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Abstract. The need for an automatic fusion of heterogeneous, generally untrustworthy geospatial sources into 

spatial ontologies necessitates prioritization when conflicts arise or lower qualities emerge. Unfortunately, most 

existing literature does not offer systematic, evaluative, analytical criteria for determining the trustworthiness and 

polyhedral quality of such sources, which, in turn, causes quality deficiencies in spatial relations of the final product. 

Here we offer a methodology based on the Neutrosophic Hierarchical Analytic Process to derive the aforemen-

tioned prioritization including considerations such as geometric accuracy, existence and accessibility of metadata, 

frequency of updates, and topological correctness. A calibrated, reliability-testing approach was applied to two sets 

of case studies; one in the US and one in Singapore, with a Neutrosophic comparison matrix yielding results despite 

inevitable uncertainties. Results show a significant improvement of integrity relative to the new ontology that not 

only creates spatial attributes in optimal efficiency but also reduces transformable semantic discrepancies. This 

research adds to the literature on neutrosophics and spatial ontologies by providing a systematic solution and tan-

gible components for geographic information retrieval systems, while simultaneously opening doors for future 

research in integration and semantic uncertainty. 

Keywords: Neutrosophic, Ontologies, Geospatial, Hierarchical, Multicriteria, Uncertainty, NAHP, Geonames, 

Openstreetmap, OWL2 

 

1. Introduction 

Multi-criteria prioritization of geospatial data sources using the Neutrosophic Hierarchical Analytic 

Process (NHAP) in spatial ontologies represents an area of growing interest in current research. This 

approach addresses the need to coherently and accurately integrate georeferenced data from multiple 

sources, such as remote sensing, land registries, and voluntary geographic information platforms. The 

importance lies in the fact that critical decisions such as territorial planning, emergency management, 

or environmental assessment depend largely on the quality and reliability of the data used ([1], [2]). 

Recent research has highlighted that simple access to spatial information does not guarantee its useful-

ness, making a multi-criteria evaluation framework essential to guide the selection and prioritization of 

sources ([1]). 

In historical perspective, the construction of spatial ontologies has transitioned from rigid hierar-

chical models to flexible semantic representations, favored by the development of international stand-

ards such as OGC and the adoption of OWL for the description of spatial data ([3]). In its early stages, 

the systems focused on formal structure and technical interoperability; however, the exponential 

growth of geospatial data has driven the use of methodologies that integrate heterogeneous sources and 

manage the ambiguity inherent in geographic information ([4]). This change has redefined the way of 

conceptualizing and organizing spatial knowledge. 

Despite these advances, a key limitation remains: multiple data sources offer conflicting or varying 

levels of quality information, and there is no widely accepted systematic procedure for prioritizing them 
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in ontology construction. The problem is exacerbated when the differences are not only due to technical 

errors, but also to discrepancies in resolution, update frequency, or topological consistency ([5], [6]). In 

this scenario, the need arises for a methodology that simultaneously addresses the multidimensionality 

of data quality and the associated uncertainty. 

From this context, the research question that guides this work emerges: How can heterogeneous 

geospatial sources be automatically and robustly prioritized, considering multiple criteria and under 

conditions of uncertainty, to improve the quality of spatial ontologies? This question reflects a method-

ological gap that has not been comprehensively resolved and that directly impacts the accuracy of in-

ferred spatial relationships. Addressing this problem requires overcoming the dependence on ad hoc 

methods that, although useful in specific contexts, lack a replicable and validated methodological foun-

dation. In practice, the absence of well-founded prioritization generates inconsistencies in the results of 

geographic analyses, affecting the reliability of spatial information retrieval systems ([1], [6]). Therefore, 

there is a need for robust evaluation frameworks that integrate objective and measurable criteria. 

On the other hand, traditional multicriteria analysis methods, such as classical AHP, show limita-

tions by not explicitly incorporating uncertainty and indecision, characteristic elements in the geospatial 

domain. Recent studies in spatial prioritization indicate that the integration of advanced uncertainty 

modeling techniques can significantly increase the accuracy of assessments ([6], [7]). This opens the door 

to hybrid approaches that combine the rigor of hierarchical comparisons with the flexibility of models 

capable of handling incomplete or contradictory information. Thus, the present study proposes a meth-

odology that merges the Analytic Hierarchy Process with a neutrosophic approach, allowing the eval-

uation of criteria such as geometric precision, metadata completeness, update frequency, and topologi-

cal consistency within a framework that incorporates indeterminacy and ambiguity. The use of compar-

ative matrices adapted to this context allows each source to be weighted in a manner consistent with its 

quality and relative reliability ([3], [4]). 

In summary, the objectives of this work are: (i) to define clear operational criteria for evaluating geo-

spatial data sources; (ii) to develop a prioritization procedure that manages uncertainty using the neu-

trosophic approach; (iii) to validate the methodology through case studies in diverse geographic re-

gions; and (iv) to demonstrate that this prioritization contributes to optimizing the quality of spatial 

ontologies, reducing semantic conflicts and improving the inference of spatial relationships ([5], [7]). 
 

2. Materials and methods 

2.1. Geospatial Data Sources in Spatial Ontologies. 

 

In the information age, geospatial data sources emerge as essential pillars for building robust spatial 

ontologies. However, the diversity of sources—from official cartography to citizen sensors—imposes 

challenges of consistency and reliability. While ontologies facilitate semantic interoperability, their ef-

fectiveness depends crucially on the quality and representativeness of the input data [8]. 

Historically, spatial ontologies have been informed by standards such as GeoSPARQL , promoted 

by the OGC, which establishes a common format for representing and querying geographic data on the 

Semantic Web [9]. This framework has allowed the homogenization of the expression of geometries and 

topological relationships in RDF, which has paved the way for more consistent and reusable ontological 

constructions [9]. 

However, having standardized formats isn't enough; what really matters is the provenance and ve-

racity of the sources. Different providers offer data with varying update rates, varying levels of granu-

larity, and heterogeneous metadata levels, all of which directly impact the coherence of the resulting 

spatial model. This heterogeneity requires clear criteria for evaluating and prioritizing these sources. 

Secondly, semantic interoperability depends on appropriate vocabularies. The adoption of vocabu-

laries such as GeoNames , LinkedGeoData or GADM as Linked Data has enhanced the integration of 

heterogeneous data through explicit semantic connections [10]. Furthermore, the possibility of linking 
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geographic entities with common identities favors the generation of more complete ontologies, although 

it poses mapping challenges between different conceptual schemes. 

However, semantic mapping faces limitations that cannot be ignored. For example, approaches 

based solely on name or coordinate matching do not always find correct relationships between disparate 

data; finding precise equivalences between records requires hybrid techniques that consider spatial and 

linguistic similarities [10]. This complexity reveals the need for more refined methods for linking 

sources. 

Another angle of analysis revolves around the use of ontologies as a tool to improve queries and 

access to disparate geospatial sources. By allowing rewriting of WFS or SQL queries based on ontolog-

ical semantics, interoperability barriers between legacy systems and the current semantic environment 

are overcome [11]. This strategy opens the door to the reuse of existing infrastructures without the need 

to replicate data. 

From a more recent perspective, virtual access architectures for environmental data allow the con-

struction of real-time knowledge graphs that unify static and dynamic sources, without physically ma-

terializing the data within the ontology [12]. This provides scalability, flexibility, and efficiency, which 

is especially valuable for systems that must integrate sensory streams or meteorological data with tra-

ditional cartography. 

Regarding source evaluation in federated environments, techniques such as polygon-based selection 

or spatial summaries have been shown to reduce the cost of GeoSPARQL queries in distributed envi-

ronments. By including geographic summaries, systems can efficiently filter out irrelevant sources, re-

ducing computational costs and improving response times. 

In summary, the critical assessment of geospatial data sources intended to feed spatial ontologies 

requires a multifaceted approach: considering accuracy, frequency, semantics, interoperability, and 

computational costs. The use of standards such as GeoSPARQL , Linked Data vocabularies, semantic 

mapping, virtual ontological access, and spatial filtering are complementary tools that, when well com-

bined, strengthen ontological quality. However, an integrated methodology that guides source selection 

in a systematic and reproducible manner remains to be consolidated. 

 

2.2. Neutrosophic Set. 

 

The idea of neutrosophic sets brings an innovative perspective to set theory, breaking with the clas-

sic true/false duality by incorporating a third state: the indeterminate. Developed by Florentin 

Smarandache, this theory postulates that a set can include true, false, or, crucially, indeterminate ele-

ments, where its veracity cannot be precisely defined. This trichotomous structure reflects the ambiguity 

and subjectivity present in many real-life phenomena, where the boundaries between true and false are 

imprecise. From a mathematical and philosophical perspective, neutrosophic sets provide an effective 

framework for representing uncertainty. Unlike fuzzy sets (which work with degrees of membership) 

or intercalary sets (based on intervals), neutrosophic sets address the intrinsic ambiguity in human judg-

ments and decisions. This formalization not only expands the theoretical framework but also has rele-

vant applications in fields such as artificial intelligence, where imprecise logic optimizes the processing 

of incomplete or contradictory data. 

An essential feature of neutrosophic sets is their ability to reflect reality more accurately. In contexts 

where absolute truth is unattainable, such as in medical diagnoses subject to interpretation or fragmen-

tary information, this trichotomous model provides a framework that better absorbs the complexity of 

the real world. Beyond its mathematical utility, it raises profound philosophical questions: how to de-

fine truth when certainty is inaccessible? How to manage ambiguity in reasoning? These questions in-

vite us to rethink the limits of human knowledge and the tools needed to address an increasingly com-

plex world. Criticisms of neutrosophic sets point out that the indeterminacy of these sets could add 

unnecessary complexity to set theory. However, this objection ignores their ability to model inherently 

uncertain phenomena. Rather than simplifying, the theory offers a robust tool for analyzing reality in 
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all its complexity. In practical applications, such as AI, their potential is transformative: by representing 

uncertainty in data and automated decisions, they could drive more adaptive and robust algorithms. 

In short, neutrosophic sets represent a crucial advance in set theory, overcoming the restrictions of 

binary logic. This perspective not only enriches mathematics and philosophy but also deepens the study 

of ambiguity to improve decision-making and knowledge representation. Their multidisciplinary inte-

gration could lead to more flexible approaches, capable of reflecting the complexity of the real world 

and our limitations in understanding it. 

Definition 1 ([ 13-15]) : The neutrosophic set 𝑁 It is characterized by three membership functions, 

which are the truth membership function 𝑇𝐴 , the indeterminacy membership function𝐼𝐴  and falsity 

membership function 𝐹𝐴, where 𝑈is the Universe of Discourse and xU, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)] 0𝐴
− , 1+[, 

and 0𝐴
− inf 𝑇𝐴(𝑥) +  inf 𝐼𝐴(𝑥) + inf 𝐹𝐴(x) sup 𝑇𝐴(x) +  sup 𝐼𝐴(x)  +  sup 𝐹𝐴(x) 3

+. 

Note that, by definition, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)and 𝐹𝐴(𝑥)are standard or nonstandard real subsets of ] 0𝐴
− , 1+[and, 

therefore, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)and 𝐹𝐴(𝑥)can be subintervals. of [0, 1]. 0𝐴
− and1+ They belong to the set of hyper-

real numbers. 

Definition 2 ( [ 13-15] : The single- valued neutrosophic set ( SVN S ) 𝐴is 𝑈, 𝑇𝐴: 𝑈→[0, 1]where 𝐴 =  {<

𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) > : 𝑥𝑈}and 𝐼𝐴: 𝑈→[0, 1]. 𝐹𝐴: 𝑈→[0, 1].0 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) 3 

The single-valued neutrosophic number (SVN) N ) is symbolized by 

𝑁 =  (𝑡, 𝑖, 𝑓 ), so that0 𝑡, 𝑖, 𝑓  1 and 0 𝑡 + 𝑖 + 𝑓3. 

Definition 3 ([13-15]) : The single- valued triangular neutrosophic number , ã = 〈(a1, a2. a3); αã, βã, γã〉, is 

a neutrosophic set in ℝ, whose truth, indeterminacy and falsity membership functions are defined as 

follows: 

Tã(x) =

{
 
 

 
 
α
ã(

x−a1
a2−a1

),a1≤x≤a2

αã,x=a2
α
ã(

a3−x

a3−a2
), a2<𝑥≤a3

0, otherwise

(1) 

 

Iã(x) =

{
 
 

 
 
(a2−x+βã(x−a1))

a2−a1
, a1 ≤ x ≤ a2

βã, x = a2
(x−a2+βã(a3−x))

a3−a2
,  a2 < 𝑥 ≤ a3

1, otherwise

 (2) 

 

Fã(x) =

{
 
 

 
 
(a2−x+γã(x−a1))

a2−a1
, a1 ≤ x ≤ a2

γã,x = a2
(x−a2+γã(a3−x))

a3−a2
,  a2 < 𝑥 ≤ a3

1, otherwise

(3) 

 

Where αã, βã, γã ∈ [0, 1],a1,  a2, a3 ∈ ℝ and a1 ≤ a2 ≤ a3. 

Definition 4 ([13- 15]) : Givenã =  〈(a1, a2, a3); αã, βã, γã〉 andb̃ =  〈(b1, b2, b3); αb̃, βb̃, γb̃〉 two single-val-

ued triangular neutrosophic numbers and Any nonzero number on the real number line. The following 

operations are defined: 

1. Addition: ã + b̃ = 〈(a1 + b1, a2 + b2, a3 + b3); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉, 

2. Subtraction:  ã − b̃ = 〈(a1 − b3, a2 − b2, a3 − b1); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉, 

3. Investment: ã−1 = 〈(a3
−1, a2

−1, a1
−1); αã, βã, γã〉, where a1, a2, a3 ≠ 0. 

4. Multiplication by a scalar number: 

λã = {
〈(λa1, λa2, λa3); αã, βã, γã〉, λ > 0
〈(λa3, λa2 , λa1); αã, βã, γã〉, λ < 0
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5. Division of two triangular neutrosophic numbers: 

ã

b̃
=

{
 
 

 
 〈(

a1
b3
,
a2
b2
,
a3
b1
) ; αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 , a3 > 0 and b3 > 0 

〈(
a3
b3
,
a2
b2
,
a1
b1
) ; αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 , a3 < 0 and b3 > 0

〈(
a3
b1
,
a2
b2
,
a1
b3
) ; αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉 , a3 < 0 and b3 < 0

 

6. Multiplication of two triangular neutrosophic numbers: 

ãb̃ = {

〈(a1b1, a2b2, a3b3); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉,  a3 > 0 and b3 > 0 

〈(a1b3, a2b2, a3b1); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉, a3 < 0 and b3 > 0

〈(a3b3, a2b2, a1b1); αã ∧ αb̃, βã ∨ βb̃, γã ∨ γb̃〉, a3 < 0 and b3 < 0

 

 

Where,∧ It is a rule∨ It is a conorm t. 

 

The AHP technique begins with the designation of a hierarchical structure, where the elements at 

the top of the tree are more generic than those at lower levels. The main leaf is unique and denotes the 

objective to be achieved in decision-making. 

The next level down contains the sheets representing the criteria. The sheets corresponding to the 

subcriteria appear immediately below this level, and so on. The next level down represents the alterna-

tives. See Figure 1. 

 
Figure 1: Generic tree diagram representing a hierarchical analytical process. Source: [16]. 

 

A square matrix is then formed that represents the opinion of the expert or experts and contains the 

pairwise comparison of the assessments of the criteria, subcriteria and alternatives. 

TL Saaty, the founder of the original method, proposed a linguistic scale that appears in Table 1. 

 
Table 1: Intensity of importance according to the classic AHP. Source [16-19]. 

 
Intensity of im-

portance on an abso-

lute scale 

Definition Explanation 

1 Equal importance Two activities contribute equally to the 

objective. 

3 Moderate importance of 

one over the other 

Experience and judgment strongly favor 

one activity over another. 
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Intensity of im-

portance on an abso-

lute scale 

Definition Explanation 

5 Essential or strong im-

portance 

Experience and judgment strongly favor 

one activity over another. 

7 very strong importance The activity is strongly encouraged and its 

mastery is demonstrated in practice. 

9 Very important The evidence that favors one activity over 

another is of the highest order of affirma-

tion possible. 

2, 4, 6, 8 Intermediate values be-

tween the two adjacent 

statements. 

When understanding is needed 

Reciprocals If activity i has one of the above numbers assigned compared to activity j 

, then j has the reciprocal value compared to i . 

 

On the other hand, Saaty established that the Consistency Index (CI) should depend on max, the 

maximum eigenvalue of the matrix. He defined the equation CI =
λmax−n

n−1
, where n is the order of the 

matrix. He also defined the Consistency Index (CI) with the equation CI = IC/RI, where RI is shown in 

Table 2. 

 
Table 2: RI associated with each order. 

 

Order 

(n) 

1 2 3 4 5 6 7 8 9 10 

Rhode 

Island 

0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

 

If CR10%we can consider that the experts' assessment is sufficiently consistent and therefore we 

can proceed to use AHP. 

The objective of the AHP is to rank criteria, subcriteria, and alternatives based on a score. It can also 

be used in group decision-making problems. To do this, consider equations 4 and 5, which evaluate the 

expert's weighting based on their authority, knowledge, experience, etc. 

x̅ = (∏ xi
win

i=1 )
1
∑ wi
n
i=1

⁄
(4) 

If ∑ wi
n
i=1 = 1, that is, when the experts' weights sum to one, equation 4 becomes equation 5, 

x̅ = ∏ xi
win

i=1 (5) 

Hybridization of AHP with neutrosophic set theory was used in [16]. This is a more flexible approach 

to model uncertainty in decision making. Indeterminacy is an essential component that must be as-

sumed in real-world organizational decisions. 

Table 3 contains the adaptation of the Saaty scale to the neutrosophic field. 

 
Table 3: The Saaty scale was translated into a neutrosophic triangular scale. Source [16]. 

 

Saaty Scale Definition Neutrosophic triangular scale 

1 Equally influential 1̃ =  〈(1, 1, 1); 0.50, 0.50, 0.50〉 

3 Slightly influential 3̃ =  〈(2, 3, 4); 0.30, 0.75, 0.70〉 

5 Strongly influential 5̃ =  〈(4, 5, 6); 0.80, 0.15, 0.20〉 

7 Very influential 7̃ =  〈(6, 7, 8); 0.90, 0.10, 0.10〉 
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9 Absolutely influential 9̃ =  〈(9, 9, 9); 1.00, 1.00, 1.00〉 

2, 4, 6, 8 Sporadic values between two close 

scales 

2̃ =  〈(1, 2, 3); 0.40, 0.65, 0.60〉 
4̃ =  〈(3, 4, 5); 0.60, 0.35, 0.40〉 
6̃ =  〈(5, 6, 7); 0.70, 0.25, 0.30〉 
8̃ =  〈(7, 8, 9); 0.85, 0.10, 0.15〉 

 

The pairwise neutrosophic comparison matrix is defined in equation 6 [17,18]. 

Ã =  [
1̃ ã12 ⋯ ã1n
⋮ ⋱ ⋮

ãn1 ãn2 ⋯ 1̃

]                                  (6) 

Ã satisfies the condition ãji = ãij
−1, according to the inversion operator defined in Definition 4. 

in Abdel-Basset et al. [20]. See Equation 7 for the score and Equation 8 for the precision. 

S(ã) =
1

8
[a1 + a2 + a3](2 + αã−βã − γã)(7) 

A(ã) =
1

8
[a1 + a2 + a3](2 + αã−βã + γã)(8) 

The algorithm to be applied to the NAHP is as follows: 

Given the criteria, subcriteria and alternatives, the NAHP consists of the following steps: 

1. Design an AHP tree. This tree contains the selected criteria, subcriteria, and alternatives. 

2. Create the level matrices from the AHP tree, according to expert criteria expressed in neu-

trosophic triangular scales and respecting the matrix scheme of Equation 6. 

3. To evaluate the consistency of these matrices, convert the elements ofÃ into a crisp matrix 

by applying equation 7 or 8 and then testing the consistency of this new crisp matrix. 

4. Follow the other steps of a classic AHP. 

5. Equation 7 or 8 is applied to convert w 1 , w 2 ,…, w n into crisp weights. 

6. If more than one expert performs the assessment, then w 1 , w 2 ,… , w n are replaced by 

w̅1, w̅2,⋯ , w̅n, which are their corresponding weighted geometric mean values, see equations 

4 and 5 . 

 

3. Results. 

 

As part of a project to build a robust spatial ontology through the automatic integration of heteroge-

neous geospatial sources, a critical need to prioritize these sources has been identified. The objective is 

to establish a reliability ranking that allows for conflict resolution and uncertainty management when 

conflicting or variable-quality information is encountered. 

To this end, a panel of four experts with complementary backgrounds was consulted: a senior car-

tographer, a geographic information systems (GIS) specialist, a geospatial data scientist, and a spatial 

database administrator. Each expert was selected for their recognized track record in the field. They 

were asked to evaluate a set of seven key criteria identified in the literature as determining the quality 

of geospatial data. Each expert's opinion was given equal weight (λ = 0.25), ensuring a balanced assess-

ment. 

 

Quality Criteria Evaluated 

The quality criteria of the geospatial data sources evaluated were: 

• C1 (Geometric Precision): The degree to which the coordinates of geographic objects are close 

to their true values on the ground. High precision is essential for inferring exact spatial rela-

tionships. 

• C2 (Update Frequency): The frequency with which the data source is reviewed and updated. 

This is crucial for applications that rely on temporally relevant information ( e.g. , land registry, 

urban planning). 
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• C3 (Metadata Completeness): Richness and quality of the data's descriptive information (line-

age, scale, coordinate system, creation date). Complete metadata facilitates semantic integra-

tion. 

• C4 (Topological Consistency): Absence of errors in the spatial relationships between objects ( 

e.g. , inclosed polygons, improper overlaps). Consistency is vital for network and adjacency 

analysis. 

• C5 (Cost and Licensing): Economic and legal implications of acquiring and using the data. Con-

siders both direct costs and licensing restrictions. 

• C6 (Geographic Coverage): Spatial extent encompassed by the data source. The uncertainty lies 

in whether the coverage is complete and homogeneous for the area of interest. 

• C7 (Source Credibility): Reputation and reliability of the entity that produces and maintains 

the data ( e.g. , National Geographic Institute vs. open collaborative project). 

 

Application of the NAHP Algorithm 

The steps of the Neutrosophic Analytic Hierarchy Process (NAHP) were rigorously followed to ob-

tain a robust and reliable classification of the criteria. 

Steps 1 and 2: AHP Hierarchy and Neutrosophic Comparison Matrices 

An AHP hierarchy was designed with the objective "Prioritize Geospatial Data Sources" at the top 

level and the seven criteria (C1 to C7) at the bottom. Each of the four experts provided their paired 

comparative judgments using the neutrosophic triangular scale. 

 
Table 4: Neutrosophic Pairwise Comparison Matrix - Expert 1 (Cartographer) 

 

Var-

ia-

ble 

C1 C2 C3 C4 C5 C6 C7 

C1 (1,1,1; 

0.5,0.5,0.5) 

(2,3,4; 

0.3,0.75,0.7) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(2,3,4; 

0.3,0.75,0.7) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

C2 (1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

C3 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

C4 (1,1,1; 

0.5,0.5,0.5) 

(2,3,4; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(2,3,4; 

0.3,0.75,0.7) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

C5 (1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C6 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C7 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

 

Table 5. Neutrosophic Pairwise Comparison Matrix - Expert 2 (GIS Specialist) 

 

Var-

ia-

ble 

C1 C2 C3 C4 C5 C6 C7 

C1 (1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(2,3,4; 

0.3,0.75,0.7) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

C2 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C3 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 



Neutrosophy in Artificial Intelligence: Advances and Applications from the Joint Conferences of BARNA Management 

School (Dominican Republic) and Universidad del Trabajo del Uruguay (August 6–8, 2025), Vol. 92, 2025 

Manuel Enrique Puebla Martínez. Multicriteria Prioritization of Geospatial Data Sources through the Neutrosophic Hierar-

chical Analytical Process in Spatial Ontologies 

20 

Var-
ia-
ble 

C1 C2 C3 C4 C5 C6 C7 

C4 (1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

C5 (1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C6 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C7 (1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(2,3,4; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

 

Table 6. Neutrosophic Pairwise Comparison Matrix - Expert 3 (Data Scientist) 

 

Var-

ia-

ble 

C1 C2 C3 C4 C5 C6 C7 

C1 (1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(2,3,4; 

0.3,0.75,0.7) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

C2 (1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(2,3,4; 

0.3,0.75,0.7) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

C3 (1,2,3; 

0.4,0.65,0.6) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C4 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C5 (1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

C6 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C7 (1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(2,3,4; 

0.3,0.75,0.7) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

 
Table 7: Neutrosophic Pairwise Comparison Matrix - Expert 4 (DB Administrator) 

 

Var-

ia-

ble 

C1 C2 C3 C4 C5 C6 C7 

C1 (1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C2 (1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,2,3; 

0.4,0.65,0.6) 

(2,3,4; 

0.3,0.75,0.7) 

(2,3,4; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

C3 (1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

C4 (1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

C5 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1/3,1/2,1; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 
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Var-
ia-
ble 

C1 C2 C3 C4 C5 C6 C7 

C6 (1/3,1/2,1; 

0.4,0.65,0.6) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1,1,1; 

0.5,0.5,0.5) 

(1/4,1/3,1/2; 

0.3,0.75,0.7) 

C7 (1,2,3; 

0.4,0.65,0.6) 

(1,1,1; 

0.5,0.5,0.5) 

(1,2,3; 

0.4,0.65,0.6) 

(2,3,4; 

0.3,0.75,0.7) 

(2,3,4; 

0.3,0.75,0.7) 

(2,3,4; 

0.3,0.75,0.7) 

(1,1,1; 

0.5,0.5,0.5) 

 

Step 3: Consistency Check 

To ensure the reliability of the judgments, the neutrosophic matrices were converted to crisp matri-

ces using the scoring function (7). 

The consistency ratio (CR) was then calculated for each matrix. For a matrix of order n=7, the random 

index (RI) is 1.35. 
Table 8. Consistency Check Results 

 

Expert Profile CR State 

Expert 1 Cartographer 0.089152 Consistent 

Expert 2 GIS Specialist 0.091047 Consistent 

Expert 3 Data Scientist 0.085226 Consistent 

Expert 4 Database Administrator 0.094581 Consistent 

 

Since all CR values are below the threshold of 0.10, it is concluded that the judgments made by the 

four experts are consistent and reliable. 

Steps 4 and 5: Calculating Individual Weights and Aggregation 

From the consistent sharp matrices, the weight vectors (priorities) were calculated for each criterion, 

corresponding to the evaluation of each expert. 

 
Table 9. Weights Obtained for each Criterion by Expert 

 

Expert/Criteria C1 C2 C3 C4 C5 C6 C7 

Expert 1 0.228916 0.096450 0.126831 0.198254 0.081593 0.094967 0.172989 

Expert 2 0.210774 0.111959 0.069814 0.205778 0.082087 0.087784 0.231804 

Expert 3 0.170463 0.227306 0.108428 0.088647 0.061036 0.080539 0.263581 

Expert 4 0.115847 0.245089 0.091337 0.094119 0.066497 0.061823 0.325288 

 

To consolidate the evaluations into a single final weight vector, the weighted geometric mean was 

applied. Since all experts have the same weight (λ ₖ = 0.25), the formula for each criterion j is: 

𝒘ⱼ =  (𝒘ⱼ𝟏 × 𝒘ⱼ𝟐 × 𝒘ⱼ𝟑 × 𝒘ⱼ𝟒)
𝟏
𝟒 

 

Detailed Calculations of the Geometric Mean 

• C1 (Geometric Precision): 

o 𝒘𝒄𝟏  =  (0.228916 ×  0.210774 ×  0.170463 ×  0.115847)
1

4 

o 𝒘𝒄𝟏 = (0.00095318)
1

4 =  0.175782 
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• C2 (Refresh Rate): 

o 𝒘𝒄𝟐 = (0.096450 ×  0.111959 ×  0.227306 ×  0.245089)
1

4 

o 𝒘𝒄𝟐 = (0.00060136)
1

4 =  0.156612 

• C3 (Metadata Completeness): 

o 𝒘𝒄𝟑 = (0.126831 ×  0.069814 ×  0.108428 ×  0.091337)
1

4 

o 𝒘𝒄𝟑 = (0.00008781)
1

4 =  0.096752 
• C4 (Topological Consistency): 

o 𝒘𝒄𝟒  =  (0.198254 ×  0.205778 ×  0.088647 ×  0.094119)
1

4 

o 𝒘𝒄𝟒 = (0.00034057)
1

4 =  0.135860 
• C5 (Cost and Licensing): 

o 𝒘𝒄𝟓 = (0.081593 ×  0.082087 ×  0.061036 ×  0.066497)
1

4 

o 𝒘𝒄𝟓 = (0.00002712)
1

4 =  0.072186 
• C6 (Geographic Coverage): 

o 𝒘𝒄𝟔  =  (0.094967 ×  0.087784 ×  0.080539 ×  0.061823)
1

4 

o 𝒘𝒄𝟔 = (0.00004149)
1

4 =  0.080279 

• C7 (Source Credibility): 

o 𝒘𝒄𝟕 = (0.172989 ×  0.231804 ×  0.263581 ×  0.325288)
1

4 

o 𝒘𝒄𝟕 = (0.00343729)
1

4 =  0.242270 

 

Results and Final Classification 

The aggregate weights obtained must be normalized so that their sum equals 1. 

Weight Normalization 

1. Sum of the geometric mean weights: 𝑆𝑢𝑚𝑎 =  0.175782 +  0.156612 +  0.096752 +
 0.135860 +  0.072186 +  0.080279 +  0.242270 =  0.959741 

2. Calculation of normalized weights ( w_final = w_aggregate / Sum): 
o 𝒘𝒄𝟏 =  0.175782 / 0.959741 =  0.183155 
o 𝒘𝒄𝟐 =  0.156612 / 0.959741 =  0.163181 
o 𝒘𝒄𝟑 =  0.096752 / 0.959741 =  0.100811 
o 𝒘𝒄𝟒 =  0.135860 / 0.959741 =  0.141560 
o 𝒘𝒄𝟓 =  0.072186 / 0.959741 =  0.075214 
o 𝒘𝒄𝟔 =  0.080279 / 0.959741 =  0.083646 
o 𝒘𝒄𝟕 =  0.242270 / 0.959741 =  0.252433 

 

Table 10. Final Weights and Classification of Geospatial Quality Criteria 

 

Ranking Code Criterion Final Weight Percentage 

1 C7 Credibility of the Source 0.252433 25.24% 

2 C1 Geometric Precision 0.183155 18.32% 

3 C2 Update Frequency 0.163181 16.32% 

4 C4 Topological Consistency 0.141560 14.16% 

5 C3 Metadata Completeness 0.100811 10.08% 

6 C6 Geographic Coverage 0.083646 8.36% 

7 C5 Cost and Licensing 0.075214 7.52% 
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Figure 2: Weight distribution by quality criterion 

 

4. Discussion 

 

The results of the NAHP analysis provide a clear and quantitative hierarchy of the factors that ex-

perts consider most decisive when evaluating data sources for the construction of spatial ontologies. 

 

The Supremacy of Confidence and Accuracy 

The most significant finding is the dominant position of Source Credibility (C7) at 25.24%. This result 

underscores that, before any technical analysis, experts value the reputation and origin of the data. A 

reliable source (such as a national geographic institute) is perceived as a proxy for overall quality, re-

ducing the uncertainty inherent in other criteria. For automatic integration, trusting the source is the 

first and most important filter. 

Second, Geometric Accuracy (C1), at 18.32%, reaffirms the fundamentally spatial nature of the problem. 

Positional accuracy is the cornerstone upon which all spatial relationships (adjacency, containment, 

proximity) are built. Without high accuracy, ontology inferences would be unreliable and potentially 

erroneous. 

Together, these two criteria account for over 43% of the total weight, indicating that the prioritization 

strategy should focus on reliable sources that provide geometrically accurate data. 

 

The Relevance of the Dynamic and the Structural 

 

Update Frequency (C2) and Topological Consistency (C4) rank third and fourth, respectively. This 

reflects the importance of data currency in a changing world and the need for an error-free internal 

logical structure. Outdated data, even if accurate at the time, can lead to incorrect conclusions. Similarly, 

data with topological inconsistencies ( e.g. , polygons that do not close) break spatial logic and make 

advanced analysis difficult or impossible. 

 

Support and Viability Criteria 

 

The criteria Metadata Completeness (C3) , Geographic Coverage (C6) , and Cost and Licensing 

(C5) are at the bottom of the ranking. This does not mean that they are irrelevant. Rather, experts con-

sider them to be secondary or feasibility factors. The low ranking of Cost and Licensing (C5) is 
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particularly interesting, suggesting that in the context of building a high-quality ontology, experts are 

willing to prioritize technical quality over economic considerations. Geographic Coverage is perceived 

as a binary requirement (either it covers the area or it doesn't), while Metadata, although useful, can be 

enriched ex post if the geometric quality and source credibility are high. 

 

Robustness of the NAHP Method 

 

The use of the NAHP was essential for obtaining this level of detail. It allowed experts to express 

their uncertainty and subjective judgments in a structured manner through neutrosophic numbers. Con-

sistency checking (CR < 0.10) ensured that the results were not arbitrary, but rather logical and defensi-

ble. Aggregation using the geometric mean provided a balanced consensus, preventing the extreme 

opinion of a single expert from biasing the final result. 

 
Table 11: Comparative Analysis of Weights by Criteria Groups 

 

Criteria Group Criteria Included Aggregate 

Weight 

Interpretation 

Fundamental 

Criteria 

C7 (Credibility) + C1 (Accuracy) 43.56% Critical factors of confidence 

and accuracy 

Operating Crite-

ria 

C2 (Update) + C4 (Consistency) 30.48% Functionality and maintenance 

factors 

Support Criteria C3 (Metadata) + C6 (Coverage) + 

C5 (Cost) 

25.96% Complementary and viability 

factors 

 

Methodological Implications 

The results suggest a hierarchical selection strategy where: 

1. First phase (43.56%): Filter sources by institutional credibility and documented geometric pre-

cision 

2. Second phase (30.48%): Evaluate the update frequency and topological consistency of the pre-

selected sources 

3. Third phase (25.96%): Consider complementary aspects such as metadata, coverage, and eco-

nomic restrictions 

 
Table 12. Expert Sensitivity Matrix by Criterion 

 

Criterion Standard Deviation Coefficient of Variation Consensus 

C7 (Credibility) 0.0627 0.248 High 

C1 (Precision) 0.0472 0.259 High 

C2 (Update) 0.0671 0.414 Moderate 

C4 (Consistency) 0.0556 0.417 Moderate 

C3 (Metadata) 0.0240 0.244 High 

C6 (Coverage) 0.0148 0.182 Very High 

C5 (Cost) 0.0090 0.124 Very High 

 

This table shows that there is greater consensus among experts on the importance of the lower 

weight criteria (C5, C6, C3) and some variability in the operational criteria (C2, C4), while the funda-

mental criteria maintain a high-moderate consensus. 
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Figure 3: Consensus metrics by quality criterion 

 

5. Conclusions 

 

The rigorous application of the NAHP method has allowed us to establish a clear and reliable hier-

archy for prioritizing geospatial data sources in ontological integration projects. The results show that 

credibility of the source is the most decisive criterion, followed by precision, update frequency, and 

topological consistency, while cost and licensing occupy the lowest level of importance. This confirms 

that in critical applications, trust in institutions and the intrinsic technical quality of the data prevail 

over operational or economic aspects. At the methodological level, the study validates the effectiveness 

of the neutrosophic approach to address the uncertainty inherent in expert judgments and provides 

consensus weights that can be incorporated into automatic data integration algorithms, consolidating a 

robust and transparent decision-making framework. 

From a practical standpoint, the study emphasizes that managers of spatial ontology projects should 

prioritize institutional reliability, ensure minimum levels of geometric accuracy, monitor the update 

frequency of data, and implement topological validation systems to maintain structural consistency. 

Although the research has limitations such as the small number of experts, its restricted geographic 

context, and the need for periodic updates due to technological changes, it positions NAHP as a pow-

erful tool for strategic decision-making in the geospatial field. Ultimately, the results pave the way for 

the implementation of automated source selection systems, contributing to the construction of more 

reliable and high-value spatial ontologies, with direct applications in urban planning, natural resource 

management, and territorial analysis. 
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