class KM∑(Π(=; %)) if and only if

f%〈Baℵ

(
£(=)

)
〉 ≺ Π(=; %) =

1 + %ϑ2%=2

1− ϑ%=− %ϑ2%=2
, (15)

and

δf%〈Baℵ

(
χ(ς)

)
〉 ≺ Π(ς; %) =

1 + %ϑ2%ς
2

1− ϑ% ς − %ϑ2%ς2
, (16)

where χ = £−1, ϑ% and Baℵ are given by, (5), (8), (12), respectively, and =, ς ∈ i.

By letting different values of the parameters % ∈ (0, 1), we obtain several new subclasses of∑
.

Example 3.3. If % 7→ 1−, we obtain the class LM∑(Π(=)) consisting of functions £ ∈
∑

satisfying the conditions

Baℵ

(
£(=)

)
=

≺ 1 + ϑ2=2

1− ϑ=− ϑ2=2
,

and

Baℵ

(
χ(ς)

)
ς

≺ 1 + ϑ2ς2

1− ϑς − ϑ2ς2
,

where ϑ = 1−
√
5

2 , χ = £−1 and Baℵ are given by, (5) and (12), respectively, and =, ς ∈ i.
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Example 3.4. If % 7→ 1−, we obtain the class KM∑(Π(=)) consisting of functions £ ∈
∑

satisfying the conditions (
Baℵ

(
£(=)

))′
≺ 1 + ϑ2=2

1− ϑ=− ϑ2=2
,

and (
Baℵ

(
χ(ς)

))′
≺ 1 + ϑ2ς2

1− ϑς − ϑ2ς2
,

where ϑ = 1−
√
5

2 , χ = £−1 and Baℵ are given by, (5) and (12), respectively, and =, ς ∈ i.

4. Coefficient Bounds of the Subclass LM∑(Π(=; %))

In this section, we first obtain the estimate of the initial Taylor coefficients |η2| and |η2| for

functions in the class LM∑(Π(=; %)) as per in Definition 3.1.

Firstly, let Υ(=) = 1 + Υ1= + Υ2=2 + Υ3=3 + . . . , and Υ(=) ≺ Π(=; %). Then there exist

ϕ ∈ P such that |ϕ(=)| < 1 in i and Υ(=) = Π(ϕ(=); %), we have

~(=) =
1 + ϕ(=)

1− ϕ(=)
= 1 + ε1=+ ε2=2 + · · · ∈ P (= ∈ i). (17)

It follows that

ϕ(=) =
ε1=
2

+

(
ε2 −

ε21
2

)
=2

2
+

(
ε3 − ε1ε2 −

ε31
4

)
=3

2
+ · · · , (18)

and

Π(ϕ(=); %) = 1 + Υ̂1

[
ε1=
2

+

(
ε2 −

ε21
2

)
=2

2
+

(
ε3 − ε1ε2 −

ε31
4

)
=3

2
+ · · ·

]
+ Υ̂2

[
ε1=
2

+

(
ε2 −

ε21
2

)
=2

2
+

(
ε3 − ε1ε2 −

ε31
4

)
=3

2
+ · · ·

]2
+ Υ̂3

[
ε1=
2

+

(
ε2 −

ε21
2

)
=2

2
+

(
ε3 − ε1ε2 −

ε31
4

)
=3

2
+ · · ·

]3
+ · · ·

= 1 +
Υ̂1ε1

2
=+

1

2

[(
ε2 −

ε21
2

)
Υ̂1 +

ε21
2

Υ̂2

]
=2

+
1

2

[(
ε3 − ε1ε2 +

ε31
4

)
Υ̂1 + ε1

(
ε2 −

ε21
2

)
Υ̂2 +

ε31
4

Υ̂3

]
=3 + · · · .

(19)

And similarly, there exists an analytic function ν such that |ν(ς)| < 1 in i and Υ(ς) =

Π(ν(ς); %). Therefore, the function

κ(ς) =
1 + ν(ς)

1− ν(ς)
= 1 + o1ς + o2ς

2 + · · · ∈ P. (20)

It follows that

ν(ς) =
o1ς

2
+

(
o2 −

o21
2

)
ς2

2
+

(
o3 − o1o2 −

o31
4

)
ς3

2
+ · · · , (21)
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and

Π(ν(ς); %) = 1 +
Υ̂1o1

2
ς +

1

2

[(
o2 −

o21
2

)
Υ̂1 +

o21
2

Υ̂2

]
ς2

+
1

2

[(
o3 − o1o2 +

o31
4

)
Υ̂1 + o1

(
o2 −

o21
2

)
Υ̂2 +

o31
4

Υ̂3

]
ς3 + · · · .

(22)

Theorem 4.1. Let £ ∈ LM∑(Π(=; %)). Then

∣∣η2∣∣ ≤ e2aℵ
%
|ϑ%|

√
〈2〉% !

|aℵ |
√∣∣eaℵ

%
ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]∣∣ , (23)

and ∣∣η3∣∣ ≤ ∣∣η2∣∣2 +
〈2〉% !eaℵ% |ϑ%|

a2
ℵ

. (24)

Proof. Let £ ∈ LM∑(δ; Π(=; %)) and χ = £−1. Considering (15) and (16) we have

Baℵ

(
£(=)

)
=

= Π(ϕ(=); %), (= ∈ i), (25)

and

Baℵ

(
χ(ς)

)
ς

= Π(ν(ς); %), (ς ∈ i). (26)

Since

Baℵ

(
£(=)

)
=

=
Υ̂1ε1

2
=+

1

2

[(
ε2 −

ε21
2

)
Υ̂1 +

ε21
2

Υ̂2

]
=2 + · · · . (27)

and

Baℵ

(
χ(ς)

)
ς

=
Υ̂1o1

2
ς +

1

2

[(
o2 −

o21
2

)
Υ̂1 +

o21
2

Υ̂2

]
ς2 + · · · . (28)

By comparing (25) and (27), along (19), yields

aℵ
eaℵ
%

η2=+
a2
ℵ

〈2〉% !eaℵ%
η3=2 + · · · =

Υ̂1ε1
2
=+

1

2

[(
ε2 −

ε21
2

)
Υ̂1 +

ε21
2

Υ̂2

]
=2 + · · · . (29)

Beside that, By comparing (26) and (28), along (22), yields

−aℵ
eaℵ
%

η2=+
a2
ℵ

〈2〉% !eaℵ%

(
2η22 − η3

)
=2 + · · · =

Υ̂1o1
2

ς +
1

2

[(
o2 −

o21
2

)
Υ̂1 +

o21
2

Υ̂2

]
ς2 + · · · .

(30)
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Equating the pertinent coefficient in (29) and (30), we obtain

mℵ
eaℵ
%

η2 =
Υ̂1ε1

2
(31)

− aℵ
eaℵ
%

η2 =
Υ̂1o1

2
(32)

a2
ℵ

〈2〉% !eaℵ%
η3 =

1

2

[(
ε2 −

ε21
2

)
Υ̂1 +

ε21
2

Υ̂2

]
(33)

a2
ℵ

〈2〉% !eaℵ%

(
2η22 − η3

)
=

1

2

[(
o2 −

o21
2

)
Υ̂1 +

o21
2

Υ̂2

]
(34)

From (31) and (32), we have

ε1 = −o1 ⇐⇒ ε21 = o21, (35)

and

η22 =
e2aℵ
%

ϑ2%

2a2
ℵ

(
ε21 + o21

)
⇐⇒ ε21 + o21 =

2a2
ℵ

e2aℵ
%

ϑ2%
η22. (36)

Now, by summing (33) and (34), we obtain

2a2
ℵ

〈2〉% !eaℵ%
η22 =

(ε2 + o2)ϑ%
2

+

[
(2%+ 1)ϑ2%

4
− ϑ%

4

] (
ε21 + o21

)
. (37)

By putting (36) in (37), we obtain

η22 =
〈2〉% !e2aℵ%

ϑ2%

4a2
ℵ

(
eaℵ
%
ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

])(ε2 + o2). (38)

Using (3) for (38), we have∣∣η2∣∣ ≤ e2aℵ
%
|ϑ%|

√
〈2〉% !

|aℵ |
√∣∣eaℵ

%
ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]∣∣ . (39)

Now, so as to find the bound on |η3|, let’s subtract from (33) and (34) along (36), we obtain

η3 = η22 +
〈2〉% !eaℵ% ϑ%

4a2
ℵ

(ε2 − o2). (40)

Hence, we get ∣∣η3∣∣ ≤ ∣∣η2∣∣2 +
〈2〉% !eaℵ% |ϑ%|

a2
ℵ

. (41)

Then, in view of (39), we obtain∣∣η3∣∣ ≤ 〈2〉% !e2aℵ%
ϑ2%

a2
ℵ

(
eaℵ
%
ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]) +
〈2〉% !eaℵ% |ϑ%|

a2
ℵ

. (42)

with doing simple calculation, we have

∣∣η3∣∣ ≤ 〈2〉% ! eaℵ% |ϑ%|
∣∣∣(2eaℵ

%
− 〈2〉% !(2%+ 1)

)
|ϑ%|+ 〈2〉% !

∣∣∣
a2
ℵ

∣∣∣(eaℵ
%
− 〈2〉% !(2%+ 1)

)
ϑ% + 〈2〉% !

∣∣∣ . (43)
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This proves (24).

Theorem 4.2. For [ ∈ R \ {0}, let £ ∈ LM∑(δ; Π(=; %)). Then

∣∣η3 − [ η22∣∣ ≤

〈2〉% !e

aℵ
% |ϑ%|
a2
ℵ

|1− [| ≤
∣∣∣∣1− 〈2〉% ![(2%+1)ϑ%−1

]
e
aℵ
% ϑ%

∣∣∣∣
|1−[|〈2〉% !e

2aℵ
% ϑ2%∣∣∣a2

ℵ

(
e
aℵ
% ϑ%+〈2〉% !

[
1−(2%+1)ϑ%

])∣∣∣ |1− [| ≥
∣∣∣∣1− 〈2〉% ![(2%+1)ϑ%−1

]
e
aℵ
% ϑ%

∣∣∣∣ (44)

Proof. Let £ ∈ LM∑(δ; Π(=; %)), from (38) and (40) we have

η3 − [ η22 =
(1− [)〈2〉% !e2aℵ%

ϑ2%(ε2 + o2)

4a2
ℵ

(
eaℵ
%
ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]) +
〈2〉% !eaℵ% ϑ%

4a2
ℵ

(ε2 − o2)

=

(
K ([) +

〈2〉% !eaℵ% ϑ%

4a2
ℵ

)
ε2 +

(
K ([)−

〈2〉% !eaℵ% ϑ%

4a2
ℵ

)
o2.

(45)

where

K ([) =
(1− [)〈2〉% !e2aℵ%

ϑ2%

4a2
ℵ

(
eaℵ
%
ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]) . (46)

Then, by taking modulus of (45), we conclude that

∣∣η3 − [ η22∣∣ ≤

〈2〉% !e

aℵ
% |ϑ%|
a2
ℵ

, 0 ≤
∣∣K ([)

∣∣ ≤ 〈2〉% !eaℵ% |ϑ%|
4a2
ℵ

4
∣∣K ([)

∣∣, ∣∣K (a)
∣∣ ≥ 〈2〉% !eaℵ% |ϑ%|

4a2
ℵ

5. Coefficient Bounds of the Subclass KM∑(Π(=; %))

In this section, we first obtain the estimate of the initial Taylor coefficients |η2| and |η2| for

functions in the class KM∑(Π(=; %)) as per in Definition 3.2.

Theorem 5.1. For a ∈ R \ {0}, let £ ∈ KM∑(Π(=; %)). Then

∣∣η2∣∣ ≤ e2aℵ
%
|ϑ%|

√
〈2〉% !

|aℵ |
√∣∣(1 + %〈2〉%)eaℵ% ϑ% + 〈2〉3

%

[
1− (2%+ 1)ϑ%

]∣∣ . (47)

∣∣η3∣∣ ≤ 〈2〉% ! eaℵ% |ϑ%|
∣∣∣(2eaℵ

%
(1 + %〈2〉%)| − 〈2〉3%(2%+ 1)

)
|ϑ%|+ 〈2〉3%

∣∣∣
a2
ℵ
(1 + %〈2〉%)

∣∣∣((1 + %〈2〉%)eaℵ% − 〈2〉3%(2%+ 1)
)
ϑ% + 〈2〉3

%

∣∣∣ . (48)
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Proof. Let £ ∈ LM∑(δ; Π(=; %)) and χ = £−1. Considering (15) and (16) we have

f%〈Baℵ

(
£(=)

)
〉 = Π(ϕ(=); %), (= ∈ i), (49)

and

f%〈Baℵ

(
χ(ς)

)
〉 = Π(ν(ς); %), (ς ∈ i). (50)

Since

f%〈Baℵ

(
£(=)

)
〉 =

Υ̂1ε1
2
=+

1

2

[(
ε2 −

ε21
2

)
Υ̂1 +

ε21
2

Υ̂2

]
=2 + · · · . (51)

and

f%〈Baℵ

(
χ(ς)

)
〉 =

Υ̂1o1
2

ς +
1

2

[(
o2 −

o21
2

)
Υ̂1 +

o21
2

Υ̂2

]
ς2 + · · · . (52)

By comparing (49) and (51), along (19), yields

〈2〉%aℵ
eaℵ
%

η2=+
〈3〉%(aℵ)2

〈2〉% !eaℵ%
η3=2 + · · · =

Υ̂1ε1
2
=+

1

2

[(
ε2 −

ε21
2

)
Υ̂1 +

ε21
2

Υ̂2

]
=2 + · · · . (53)

Beside that, By comparing (50) and (52), along (22), yields

−〈2〉%aℵ
eaℵ
%

η2=+
〈3〉%(aℵ)2

〈2〉% !eaℵ%

(
2η22 − η3

)
=2 + · · · = Υ̂1o1

2
ς +

1

2

[(
o2 −

o21
2

)
Υ̂1 +

o21
2

Υ̂2

]
ς2 + · · · .

(54)

Equating the pertinent coefficient in (53) and (54), we obtain

〈2〉%mℵ
eaℵ
%

η2 =
Υ̂1ε1

2
(55)

−
〈2〉%aℵ
eaℵ
%

η2 =
Υ̂1o1

2
(56)

〈3〉%a2
ℵ

〈2〉% !eaℵ%
η3 =

1

2

[(
ε2 −

ε21
2

)
Υ̂1 +

ε21
2

Υ̂2

]
(57)

〈3〉%a2
ℵ

〈2〉% !eaℵ%

(
2η22 − η3

)
=

1

2

[(
o2 −

o21
2

)
Υ̂1 +

o21
2

Υ̂2

]
(58)

From (55) and (56), we have

ε1 = −o1 ⇐⇒ ε21 = o21, (59)

and

η22 =
e2aℵ
%

ϑ2%

8〈2〉2
%
a2
ℵ

(
ε21 + o21

)
⇐⇒ ε21 + o21 =

8〈2〉2
%
a2
ℵ

e2aℵ
%

ϑ2%
η22. (60)

Now, by summing (57) and (58), we obtain

2〈3〉%a2
ℵ

〈2〉% !eaℵ%
η22 =

(ε2 + o2)ϑ%
2

+

[
(2%+ 1)ϑ2%

4
− ϑ%

4

] (
ε21 + o21

)
. (61)
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By putting (60) in (61), we obtain

η22 =
〈2〉% !e2aℵ%

ϑ2%

4a2
ℵ

(
〈3〉%eaℵ% ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]
〈2〉2

%

)(ε2 + o2). (62)

Using (3) for (62), we have∣∣η2∣∣ ≤ e2aℵ
%
|ϑ%|

√
〈2〉% !

|aℵ |
√∣∣〈3〉%eaℵ% ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]
〈2〉2

%

∣∣ . (63)

Now, so as to find the bound on |η3|, let’s subtract from (57) and (58) along (60), we obtain

η3 = η22 +
〈2〉% !eaℵ% ϑ%

4〈3〉%a2
ℵ

(ε2 − o2). (64)

Hence, we get ∣∣η3∣∣ ≤ ∣∣η2∣∣2 +
〈2〉% !eaℵ% |ϑ%|
〈3〉%a2

ℵ

. (65)

Then, in view of (63), we obtain∣∣η3∣∣ ≤ 〈2〉% !e2aℵ%
ϑ2%

a2
ℵ

(
〈3〉%eaℵ% ϑ% + 〈2〉% !

[
1− (2%+ 1)ϑ%

]
〈2〉2

%

) +
〈2〉% !eaℵ% |ϑ%|
〈3〉%a2

ℵ

. (66)

with doing simple calculation, we have

∣∣η3∣∣ ≤ 〈2〉% ! eaℵ% |ϑ%|
∣∣∣(2eaℵ

%
〈3〉% | − 〈2〉% !(2%+ 1)〈2〉2

%

)
|ϑ%|+ 〈2〉3%

∣∣∣
a2
ℵ
〈3〉%

∣∣∣(〈3〉%eaℵ% − (2%+ 1)〈2〉3
%

)
ϑ% + 〈2〉3

%

∣∣∣ . (67)

This proves (48).

Theorem 5.2. Let £ ∈ KM∑(Π(=; %)). Then

∣∣η3 − [ η22∣∣ ≤

〈2〉% !e

aℵ
% |ϑ%|

〈3〉%a2
ℵ

|1− [| ≤
∣∣∣∣1− 〈2〉3% [(2%+1)ϑ%−1]

e
aℵ
% ϑ%〈3〉%

∣∣∣∣
|1−[|〈2〉% !e

2aℵ
% ϑ2%∣∣∣a2

ℵ

(
〈3〉% e

aℵ
% ϑ%+〈2〉3% [1−(2%+1)ϑ%]

)∣∣∣ |1− [| ≥
∣∣∣∣1− 〈2〉3%[(2%+1)ϑ%−1

]
e
aℵ
% ϑ%〈3〉%

∣∣∣∣ (68)

Proof. Let £ ∈ KM∑(Π(=; %)), from (62) and (64) we have

η3 − [ η22 =
(1− [)〈2〉% !e2aℵ%

ϑ2%(ε2 + o2)

4a2
ℵ

(
〈3〉%eaℵ% ϑ% + 〈2〉3

%

[
1− (2%+ 1)ϑ%

])
+
〈2〉% !eaℵ% ϑ%

4〈3〉%a2
ℵ

(ε2 − o2)

=

(
K ([) +

〈2〉% !eaℵ% ϑ%

4〈3〉%a2
ℵ

)
ε2 +

(
K ([)−

〈2〉% !eaℵ% ϑ%

4〈3〉%a2
ℵ

)
o2.

(69)
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where

K ([) =
(1− [)〈2〉% !e2aℵ%

ϑ2%

4a2
ℵ

(
〈3〉%eaℵ% ϑ% + 〈2〉3

%
[1− (2%+ 1)ϑ%]

) . (70)

Then, by taking modulus of (69), we conclude that

∣∣η3 − [ η22∣∣ ≤

〈2〉% !e

aℵ
% |ϑ%|

〈3〉%a2
ℵ

, 0 ≤
∣∣K ([)

∣∣ ≤ 〈2〉% !eaℵ% |ϑ%|
4〈3〉%a2

ℵ

4
∣∣K ([)

∣∣, ∣∣K (a)
∣∣ ≥ 〈2〉% !eaℵ% |ϑ%|

4〈3〉%a2
ℵ

6. Corollaries

If % 7→ 1−, we obtain the following results for the class LM∑(Π(=)) defined in Example (3.3)

Corollary 6.1. Let £ given by (1) be in the class LM∑(0; Π(=)). Then

∣∣η2∣∣ ≤ √
2e2aℵ |ϑ|

|aℵ |
√∣∣ (eaℵ − 6

)
ϑ+ 2

∣∣ ,
∣∣η3∣∣ ≤ 2 eaℵ |ϑ|

∣∣(2eaℵ − 6
)
ϑ+ 2

∣∣
a2
ℵ

∣∣∣(eaℵ − 6
)
ϑ% + 2

∣∣∣ ,

and

∣∣η3 − [ η22∣∣ ≤


2eaℵ |ϑ|
a2
ℵ

|1− [| ≤
∣∣∣1− 2(3ϑ−1)

eaℵ ϑ

∣∣∣
2e2aℵ ϑ2|1−[|∣∣∣a2
ℵ

((
eaℵ−6

)
ϑ+2

)∣∣∣ |1− [| ≥
∣∣∣1− 2(3ϑ−1)

eaℵ ϑ

∣∣∣
If % 7→ 1−, we obtain the following results for the class KM∑(Π(=)) defined in Example (3.4)

Corollary 6.2. Let £ given by (1) be in the class KM∑(Π(=)). Then

∣∣η2∣∣ ≤ e2aℵ |ϑ|
√

2

|aℵ |
√∣∣3eaℵ ϑ+ 8

[
1− 3ϑ

]∣∣ ,
∣∣η3∣∣ ≤ 2 eaℵ |ϑ|

∣∣(6eaℵ − 24
)
|ϑ|+ 8

∣∣
3a2
ℵ

∣∣∣(3eaℵ − 24
)
ϑ+ 8

∣∣∣ ,

and

∣∣η3 − [ η22∣∣ ≤


2eaℵ |ϑ|
3a2
ℵ

|1− [| ≤
∣∣∣1− 8(3ϑ−1)

eaℵ ϑ

∣∣∣
2e2aℵ ϑ2|1−[|∣∣∣a2

ℵ

(
3eaℵ ϑ+8[1−3ϑ]

)∣∣∣ |1− [| ≥
∣∣∣1− 8(3ϑ−1)

eaℵ ϑ

∣∣∣
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7. Conclusion

In this work, we introduce a new subclass of bi-univalent functions on the open unit disk,

formulated through a generalized neutrosophic %-Poisson distribution series. Our study pri-

marily focuses on obtaining estimates for the Taylor coefficients and deriving FeketeSzeg type

inequalities, leveraging the %-Fibonacci sequence as a fundamental instrument in these deriva-

tions. Additionally, several corollaries are established, and the broader implications of the

results are discussed, emphasizing their significance and prospective applications in various

branches of mathematics, science, and technology.

Building on the theoretical advancements made, future research could extend these findings

by delving into higher-order coefficient estimates, further refining the structural properties of

these subclasses, and investigating their geometric characteristics. Additionally, exploring the

upper bounds related to the Zalcman conjecture and analyzing Hankel determinants of higher

orders could provide deeper insights into the broader implications of this work, particularly

in the context of analytic function theory. The neutrosophic %-Poisson distribution is poised

to offer new perspectives and applications, enriching the field and its diverse interdisciplinary

connections.A future study of this work would enable researchers to link these tools with other

tools in the neutrosophic environment, including [40]– [48].
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Coefficient Bounds and Fekete–Szegö Inequalities for a Subclass of Bi-Univalent Functions
Defined via Neutrosophic %-Poisson Distribution

Neutrosophic Sets and Systems, Vol. 91, 2025                                                                              302



30. Hadi, S. H.; Darus, M.; Alamri, B.; Altnkaya, .; Alatawi, A. (2024). On classes of ζ-uniformly q-analogue

of analytic functions with some subordination results. Applied Mathematics in Science and Engineering,

32 (1), Article 2312803.

31. Hadi, S. H.; Shaba, T. G.; Madhi, Z. S.; Darus, M.; Lupa, A. A.; Tchier, F. (2024). Boundary values of

Hankel and Toeplitz determinants for q-convex functions. MethodsX, 13, Article 102842.

32. Srivastava, H. M.; Hadi, S. H.; Darus, M. (2023). Some subclasses of p-valent γ-uniformly type q-starlike

and q-convex functions defined by using a certain generalized q-Bernardi integral operator. Revista de la

Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, 117 (1), Article 50.

33. Tayyah, A. S.; Atshan, W. G. (2025). A class of bi-Bazilevi and bi-pseudo-starlike functions involving

Tremblay fractional derivative operator. Problemy AnalizaIssues of Analysis, 14 (2), 145161.

34. Tayyah, A. S.; Atshan, W. G. (2025). Starlikeness and bi-starlikeness associated with a new Carathodory

function. Journal of Mathematical Sciences. https://doi.org/10.1007/s10958-025-07604-8.

35. Shakir, Q. A.; Tayyah, A. S.; Breaz, D.; Cotrl, L.-I.; Rpeanu, E.; Sakar, F. M. (2024). Upper bounds of the

third Hankel determinant for bi-univalent functions in crescent-shaped domains. Symmetry, 16, 1281.

36. Tayyah, A. S.; Atshan, W. G.; Oros, G. I. (2025). Third-order differential subordination results for mero-

morphic functions associated with the inverse of the Legendre Chi function via the Mittag-Leffler identity.

Mathematics, 13 (13), 2089.

37. Mahmood, S.; Ahmad, Q. Z.; Srivastava, H. M.; Khan, N.; Khan, B.; Tahir, M. (2019). A certain subclass

of meromorphically q-starlike functions associated with the Janowski functions. Journal of Inequalities and

Applications, 2019, Article 88.

38. Mahmood, S.; Srivastava, H. M.; Khan, N.; Ahmad, Q. Z.; Khan, B.; Ali, I. (2019). Upper bound of the

third Hankel determinant for a subclass of q-starlike functions. Symmetry, 11, Article 347.

39. Srivastava, H. M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. (2021). Upper bound of the

third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function.

Bulletin des Sciences Mathmatiques, 167, Article 102942.

40. Al-Qudah, Y., Al-Sharqi, F., Mishlish, M., & Rasheed, M. M. Hybrid integrated decision-making algorithm

based on AO of possibility interval-valued neutrosophic soft settings. International Journal of Neutrosophic

Science,2023, 22(3), 84-98.

41. Al-Qudah, Y., Alhazaymeh, K., Hassan, N., Almousa, M., Alaroud, M. Transitive Closure of Vague Soft

Set Relations and its Operators. International Journal of Fuzzy Logic and Intelligent Systems, 2022, 22(1),

pp. 5968

42. Hazaymeh, A. Al-Qudah, Y. Al-Sharqi, F. Bataihah, A. (2025). A novel Q-neutrosophic soft under interval

matrix setting and its applications. International Journal of Neutrosophic Science,25 (4), 156-168.

43. Fathi H, Myvizhi M, Abdelhafeez A, Abdellah MR, Eassa M, Sawah MS, Elbehiery H. Single-Valued

Neutrosophic Graph with Heptapartitioend Structure. Neutrosophic Sets and Systems. 2025, vol.80, 728-

748

44. Romdhini, M. U., Al-Sharqi, F., Al-Obaidi, R. H., Rodzi, Z. M. (2025). Modeling uncertainties associated

with decision-making algorithms based on similarity measures of possibility belief interval-valued fuzzy

hypersoft setting. Neutrosophic Sets and Systems, 77, 282-309.

45. Al-Qudah, Y., Al-Sharqi, F. (2023). Algorithm for decision-making based on similarity measures of possibil-

ity interval-valued neutrosophic soft setting settings. International Journal of Neutrosophic Science, 22(3),

69-83.

46. Romdhini, M. U.; Al-Sharqi, F.; Tahat, M. K.; Lutfi, A. Exploring the Algebraic Structures of Q-Complex

Neutrosophic Soft Fields. International Journal of Neutrosophic Science,2023, 22(04), 93-105.

47. Al-Qudah, Y., Jaradat, A., Sharma, S. K., & Bhat, V. K. Mathematical analysis of the structure of one-

heptagonal carbon nanocone in terms of its basis and dimension. Physica Scripta, 2024, 99(5), 055252.

A.Alsoboh, Mustafa A. Sabri, H. Almutairi, Y. Al-Qudah, A.Amourah, A. A. Al-Maqbali,
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Coefficient Bounds and Fekete–Szegö Inequalities for a Subclass of Bi-Univalent Functions
Defined via Neutrosophic %-Poisson Distribution

Neutrosophic Sets and Systems, Vol. 91, 2025                                                                              304

Received: Feb 1, 2025. Accepted: Aug 4, 2025 


	1. Introduction
	2.  Preliminaries
	3. Bi-Univalent Function Class linked with Neutrosophic -Poisson Distribution
	4. Coefficient Bounds of the Subclass LM((;))
	5. Coefficient Bounds of the Subclass KM((;))
	6. Corollaries
	7. Conclusion
	References

