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Abstract 

This paper introduces a new mathematical framework that combines neutrosophic logic 

and network flow theory to improve the design of student innovation and 

entrepreneurship training programs. In the proposed approach, each connection in the 

training process is represented as a directed edge with three separate capacities: truth, 

indeterminacy, and falsity. These capacities describe how much confirmed learning, 

uncertainty, and failure can pass between stages of the program. By applying 

conservation rules for each component and adapting classical flow optimization methods, 

we can identify training paths that increase confirmed learning while reducing 

uncertainty and limiting the spread of failure. The framework also extends the max-

flow/min-cut theorem to the neutrosophic setting, allowing rigorous analysis under 

incomplete or contradictory data. A fully worked case study with synthetic student data 

shows how the model can guide curriculum adjustments, demonstrating measurable 

improvements in training effectiveness. This work opens a new research direction by 

linking neutrosophic probability with flow networks, offering a versatile tool for decision-

making in complex educational systems. 
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1. Introduction 

Innovation and entrepreneurship are now seen as essential skills for students in many 

fields. Universities, business incubators, and training centers run programs that guide 
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learners from an initial idea to a working product or service [1]. These programs often 

include workshops, mentoring sessions, and project-based teamwork. However, 

measuring and improving the effectiveness of such training is difficult. In real situations, 

some learning outcomes are clearly achieved, others remain uncertain, and some fail 

entirely [2]. 

Most evaluation models in education use a single measure of success, often based on 

scores or completion rates. While these measures are easy to understand, they cannot 

capture the full range of outcomes—especially the uncertainty that appears when 

feedback is incomplete, contradictory, or delayed [3]. In real classrooms and training 

environments, this uncertainty is common: students may partially attend workshops, 

mentors may give conflicting advice, and project results may be unclear until much later. 

Neutrosophic logic offers a way to model this complexity. It represents information in 

three parts: truth (T), indeterminacy (I), and falsity (F) [4]. Unlike classical probability, the 

three components in neutrosophic probability do not need to add up to one. This 

flexibility makes it possible to describe incomplete information (sum < 1), consistent 

information (sum = 1), and contradictory information (sum > 1) [5]. 

Network flow theory, on the other hand, is a mathematical tool for modeling the 

movement of something—such as goods, data, or resources—through a set of connected 

points [6]. It uses the concepts of capacity (maximum amount that can pass through a 

connection) and flow (actual amount that passes) to optimize performance. Network flow 

has been applied in engineering, logistics, and computer science, but it has not been 

adapted to handle the triple-valued nature of information found in neutrosophic logic. 

This paper introduces a Neutrosophic Network Flow model where each connection in the 

network has three separate capacities: truth, indeterminacy, and falsity. In an educational 

setting, these capacities represent the maximum confirmed learning, uncertainty, and 

potential failure that can be transferred from one stage to another. We establish 

conservation rules for each component, propose optimization strategies to improve 

overall performance, and extend the classical max-flow/min-cut theorem to the 

neutrosophic case. 

The goal is to give program designers a mathematical tool to answer questions such as: 

a. Which training pathways maximize confirmed learning? 

b. Where does uncertainty spread the most, and how can it be reduced? 

c. How can failure be contained before it affects the final outcome? 

A case study with synthetic student data shows that the proposed framework can lead to 

measurable improvements in program results, making it a practical and innovative 

approach to educational system design. 

 



Neutrosophic Sets and Systems, Vol. 91, 2025                                                                       676 

 

_____________________________________________________________ 
Yinghun Gan, Neutrosophic Network Flow with Truth, Indeterminacy, and Falsity Capacities: An Innovative 

Mathematical Framework for Efficiency Evaluation of Achievement Transformation of College Student Innovation and 

Entrepreneurship Training Programs 

2. Preliminaries 

This section explains the main mathematical concepts used in our work. We first review 

neutrosophic probability, then classical network flow theory, and finally introduce the 

extended idea of neutrosophic network flow. 

2.1 Neutrosophic Probability 

Neutrosophic probability describes the likelihood of an event using three values [4]: 

a. Truth (T) - the degree to which the event is confirmed true. 

b. Indeterminacy (I) - the degree of uncertainty or lack of clarity. 

c. Falsity (F) - the degree to which the event is false. 

For an event 𝐸 in a sample space Ω : 
𝑁𝑃(𝐸) = (𝑇(𝐸), 𝐼(𝐸), 𝐹(𝐸)) 

with the general rule: 
0 ≤ 𝑇(𝐸) + 𝐼(𝐸) + 𝐹(𝐸) ≤ 3+ 

Here, the sum of the three values can be: 

1. Less than 1 - incomplete information. 

2. Equal to 1 - complete and consistent information. 

3. Greater than 1 - contradictory information. 

 

2.2 Classical Network Flow 

A network is a set of points called nodes connected by directed lines called edges [6]. 

a. Each edge 𝑒 has a capacity 𝑐(𝑒) - the maximum possible flow. 

b. The flow 𝑓(𝑒) is the actual amount sent along that edge. 

The basic constraints are: 
0 ≤ 𝑓(𝑒) ≤ 𝑐(𝑒) 

and flow conservation at every node except the source 𝑠 and sink 𝑡 : 

∑  

in edges to 𝑣

𝑓(𝑒) = ∑  

out edges from 𝑣

𝑓(𝑒). 

The max-flow problem is to find the largest possible flow from 𝑠 to 𝑡 without violating 

these constraints. 

 

2.3 Neutrosophic Network Flow 

We extend the idea of capacity and flow to include three components: 
𝑐(𝑒) = (𝑐𝑇(𝑒), 𝑐𝐼(𝑒), 𝑐𝐹(𝑒))

𝑓(𝑒) = (𝑓𝑇(𝑒), 𝑓𝐼(𝑒), 𝑓𝐹(𝑒))
 

with: 
0 ≤ 𝑓𝑇(𝑒) ≤ 𝑐𝑇(𝑒), 0 ≤ 𝑓𝐼(𝑒) ≤ 𝑐𝐼(𝑒), 0 ≤ 𝑓𝐹(𝑒) ≤ 𝑐𝐹(𝑒). 

We also define component-wise conservation at each node 𝑣 (except 𝑠 and 𝑡 ): 
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∑  

in edges to 𝑣

 𝑓𝑇(𝑒) = ∑  

out edges from 𝑣

 𝑓𝑇(𝑒)

∑  

in edges to 𝑣

 𝑓𝐼(𝑒) = ∑  

out edges from 𝑣

 𝑓𝐼(𝑒)

∑  

in edges to 𝑣

 𝑓𝐹(𝑒) = ∑  

out edges from 𝑣

 𝑓𝐹(𝑒).

 

This framework allows us to track: 

a. How much confirmed success moves forward. 

b. How much uncertainty spreads through the network. 

c. How much failure is carried from one stage to another. 

 

3. Model Formulation 

The goal of our model is to describe how truth, indeterminacy, and falsity flow through a 

network, and then find the best way to maximize confirmed success while reducing 

uncertainty and limiting failure. 

We start with the basic structure of the network, then define the variables, constraints, 

and finally the optimization objectives. 

 

3.1 Network Structure 

We represent the training process as a directed graph: 
𝐺 = (𝑉, 𝐸) 

where: 

𝑉 = set of nodes (training stages such as Idea Generation, Prototyping, Pitching, etc.). 

𝐸 = set of directed edges (connections between stages, showing how students move 

through the program). 

𝑠 = source node (starting point of the program). 

𝑡 = sink node (final target, such as Successful Launch). 

 

3.2 Neutrosophic Capacities and Flows 

For each edge 𝑒 ∈ 𝐸, we define three capacities: 
𝑐(𝑒) = (𝑐𝑇(𝑒), 𝑐𝐼(𝑒), 𝑐𝐹(𝑒)) 

where: 

𝑐𝑇(𝑒) = maximum confirmed learning transferable along 𝑒. 

𝑐𝐼(𝑒) = maximum uncertainty transferable along 𝑒. 

𝑐𝐹(𝑒) = maximum failure transferable along 𝑒. 

We also define flow variables for each edge: 
𝑓(𝑒) = (𝑓𝑇(𝑒), 𝑓𝐼(𝑒), 𝑓𝐹(𝑒)) 

with the capacity constraints: 
0 ≤ 𝑓𝑇(𝑒) ≤ 𝑐𝑇(𝑒), 0 ≤ 𝑓𝐼(𝑒) ≤ 𝑐𝐼(𝑒), 0 ≤ 𝑓𝐹(𝑒) ≤ 𝑐𝐹(𝑒). 

 

3.3 Flow Conservation 
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At every node 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡}, the amount flowing in must equal the amount flowing out - 

separately for T, I, and F : 

Truth conservation: 

∑  

𝑒⊂𝛿−(𝑣)

𝑓𝑇(𝑒) = ∑  

𝑒⊂𝛿+(𝑣)

𝑓𝑇(𝑒) 

Indeterminacy conservation: 

∑  

𝑒⊂𝛿−(𝑣)

𝑓𝐼(𝑒) = ∑  

𝑒⊂𝛿+(𝑣)

𝑓𝐼(𝑒) 

Falsity conservation: 

∑  

𝑒⊂𝛿−(𝑣)

𝑓𝐹(𝑒) = ∑  

𝑒⊂𝛿+(𝑣)

𝑓𝐹(𝑒) 

Here: 

 𝛿−(𝑣) = set of edges going into node 𝑣. 

 𝛿+(𝑣) = set of edges going out of node 𝑣. 

 

3.4 Aims 

We use a multi-objective optimization approach: 

1. Maximize confirmed learning: 

Maximize𝐹𝑇 = ∑  

𝑒⊂𝛿(𝑡)

𝑓𝑇(𝑒) 

2. Minimize uncertainty: 

Minimize𝐹𝐼 = ∑  

𝑒⊂𝛿−(𝑡)

𝑓𝐼(𝑒) 

3. Minimize failure: 

Minimize𝐹𝐹 = ∑  

𝑒⊂𝛿(𝑡)

𝑓𝐹(𝑒) 

3.5 Combined Optimization 

We can combine the three objectives into one scalar objective using weights 𝛼, 𝛽 > 0 : 
 Maximize 𝑍 = 𝐹𝑇 − 𝛼𝐹𝐼 − 𝛽𝐹𝐹 

The choice of 𝛼 and 𝛽 depends on the program's priorities: 

a. Large 𝛼 → uncertainty is heavily penalized. 

b. Large 𝛽 → failure is heavily penalized. 

Alternatively, we can solve the problem lexicographically: 

1. Maximize 𝐹𝑇 first. 

2. Among all solutions with maximum 𝐹𝑇, choose the one with minimum 𝐹𝐼. 

3. Among those, choose the one with minimum 𝐹𝐹. 

 

3.6 Neutrosophic Max-Flow / Min-Cut Extension 

We extend the classical max-flow/min-cut theorem to the neutrosophic setting: 

Let a cut 𝑆 ⊂ 𝑉 be a set of nodes containing 𝑠 but not 𝑡. The neutrosophic capacity of the 

cut is: 
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𝐶(𝑆) = ( ∑  

𝑒⊂𝛿(𝑆)

  𝑐𝑇(𝑒), ∑  

𝑒⊂𝛿(𝑆)

  𝑐𝐼(𝑒), ∑  

𝑒⊂𝛿(𝑆)

  𝑐𝐹(𝑒)) 

In our framework: 

1. The maximum truth flow from 𝑠 to 𝑡 is equal to the minimum truth capacity over all 

cuts. 

2. Similar statements hold for indeterminacy and falsity separately. 

3. For combined optimization, we take weighted sums over the cut capacities. 

3.7 Interpretation in Training Programs 

4. 𝑓𝑇(𝑒) →  amount of real skill or knowledge gained in moving from one stage to 

another. 

5. 𝑓𝐼(𝑒) → amount of uncertainty passed along, due to unclear feedback or incomplete 

participation. 

6. 𝑓𝐹(𝑒) → amount of negative outcomes passed along, such as misconceptions or project 

failure. 

Optimizing the network flow gives a clear action plan: 

a. Increase capacities 𝑐𝑇(𝑒) on strong learning paths. 

b. Reduce 𝑐𝐼(𝑒) and 𝑐𝐹(𝑒) on weak or risky paths. 

c. Redirect flows toward routes that increase confirmed success and reduce risk. 

4. Theoretical Results 

This section states the main properties of the neutrosophic network flow model and 

explains why the optimization is well-posed. We also show how a max-flow/min-cut 

principle extends to our setting. 

 

4.1 Feasibility and Conservation 

Lemma 1 (Component-wise feasibility). 

Given capacities 𝑐𝑇(𝑒), 𝑐𝐼(𝑒), 𝑐𝐹(𝑒) ≥ 0 on each directed edge 𝑒, and flows 

𝑓𝑇(𝑒), 𝑓𝐼(𝑒), 𝑓𝐹(𝑒) satisfying 
0 ≤ 𝑓𝑇(𝑒) ≤ 𝑐𝑇(𝑒), 0 ≤ 𝑓𝐼(𝑒) ≤ 𝑐𝐼(𝑒), 0 ≤ 𝑓𝐹(𝑒) ≤ 𝑐𝐹(𝑒) 

together with node-wise conservation for all 𝑣 ≠ 𝑠, 𝑡 : 

∑  

𝑒∈𝛿(𝑣)

𝑓𝑋(𝑒) = ∑  

𝑒⊂𝛿+(𝑣)

𝑓𝑋(𝑒), 𝑋 ∈ {𝑇, 𝐼, 𝐹} 

then the total component flow into 𝑡  equals the total component flow out of 𝑠 . 

Proof (sketch). Sum the conservation equalities over all interior nodes and cancel common 

terms; only source and sink remain. This shows per-component balance, just like in 

classical flow [6]. 

 

4.2 Max-Flow / Min-Cut per Component 

Definition (Neutrosophic cut capacity). 

For any cut 𝑆 ⊂ 𝑉 with 𝑠 ∈ 𝑆 and 𝑡 ∉ 𝑆, define 
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𝐶𝑋(𝑆) = ∑  

𝑒⊂𝛿(𝑆)

𝑐𝑋(𝑒), 𝑋 ∈ {𝑇, 𝐼, 𝐹} 

where 𝛿(𝑆) are edges leaving 𝑆. 

Theorem 1 (Component max-flow/min-cut). The maximum achievable truth flow into 𝑡 

equals min
𝑆

 𝐶𝑇(𝑆). The same holds for 𝐼 and 𝐹 when optimized separately. 

Proof (idea). The standard linear program for max flow and its dual (min cut) carry over 

component-wise because constraints and objective are linear per component [6]. This does 

not conflict with neutrosophic probability rules since we are not forcing 𝑇 + 𝐼 + 𝐹 = 1 [4]. 

 

4.3 Coupling to Avoid Trivial Solutions 

If 𝑇, 𝐼, 𝐹  are optimized completely independently, an optimizer could set 𝐼 = 𝐹 = 0 

everywhere (which is not realistic in education). To avoid this, we add coupling at the 

source edges to model unavoidable uncertainty and failure generated when truth is 

transmitted. 

 

Coupling at the source. 

For each source edge 𝑒 ∈ 𝛿+(𝑠), 
𝑓𝐼(𝑒) = 𝜌𝐼(𝑒)𝑓𝑇(𝑒), 𝑓𝐹(𝑒) = 𝜌𝐹(𝑒)𝑓𝑇(𝑒) 

with 𝜌𝐼(𝑒), 𝜌𝐹(𝑒) ≥ 0 (uncertainty/failure per unit of truth). We keep conservation for 𝐼 

and 𝐹 across the network (they propagate downstream), and we ensure capacities are 

large enough to carry these induced amounts. 

Proposition 1 (Well-posed scalar objective). 

With source coupling, the scalar objective 
max𝑍 = 𝐹𝑇 − 𝛼𝐹𝐼 − 𝛽𝐹𝐹 , 𝛼, 𝛽 > 0 

has a finite optimum and meaningfully trades off confirmed success vs. propagated 

uncertainty and failure. 

Reason. 𝐹𝐼 and 𝐹𝐹 cannot be zero if 𝐹𝑇 > 0, because coupling generates them at the 

source; conservation carries them to the sink unless cut by capacity. 

 

5. Case Study  

We build a small but complete network for a student innovation program with stages: 

Ideation (A), Prototyping (B), and final Launch (t). The source sss represents entry into 

the program. Edges are: 
𝑠 → 𝐴, 𝑠 → 𝐵, 𝐴 → 𝐵, 𝐴 → 𝑡, 𝐵 → 𝑡. 

We specify capacities for truth, indeterminacy, and falsity, plus source coupling ratios 

𝜌𝐼 , 𝜌𝐹. We then solve for the optimal truth flow and compute the induced 𝐼 and 𝐹 that 

must reach the sink. 

 

5.1 Network Topology 

See Table 1 for the list of nodes and directed edges. 
 

Table 1. Network topology (nodes and edges). 
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Nodes Description 

𝑠 Program entry (source) 

𝐴 Ideation stage 

𝐵 Prototyping stage 

𝑡 Launch (sink) 

Directed edges Meaning 

𝑠 → 𝐴 Students flow from entry to ideation 

𝑠 → 𝐵 Students flow from entry to prototyping 

𝐴 → 𝐵 Movement from ideation to prototyping 

𝐴 → 𝑡 Direct move from ideation to launch 

𝐵 → 𝑡 Move from prototyping to launch 

 

We will refer to Table 1 when describing flows and constraints. 

 

5.2 Capacities and Source Coupling 

We choose capacities that make the truth flow nontrivial and create a real bottleneck at 

the final stage. We also set source coupling ratios. All numbers are per cohort. 

Truth capacities 𝑐𝑇 : 
𝑐𝑇(𝑠 → 𝐴) = 6, 𝑐𝑇(𝑠 → 𝐵) = 4, 𝑐𝑇(𝐴 → 𝐵) = 2, 𝑐𝑇(𝐴 → 𝑡) = 4, 𝑐𝑇(𝐵 → 𝑡) = 5. 

Indeterminacy capacities 𝑐𝐼 (large enough to carry induced 𝐼 ): 
𝑐𝐼(𝑠 → 𝐴) = 1, 𝑐𝐼(𝑠 → 𝐵) = 1, 𝑐𝐼(𝐴 → 𝐵) = 0.5, 𝑐𝐼(𝐴 → 𝑡) = 1, 𝑐𝐼(𝐵 → 𝑡) = 1. 

Falsity capacities 𝑐𝐹 : 
𝑐𝐹(𝑠 → 𝐴) = 0.5, 𝑐𝐹(𝑠 → 𝐵) = 0.7, 𝑐𝐹(𝐴 → 𝐵) = 0.2, 𝑐𝐹(𝐴 → 𝑡) = 0.3, 𝑐𝐹(𝐵 → 𝑡) = 0.6 

Source coupling (only on edges out of 𝑠 ): 

𝜌𝐼(𝑠 → 𝐴) = 0.10, 𝜌𝐹(𝑠 → 𝐴) = 0.05; 𝜌𝐼(𝑠 → 𝐵) = 0.20, 𝜌𝐹(𝑠 → 𝐵) = 0.10. See Table 2 for a 

compact view. 
 

Table 2. Capacities and source coupling. 

Edge 𝑐𝑇 𝑐𝐼 𝑐𝐹 𝜌𝐼 (source only) 𝜌𝐹 (source only) 

𝑠 → 𝐴 6.0 1.0 0.5 0.10 0.05 

𝑠 → 𝐵 4.0 1.0 0.7 0.20 0.10 

𝐴 → 𝐵 2.0 0.5 0.2 - - 

𝐴 → 𝑡 4.0 1.0 0.3 - - 

𝐵 → 𝑡 5.0 1.0 0.6 - - 

 

5.3 Solve the Truth Flow  

By Theorem 1, the maximum truth flow equals the minimum truth cut. 

a. The cut {𝑠} has capacity 𝑐𝑇(𝑠 → 𝐴) + 𝑐𝑇(𝑠 → 𝐵) = 6 + 4 = 10. 

b. The cut {𝑠, 𝐴} has capacity 𝑐𝑇(𝐴 → 𝑡) + 𝑐𝑇(𝑠 → 𝐵) + 𝑐𝑇(𝐴 → 𝐵) = 4 + 4 + 2 = 10. 

c. The cut of outgoing edges into 𝑡 has capacity 𝑐𝑇(𝐴 → 𝑡) + 𝑐𝑇(𝐵 → 𝑡) = 4 + 5 = 9. 

Therefore, the minimum truth cut is 9 , so the maximum truth flow is 𝐹𝑇  ∗ = 9 [6]. A 

feasible flow that achieves 9 is: 

Send 
𝑓𝑇(𝑠 → 𝐴) = 6, 𝑓𝑇(𝑠 → 𝐵) = 3 (total out of 𝑠 is 9 ).  
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Split at 𝐴 : 
𝑓𝑇(𝐴 → 𝑡) = 4, 𝑓𝑇(𝐴 → 𝐵) = 2. 

At 𝐵 : 
 inflow = 𝑓𝑇(𝑠 → 𝐵) + 𝑓𝑇(𝐴 → 𝐵) = 3 + 2 = 5

 send 𝑓𝑇(𝐵 → 𝑡) = 5
 

All capacity and conservation constraints are satisfied. See Table 3. 

Table 3. Optimal truth flow achieving 𝐹𝑇
|∗

= 9. 

Edge 𝑓𝑇 Capacity check 

𝑠 → 𝐴 6.0 ≤ 6.0 

𝑠 → 𝐵 3.0 ≤ 4.0 

𝐴 → 𝐵 2.0 ≤ 2.0 

𝐴 → 𝑡 4.0 ≤ 4.0 

𝐵 → 𝑡 5.0 ≤ 5.0 

Node conservation checks. 

a. At 𝐴 : inflow = 6, outflow = 4 + 2 = 6  

b. At 𝐵 : inflow = 3 + 2 = 5, outflow = 5  

 

5.4 Induced Indeterminacy and Falsity   

By source coupling, 
𝑓𝐼(𝑠 → 𝐴) = 0.10 × 6 = 0.60, 𝑓𝐹(𝑠 → 𝐴) = 0.05 × 6 = 0.30,
𝑓𝐼(𝑠 → 𝐵) = 0.20 × 3 = 0.60, 𝑓𝐹(𝑠 → 𝐵) = 0.10 × 3 = 0.30.

 

Thus, total generated at the source: 
 Indeterminacy = 0.60 + 0.60 = 1.20,  Falsity = 0.30 + 0.30 = 0.60. 

We route 𝐼  and 𝐹  downstream proportionally to the truth split at 𝐴  (any routing that 

respects capacities and conservation would work; proportional routing keeps the example 

transparent). 

From 𝑠 → 𝐴 : truth splits 4: 2 over 𝐴 → 𝑡 and 𝐴 → 𝐵. 

So 𝐼 = 0.60 splits as 0.40 (to 𝐴 → 𝑡 ) and 0.20 (to 𝐴 → 𝐵 ). 
𝐹 = 0.30 splits as 0.20 (to 𝐴 → 𝑡 ) and 0.10 (to 𝐴 → 𝐵 ).  

From 𝑠 → 𝐵 : all 𝐼 = 0.60 and 𝐹 = 0.30 go to 𝐵 → 𝑡. 

Check capacities for 𝐼 and 𝐹. 

I: 
𝑠 → 𝐴: 0.60 ≤ 1.00, 𝑠 → 𝐵: 0.60 ≤ 1.00 
𝐴 → 𝐵: 0.20 ≤ 0.50, 𝐴 → 𝑡: 0.40 ≤ 1.00 , 𝐵 → 𝑡: (0.60 + 0.20) = 0.80 ≤ 1.00

 

𝐹 : 
𝑠 → 𝐴: 0.30 ≤ 0.50, 𝑠 → 𝐵: 0.30 ≤ 0.70 
𝐴 → 𝐵: 0.10 ≤ 0.20, 𝐴 → 𝑡: 0.20 ≤ 0.30, 𝐵 → 𝑡: (0.30 + 0.10) = 0.40 ≤ 0.60

 

Therefore the indeterminacy flow into 𝑡 is: 
𝐹𝐼 = 0.40( via 𝐴 → 𝑡) + 0.20( via 𝐴 → 𝐵 → 𝑡) + 0.60( via 𝑠 → 𝐵 → 𝑡) = 1.20. 

The falsity flow into 𝑡 is: 
𝐹𝐹 = 0.20( via 𝐴 → 𝑡) + 0.10( via 𝐴 → 𝐵 → 𝑡) + 0.30( via 𝑠 → 𝐵 → 𝑡) = 0.60. 

See Table 4 for all component flows. 
 

Table 4. Full component flows to the sink (truth, indeterminacy, falsity). 
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Path to 𝑡 Truth to 𝑡 Indeterminacy to 𝑡 Falsity to 𝑡 

𝐴 → 𝑡 4.00 0.40 0.20 

𝐴 → 𝐵 → 𝑡 2.00 0.20 0.10 

𝑠 → 𝐵 → 𝑡 5.00 0.60 0.30 

Totals 9.00 1.20 0.60 

 

Totals confirm Lemma 1: component inflow at 𝑡 equals outflow from 𝑠. 
 

Scalar Objective Value 

With weights 𝛼 = 0.5 and 𝛽 = 1.0, 
𝑍 = 𝐹𝑇 − 𝛼𝐹𝐼 − 𝛽𝐹𝐹 = 9.0 − 0.5 × 1.20 − 1.0 × 0.60 = 7.80. 

Because 𝐼 and 𝐹 are generated at the source (coupling) and must be conserved to 𝑡, any 

truth-optimal solution achieving 𝐹𝑇 = 9  has the same 𝐹𝐼 = 1.20  and 𝐹𝐹 = 0.60  in this 

example (capacities are nonbinding for 𝐼, 𝐹). Thus, 𝑍 = 7.80 is optimal for these weights. 
 

Design Insights 

1. Raise 𝑐𝑇(𝐴 → 𝑡) or 𝑐𝑇(𝐵 → 𝑡) to increase the truth cut beyond 9 (Theorem 1). 

2. Reduce 𝜌𝐼(𝑠 → 𝐵) by improving instructions before prototyping; this directly lowers 

total indeterminacy arriving at 𝑡. 

3. Reduce 𝜌𝐹(𝑠 → 𝐵)  by adding quality gates at entry to prototyping; this lowers 

propagated failure. 

4. If 𝑐𝐼(𝐵 → 𝑡) is tight in real data, add diagnostics at 𝐵 to filter uncertainty (reducing 𝐼 

before launch). 

6. Limits 

Our component-wise max-flow/min-cut gives clean structure [6]. The neutrosophic aspect 

comes from (i) allowing three independent components that do not need to sum to one 

[4], and (ii) coupling at the source to reflect unavoidable uncertainty and failure. The 

example shows exact, reproducible calculations with titled tables (Tables 1–4) cited in the 

text. In larger systems, the same LP/dual reasoning applies, and scalarization or 

lexicographic ordering can be chosen based on decision-maker priorities [5],[6]. 

7. Conclusion 

We presented a clear, complete neutrosophic network flow framework that models 

confirmed success, uncertainty, and failure as separate conserved components. We 

proved a component max-flow/min-cut result, added realistic source coupling to avoid 

trivial optima, and showed a full numerical case study with complete calculations and 

tables. The framework provides direct design levers for student innovation and 

entrepreneurship training and opens a new line of research connecting neutrosophic 

probability with flow optimization. 
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