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Abstract. This research pioneers a rigorous framework for stochastic calculus in the neutrosophic paradigm,

explicitly modeling systems with truth, indeterminacy, and falsehood degrees. We introduce foundational

constructs including Canonical Neutrosophic Brownian Motion, Simple Neutrosophic Processes,

and the space Ṽ2[0, T ]. Building upon these, we formally define the Neutrosophic Itô Integral for ele-

mentary processes and extend it to general integrands in Ṽ2[0, T ], establishing Neutrosophic Martingales,

d-Dimensional Neutrosophic Brownian Motion, Matrix-Valued Neutrosophic Integrands, and the

Multi-Dimensional Neutrosophic Itô Integral. The theory is further generalized through Local Neu-

trosophic Martingales, Locally Square-Integrable Neutrosophic Integrands, and Neutrosophic Itô

Processes.

Key theorems demonstrate the successful extension of classical stochastic calculus: The Density of Ele-

mentary Neutrosophic Processes enables integral construction, while the Neutrosophic Itô Isometry

and its consistent extension ensure well-defined integration. Crucially, we prove Martingale Characteriza-

tion with Path Regularity, construct integrals for local martingales via stopping times, and establish the Itô

Formula for both neutrosophic Brownian motion and general Itô processes.

Significantly, essential structural properties–including isometry, martingale preservation, sample path conti-

nuity, localization efficacy, and the Itô formula–remain rigorously valid in this generalized uncertainty frame-

work. This work provides a powerful mathematical toolkit for stochastic systems under three-valued uncertainty,

enabling applications across finance, engineering, and decision science.

Keywords: Neutrosophic Stochastic Calculus, Neutrosophic Brownian Motion, Neutrosophic Itô Integral, Neu-

trosophic Martingales, Neutrosophic Itô Formula, Neutrosophic Probability.

—————————————————————————————————————————-

1. introduction

In the rapidly evolving landscape of applied mathematics and modern probability theory,

the imperative for advanced theoretical frameworks addressing the intricate interplay between

randomness and epistemic uncertainty in dynamical systems has become paramount [6,7,15].
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Neutrosophic Sets and Systems, Vol. 93, 2025 



This study advances the proposition that synthesizing Neutrosophic Philosophy [19, 20] with

Stochastic Calculus [8, 9] enables transformative modeling of phenomena characterized by

ontological indeterminacy and aleatory uncertainty.

Neutrosophic Logic—a revolutionary extension of classical fuzzy logic—has equipped re-

searchers with sophisticated tools for analyzing data exhibiting contradiction, indeterminacy,

and paraconsistent properties [19, 20, 22]. Grounded in the Truth-Indeterminacy-Falsity (T-

I-F) triad, this framework has redefined analytical approaches across disciplines, from multi-

criteria decision-support systems [1] to probabilistic modeling [3, 16, 27]. Recent theoretical

advances have formalized neutrosophic integration methodologies [2, 4, 22], probability distri-

butions [3,16,21], and stochastic processes [27,28], with demonstrated applications in physical

systems [25,26] and statistical modeling [16].

Concurrently, Itô Calculus [8] has fundamentally reshaped our comprehension of stochas-

tic processes, providing rigorous mathematical foundations for solving complex problems in

mathematical physics [15] and financial engineering [9, 10, 17]. Modern extensions of the Itô

integral [5,11] and stochastic differential equations (SDEs) [7,12,14] continue to address emerg-

ing challenges in modeling stochastic phenomena, particularly in financial markets [9, 17, 23]

and control systems [6]. Its efficacy in analyzing systems where randomness interacts with

structural uncertainty remains unparalleled [10,13,15].

The integration of these domains presents a unique opportunity to bridge aleatory stochas-

ticity and epistemic uncertainty. While Itô Calculus addresses objective randomness, Neutros-

ophy provides formal mechanisms for quantifying subjective indeterminacy [2, 4, 22], enabling

novel methodologies for phenomena where both factors converge [27, 28]. This synthesis ad-

dresses critical gaps identified in contemporary stochastic analysis [5, 11] and neutrosophic

measure theory [21,22].

Our research contributes a unified framework that synergizes the theoretical rigor of Itô

Calculus with the expressive power of Neutrosophic Logic. This integration manifests through

three interconnected innovations: the development of Neutrosophic-Itô Integration, ex-

tending foundational stochastic integration concepts [2, 4, 5, 8, 11]; the formalization of Neu-

trosophic Brownian Motion, generalizing classical Wiener processes to incorporate epis-

temic uncertainty [10, 23, 27]; and the derivation of the Neutrosophic Stochastic Itô

Formula, building upon fundamental stochastic calculus principles to accommodate truth-

indeterminacy-falsehood dynamics [8, 12, 15]. These innovations collectively establish a novel

mathematical architecture where stochastic randomness and neutrosophic indeterminacy co-

exist within a unified analytical framework.
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These developments address theoretical limitations in conventional stochastic calculus [5,

7, 14] and neutrosophic probability [16, 21, 26], while providing practical tools for real-world

applications requiring simultaneous treatment of randomness and indeterminacy.

The implications extend to financial market analysis under Knightian uncertainty [9, 17],

complex ecological system modeling, and decision-making in information-scarce environments

[1]. By establishing new research pathways in artificial intelligence and hybrid dynamical

systems, this work demonstrates the transformative potential of Neutrosophic-Stochastic in-

tegration for advancing modeling capabilities in systems where traditional approaches prove

insufficient [3, 13,25,28].

This paper begins by laying out the foundations of neutrosophic stochastic calculus, pro-

viding the necessary theoretical background for the subsequent developments. Building upon

these foundations, the concept of neutrosophic Brownian motion is introduced and examined

in detail. The paper then proceeds to the construction of the neutrosophic Itô integral, fol-

lowed by an exploration of its key properties. Further extensions are discussed, including the

generalization of integrators to neutrosophic martingales, multi-dimensional settings, and lo-

calization techniques. Finally, the neutrosophic Itô formula is derived, offering a crucial tool

for applications in neutrosophic stochastic analysis.

2. Foundations of Neutrosophic Stochastic Calculus

Definition 2.1. [24][Neutrosophic Number] A neutrosophic number is an ordered triple

x̃ = (xT , xI , xF ) ∈ Ñ, (1)

where Ñ := {(T, I, F ) ∈ [0, 1]3 | 0 ≤ T + I + F ≤ 3} and:

• xT represents the truth component,

• xI represents the indeterminacy component,

• xF represents the falsity component.

Algebraic operations on Ñ are defined component-wise. The Hadamard product is

ã⊙ b̃ := (aT bT , aIbI , aF bF ), ã, b̃ ∈ Ñ. (2)

The Euclidean norm is ∥x̃∥ :=
√

(xT )2 + (xI)2 + (xF )2.

This representation allows one to model phenomena where randomness is entangled with

epistemic uncertainty, enabling stochastic analysis that is sensitive to all three dimensions.

Definition 2.2. [21, 26][Neutrosophic Probability Space] A neutrosophic probability space is

a quadruple (Ω̃, F̃ , P̃,Θ), where:

• Ω̃ is a non-empty sample space.

• F̃ is a σ-algebra of neutrosophic events.
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• P̃ = (PT ,PI ,PF ) is a vector-valued measure assigning, respectively, the truth, indeter-

minacy, and falsity probabilities, where Pk : F̃ → [0, 1] are probability measures for

k ∈ {T, I, F}.
• Θ : F̃ → [0, 1]3 is a mapping such that for every A ∈ F̃ ,

Θ(A) = (TA, IA, FA) ∈ Ñ,

where:

TA: degree of truth-membership of A,

IA: degree of indeterminacy-membership of A,

FA: degree of falsity-membership of A.

Definition 2.3. [27][Neutrosophic Random Variables and Its Expectation]: A neutrosophic

random variable is a measurable function X̃ : Ω̃ → Ñ such that

X̃(ω̃) =
(
XT (ωT ), XI(ωI), XF (ωF )

)
∈ Ñ ∀ωk ∈ Ω̃. (3)

The neutrosophic expectation operator is defined as:

Ẽ[X̃] :=
(
E[XT ],E[XI ],E[XF ]

)
, (4)

where for each component k ∈ {T, I, F}:

E[Xk] =

∫
Ω̃
Xk(ωk)dPk(ωk). (5)

Definition 2.4. [18][Neutrosophic Filtration] Let (Ω̃, F̃ , P̃,Θ) be a neutrosophic probability

space. A family {F̃t}t≥0 is called a neutrosophically admissible filtration if:

(1) (Monotonicity) F̃s ⊆ F̃t for all 0 ≤ s < t <∞.

(2) (Right-continuity) F̃t =
⋂

u>t F̃u for all t ≥ 0.

(3) (Completeness) F̃0 contains all P̃-null sets.
(4) (Neutrosophic encoding) For every t ≥ 0 and every A ∈ F̃t.

3. Neutrosophic Brownian Motion

Definition 3.1 (Canonical Neutrosophic Brownian Motion). Let (Ω̃, F̃ , P̃,Θ) be a neutro-

sophic probability space. A canonical neutrosophic Brownian motion is a trivariate stochastic

process

B̃t :=
(
BT

t , B
I
t , B

F
t

)
, t ≥ 0, (6)

where each component BT
t , B

I
t , and B

F
t is a one-dimensional Brownian motion with its own

parameters, and the components may be mutually correlated. For each ω̃ ∈ Ω̃ and t ≥ 0,

B̃t(ω̃) =
(
Tt(ω

T ), It(ω
I), Ft(ω

F )
)
∈ Ñ, (7)
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where:

• Tt(ω
T ) — the truth-membership value at time t,

• It(ω
I) — the indeterminacy-membership value at time t,

• Ft(ω
F ) — the falsity-membership value at time t.

The process B̃t satisfies the following properties:

(1) Origin condition: Bk
0 = 0 P̃-almost surely for each k ∈ {T, I, F}.

(2) Independent increments: For all 0 ≤ s < t, the increment B̃t − B̃s is independent

of the past σ-algebra F̃s with respect to P̃.
(3) Gaussian increments: Each increment B̃t − B̃s follows a trivariate (possibly

neutrosophic-parameterized) normal distribution:

B̃t − B̃s ∼ N (0, (t− s)Σ) , (8)

where Σ is the covariance matrix:

Σ =

 σ2T ρTIσTσI ρTFσTσF

ρTIσTσI σ2I ρIFσIσF

ρTFσTσF ρIFσIσF σ2F

 , (9)

satisfying:

(a) Non-negative variances:

σ2T ≥ 0, σ2I ≥ 0, σ2F ≥ 0.

(b) Correlation bounds:

ρTI , ρTF , ρIF ∈ [−1, 1].

(c) Positive semi-definiteness: Σ is symmetric and all its eigenvalues are non-

negative (equivalently, all principal minors ≥ 0). For a correlation matrix, this is

equivalent to:

1− ρ2TI − ρ2TF − ρ2IF + 2ρTIρTFρIF ≥ 0.

(4) Continuity of sample paths: For P̃-almost every ω̃ ∈ Ω̃, the trajectory t 7→ B̃t(ω̃)

is continuous in t.

In essence, a canonical neutrosophic Brownian motion models the joint evolution of the

truth, indeterminacy, and falsity components over time, each evolving as a correlated Gaussian

process while jointly forming a valid neutrosophic number.
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4. Construction of the Neutrosophic Itô Integral

In this section, we extend the classical Itô integration framework to the neutrosophic setting,

where uncertainty is modeled not only by randomness but also by explicit representation of

indeterminacy and falsity degrees.

4.1. Elementary Processes

Definition 4.1 (Simple Neutrosophic Process). Let (Ω̃, F̃ , P̃,Θ) be a neutrosophic probability

space. A stochastic process ϕ̃t : [0, T ] × Ω̃ → R3 is called a simple neutrosophic process if it

can be expressed in the form

ϕ̃t(ω̃) =
n−1∑
j=0

ξ̃j(ω̃) · 1[tj ,tj+1)(t), (10)

where:

• 0 = t0 < t1 < · · · < tn = T is a finite partition of [0, T ],

• Each ξ̃j = (ξTj , ξ
I
j , ξ

F
j ) is F̃tj -measurable,

• The component-wise integrability holds:

ET [∥ξ̃j∥2] <∞, EI [∥ξ̃j∥2] <∞, EF [∥ξ̃j∥2] <∞, ∀j. (11)

The set of all such processes is denoted by Sns(0, T ).

Definition 4.2 (Neutrosophic Itô Integral for Elementary Processes). For ϕ̃ ∈ Sns(0, T ), the

neutrosophic Itô integral with respect to a canonical neutrosophic Brownian motion B̃t is

defined as ∫ T

0
ϕ̃tdB̃t :=

n−1∑
j=0

ξ̃j ⊙
(
B̃tj+1 − B̃tj

)
. (12)

4.2. Extension to General Integrands

Definition 4.3. (Space Ṽ2([0, T ])). The space Ṽ2([0, T ]) consists of all stochastic processes

{ϕ̃t}t∈[0,T ] with values in R3 such that:

(1) ϕ̃t is adapted to a neutrosophically admissible filtration {F̃t}t≥0.

(2) The component-wise expectations are finite:

ET

[∫ T

0
∥ϕ̃t∥2dt

]
<∞, EI

[∫ T

0
∥ϕ̃t∥2dt

]
<∞, EF

[∫ T

0
∥ϕ̃t∥2dt

]
<∞, (13)

where ∥ϕ̃t∥ =
√

(ϕTt )
2 + (ϕIt )

2 + (ϕFt )
2 is the Euclidean norm.

Theorem 4.4 (Density of Elementary Neutrosophic Processes). Let Sns(0, T ) denote the set

of elementary neutrosophic processes on [0, T ], consisting of finite linear combinations of

indicator functions on stochastic intervals with neutrosophic coefficients. Then, Sns(0, T ) is
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dense in the Hilbert space Ṽ2[0, T ] of square-integrable neutrosophic processes. Formally, for

any ϕ̃ ∈ Ṽ2[0, T ], there exists a sequence {ϕ̃(n)} ⊂ Sns(0, T ) such that

lim
n→∞

Ek

[∫ T

0
∥ϕ̃t − ϕ̃

(n)
t ∥2 dt

]
= (0, 0, 0), (14)

where the limit is taken componentwise in the neutrosophic sense.

Proof. Let ϕ̃ ∈ Ṽ2[0, T ]. By definition, we have

Ẽ
[∫ T

0
∥ϕ̃t∥2dt

]
<∞, (15)

which means ϕ̃ ∈ L2(Ω̃× [0, T ], dP̃× dt).

We now construct a unifying finite positive measure Q̃ on Ω̃ by

dQ̃ =
1

3

(
dPT + dPI + dPF

)
. (16)

Since ϕ̃ belongs to each L2 space, it follows that∫
Ω̃

∫ T

0
∥ϕ̃t(ω̃)∥2dt dQ̃(ω̃) <∞, (17)

and thus ϕ̃ ∈ L2(Ω̃× [0, T ], dQ̃× dt).

From the classical theory of L2 spaces, elementary processes are dense under product mea-

sures. Therefore, there exists {ϕ̃(n)} ⊂ Sns(0, T ) such that

lim
n→∞

∫
Ω̃

∫ T

0
∥ϕ̃t(ω̃)− ϕ̃

(n)
t (ω̃)∥2dt dQ̃(ω̃) = 0. (18)

Moreover, the Radon–Nikodym theorem yields dP̃ ≪ dQ̃ with dP̃ ≤ 3 dQ̃. Consequently,∫
Ω̃

∫ T

0
∥ϕ̃t − ϕ̃

(n)
t ∥2dt dP̃ ≤ 3

∫
Ω̃

∫ T

0
∥ϕ̃t − ϕ̃

(n)
t ∥2dt dQ̃. (19)

Taking the limit as n→ ∞ gives

lim
n→∞

Ẽ
[∫ T

0
∥ϕ̃t − ϕ̃

(n)
t ∥2dt

]
= 0, (20)

for k ∈ {T, I, F}. Combining these limits componentwise proves that

lim
n→∞

Ek

[∫ T

0
∥ϕ̃t − ϕ̃

(n)
t ∥2dt

]
= (0, 0, 0), (21)

completing the proof.

Theorem 4.5 (Neutrosophic Itô Isometry for Elementary Processes). Let ϕ̃ ∈ Sns(0, T ) be an

elementary neutrosophic process. Then:

Ẽ

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
= Ẽ

[∫ T

0
∥ϕ̃t∥2 dt

]
, (22)
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where B̃t is a canonical neutrosophic Brownian motion and Ẽ denotes the component-wise

neutrosophic expectation.

Proof. Let ϕ̃ ∈ Sns(0, T ) be represented as

ϕ̃t(ω̃) =
m−1∑
i=0

ξ̃i(ω̃)1(ti,ti+1](t), 0 = t0 < t1 < · · · < tm = T, (23)

where each ξ̃i is F̃ti-measurable and bounded. The stochastic integral is given by:∫ T

0
ϕ̃t dB̃t =

m−1∑
i=0

ξ̃i
(
B̃ti+1 − B̃ti

)
. (24)

Its squared norm expands as:∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2 = m−1∑
i=0

ξ̃2i (B̃ti+1 − B̃ti)
2 + 2

∑
0≤i<j≤m−1

ξ̃iξ̃j(B̃ti+1 − B̃ti)(B̃tj+1 − B̃tj ). (25)

For each neutrosophic component k ∈ {T, I, F}, the expectation satisfies:

Ek

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
= Ẽ

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
=

m−1∑
i=0

Ẽ
[
ξ̃2i (B̃ti+1 − B̃ti)

2
]
, (26)

since the cross terms vanish by independence of increments and the property

Ẽ
[
B̃tj+1 − B̃tj

]
= 0. (27)

Using the variance property of neutrosophic Brownian motion:

Ẽ
[
(B̃ti+1 − B̃ti)

2
]
= ti+1 − ti, (28)

we obtain:

Ẽ
[
ξ̃2i (B̃ti+1 − B̃ti)

2
]
= Ẽ

[
ξ̃2i

]
(ti+1 − ti). (29)

Thus:

Ẽ

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
=

m−1∑
i=0

Ẽ
[
∥ξ̃i∥2

]
(ti+1 − ti). (30)

Meanwhile:

Ẽ
[∫ T

0
∥ϕ̃t∥2 dt

]
=

m−1∑
i=0

Ek
[
∥ξ̃i∥2

]
(ti+1 − ti). (31)

Since this holds for all k ∈ {T, I, F}, the vectorial equality follows:

Ẽ

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
= Ẽ

[∫ T

0
∥ϕ̃t∥2 dt

]
. (32)
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4.3. General Neutrosophic Itô Integral

Definition 4.6 (General Neutrosophic Itô Integral). For ϕ̃ ∈ Ṽ2[0, T ], we define∫ T

0
ϕ̃t dB̃t := plim

n→∞

∫ T

0
ϕ̃
(n)
t dB̃t, (33)

where {ϕ̃(n)} ⊂ Sns(0, T ) approximates ϕ̃ in L2(P̃).

Theorem 4.7 (Consistency and Isometry of the Neutrosophic Itô Integral). Let (Ω̃, F̃ , P̃,Θ)

be a neutrosophic probability space and let B̃t = (BT
t , B

I
t , B

F
t ) be a canonical neutrosophic

Brownian motion adapted to F̃ with independent components. For any ϕ̃ ∈ Ṽ2([0, T ]), the

neutrosophic Itô integral
∫ T
0 ϕ̃tdB̃t is well-defined and satisfies:

(1) Independence of the approximating sequence: The integral is independent of the

choice of approximating sequence in Sns(0, T ).

(2) Neutrosophic Itô isometry:

ET

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
= ET

[∫ T

0
∥ϕ̃t∥2 dt

]

EI

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
= EI

[∫ T

0
∥ϕ̃t∥2 dt

]

EF

[∥∥∥∥∫ T

0
ϕ̃t dB̃t

∥∥∥∥2
]
= EF

[∫ T

0
∥ϕ̃t∥2 dt

]
(34)

Proof. The proof extends classical Itô integral arguments to each neutrosophic component

k ∈ {T, I, F}.
Step 1: Independence of the approximating sequence. Let {ϕ̃(n)} and {ψ̃(n)} be

sequences in Sns(0, T ) satisfying:

lim
n→∞

Ek

[∫ T

0
∥ϕ̃t − ϕ̃

(n)
t ∥2dt

]
= 0 ∀k ∈ {T, I, F}, (35)

lim
n→∞

Ek

[∫ T

0
∥ϕ̃t − ψ̃

(n)
t ∥2dt

]
= 0 ∀k ∈ {T, I, F}. (36)

By the triangle inequality in L2(Pk) for each component:(
Ek

[∫ T

0
∥ϕ̃(n)t − ψ̃

(n)
t ∥2 dt

])1/2
≤

(
Ek

[∫ T

0
∥ϕ̃(n)t − ϕ̃t∥2 dt

])1/2
︸ ︷︷ ︸

→0

+

(
Ek

[∫ T

0
∥ϕ̃t − ψ̃

(n)
t ∥2 dt

])1/2
︸ ︷︷ ︸

→0

.

(37)
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The Itô isometry for elementary processes under Pk gives:

Ek

[∣∣∣∣∫ T

0
(ϕ̃

(n)
t − ψ̃

(n)
t )dBk

t

∣∣∣∣2
]
= Ek

[∫ T

0
∥ϕ̃(n)t − ψ̃

(n)
t ∥2dt

]
→ 0. (38)

Thus, the integral limits coincide for all approximating sequences in each component.

Step 2: Neutrosophic Itô isometry. Let {ϕ̃(n)} ⊂ Sns(0, T ) approximate ϕ̃. For ele-

mentary processes, componentwise Itô isometry holds:

Ek

[(∫ T

0
ϕ̃
(n)
t dBk

t

)2
]
= Ek

[∫ T

0
∥ϕ̃(n)t ∥2dt

]
∀k. (39)

By L2(Pk)-continuity of the integral and dominated convergence:

lim
n→∞

Ek

[∣∣∣∣∫ T

0
ϕ̃tdB

k
t −

∫ T

0
ϕ̃
(n)
t dBk

t

∣∣∣∣2
]
= 0, (40)

lim
n→∞

Ek

[∫ T

0

∣∣∣∥ϕ̃t∥2 − ∥ϕ̃(n)t ∥2
∣∣∣dt] = 0. (41)

Taking limits componentwise:

Ek

[(∫ T

0
ϕ̃tdB

k
t

)2
]
= lim

n→∞
Ek

[(∫ T

0
ϕ̃
(n)
t dBk

t

)2
]

= lim
n→∞

Ek

[∫ T

0
∥ϕ̃(n)t ∥2dt

]
= Ek

[∫ T

0
∥ϕ̃t∥2dt

]
. (42)

For the vector integral, by independence of {BT
t , B

I
t , B

F
t }:

Ek

[∥∥∥∥∫ T

0
ϕ̃tdB̃t

∥∥∥∥2
]
=

∑
j∈{T,I,F}

Ek

[(∫ T

0
ϕ̃tdB

j
t

)2
]
= Ek

[∫ T

0
∥ϕ̃t∥2dt

]
, (43)

where cross-terms vanish since Ek[dBj
t dB

m
t ] = δjmdt. This establishes the isometry.

5. Properties of the Neutrosophic Itô Integral

Theorem 5.1 (Neutrosophic Martingale Characterization). Let {B̃t}t≥0 be a canonical neu-

trosophic Brownian motion on a neutrosophic probability space (Ω̃, F̃ , P̃,Θ), where P̃ =

(PT ,PI ,PF ) is a vector-valued measure. Let Ẽ[̃· | F̃t] denote the neutrosophic conditional

expectation, defined component-wise as:

Ẽ[X̃ | F̃t] =
(
E[XT | FT

t ], E[XI | FI
t ], E[XF | FF

t ]
)
. (44)

If ϕ̃ ∈ Ṽ2([0, T ]) is a predictable process such that:

Ek

[∫ T

0
|ϕ̃t|2dt

]
<∞, ∀k ∈ {T, I, F}, (45)
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then the stochastic integral

M̃t :=

∫ t

0
ϕ̃sdB̃s (46)

is a neutrosophic martingale, i.e.,

Ẽ
[
M̃t | F̃s

]
= M̃s, Pk-a.s., 0 ≤ s < t ≤ T, ∀k ∈ {T, I, F}. (47)

Proof. The proof is established component-wise for each measure Pk (k ∈ {T, I, F}) in two

steps.

Step 1: Elementary integrands. Let ϕ̃ ∈ Sns(0, T ) be given by

ϕ̃u =

m−1∑
i=0

ξ̃i1(ti,ti+1](u), 0 = t0 < t1 < · · · < tm = T, (48)

where each ξ̃i is bounded and F̃ti-measurable. For 0 ≤ s < t ≤ T with s = tj , t = tℓ, the

integral is

M̃t =
ℓ−1∑
i=0

ξ̃i
(
B̃ti+1 − B̃ti

)
. (49)

For each k ∈ {T, I, F}, condition on F̃s and use the independence of Brownian increments

under Pk:

Ek
[
M̃t | F̃s

]
=

j−1∑
i=0

ξ̃i
(
B̃ti+1 − B̃ti

)
+

ℓ−1∑
i=j

Ek
[
ξ̃i
(
B̃ti+1 − B̃ti

)
| F̃s

]
= M̃s, (50)

since Ek
[
B̃ti+1 − B̃ti | F̃s

]
= 0 Pk-a.s. for i ≥ j. Thus:

Ẽ
[
M̃t | F̃s

]
=
(
E[MT

t | FT
s ],E[M I

t | FI
s ],E[MF

t | FF
s ]
)
= (M̃s, M̃s, M̃s) = M̃s. (51)

Step 2: General integrands. For ϕ̃ ∈ Ṽ2([0, T ]), choose {ϕ̃(n)} ⊂ Sns(0, T ) such that for

each k ∈ {T, I, F}:

lim
n→∞

Ek

[∫ T

0

∣∣ϕ̃u − ϕ̃(n)u

∣∣2du] = 0. (52)

By the Itô isometry under each Pk:

Ek
[∣∣M̃t − M̃

(n)
t

∣∣2] = Ek

[∫ t

0

∣∣ϕ̃u − ϕ̃(n)u

∣∣2du] n→∞−−−→ 0, ∀k ∈ {T, I, F}. (53)

Since L2(Pk)-limits preserve the martingale property for each component, and M̃
(n)
t is a Pk-

martingale for all n (by Step 1), we have for 0 ≤ s < t ≤ T :

Ek
[
M̃t | F̃s

]
= lim

n→∞
Ek
[
M̃

(n)
t | F̃s

]
= lim

n→∞
M̃ (n)

s = M̃s Pk-a.s. (54)

Thus, Ẽ
[
M̃t | F̃s

]
= M̃s holds for all k ∈ {T, I, F}.

A. Hatip, K. Yahya and M. Alhassoun, On the Construction of the Neutrosophic Itô Integral
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Theorem 5.2 (Path Regularity). Let {B̃t}t≥0 be a canonical neutrosophic Brownian motion

on a neutrosophic probability space (Ω̃, F̃ , P̃,Θ), where P̃ = (PT ,PI ,PF ). Let ϕ̃t be a predictable

process with respect to the neutrosophic filtration {F̃t} such that:

Ek

[∫ t

0
|ϕ̃s|2ds

]
<∞ ∀t > 0, ∀k ∈ {T, I, F}. (55)

Then the stochastic integral

M̃t :=

∫ t

0
ϕ̃sdB̃s (56)

admits a modification M̃t that is Pk-almost surely continuous for each k ∈ {T, I, F}.

Proof. The existence of a continuous modification is established component-wise for each mea-

sure P̃. For each k ∈ {T, I, F}:

(1) Square-Integrability: The condition

Ek

[∫ t

0
|ϕ̃s|2ds

]
<∞ ∀t > 0 (57)

ensures the stochastic integral M̃t =
∫ t
0 ϕ̃sdB̃s is well-defined and a square-integrable

martingale under Pk (by the Martingale Characterization Theorem).

(2) Approximation: Choose a sequence {ϕ̃(n)}n∈N of simple processes such that:

lim
n→∞

Ek

[∫ T

0
|ϕ̃(n)s − ϕ̃s|2ds

]
= 0 ∀T > 0. (58)

This is possible by density of elementary processes in L2(Pk).

(3) Continuity of Approximants: The integrals

M̃
(n)
t =

∫ t

0
ϕ̃(n)s dB̃s (59)

are continuous under Pk by construction (as finite sums of scaled Brownian increments).

(4) Uniform Convergence: By Itô’s isometry under Pk:

Ek

[
sup
0≤s≤t

|M̃ (n)
s − M̃s|2

]
≤ 4Ek

[∫ t

0
|ϕ̃(n)s − ϕ̃s|2ds

]
n→∞−−−→ 0. (60)

Thus, M̃ (n) → M̃ in L2(Pk)-norm uniformly on [0, t], implying uniform convergence

on compacts in probability under Pk.

(5) Continuous Modification: By the standard martingale regularization theorem (ap-

plied under each Pk), there exists a Pk-null set Nk and a process M̃
(k)
t such that: (i)

M̃
(k)
t = M̃t Pk-a.s. for all t (ii) t 7→ M̃

(k)
t is continuous for all ω̃ /∈ Nk.

To construct a single modification M̃t continuous Pk-a.s. for all k, define N = NT ∪N I∪NF

and:

M̃t(ω̃) =

Mt(ω̃) ω̃ /∈ N

0 ω̃ ∈ N
. (61)
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For each k ∈ {T, I, F}, Pk(N) = 0 and M̃t Pk-a.s., with paths t 7→ M̃t(ω̃) continuous for all

ω ∈ Ω̃. Thus, M̃t is the required modification.

Remark. The continuity of M̃t can be established component-wise via the Kolmogorov

continuity criterion. For each k ∈ {T, I, F}, consider the process under Pk. For 0 ≤ s < t ≤ T ,

the Burkholder-Davis-Gundy inequality (under Pk) yields for p ≥ 2:

Ek
[
|M̃t − M̃s|p

]
≤ C(k)

p Ek

[(∫ t

s
|ϕ̃u|2du

)p/2
]
, (62)

where C
(k)
p > 0 is a constant depending on p and the measure Pk. Under the square-

integrability condition:

Ek

[∫ T

0
|ϕ̃u|2du

]
<∞, (63)

we have:

Ek
[
|M̃t − M̃s|p

]
≤ C(k)

p

(
Ek

[∫ t

s
|ϕ̃u|2du

])p/2

|t− s|p/2 ≤ Kk|t− s|p/2, (64)

for some constant Kk > 0. Choosing p > 2 satisfies the condition p/2 > 1 required by

Kolmogorov’s continuity criterion under Pk. Thus, for each k, there exists a continuous modi-

fication under Pk. The universal modification M̃t constructed in the proof is continuous Pk-a.s.

for all k ∈ {T, I, F}.

Theorem 5.3 (Linearity of the Neutrosophic Itô Integral). Let {B̃t}t≥0 be a canonical Neutro-

sophic Brownian motion on a neutrosophic probability space (Ω̃, F̃ , P̃,Θ) with P̃ = (PT ,PI ,PF ).

Let ϕ̃, ψ̃ ∈ Ṽ2([0, T ]) be predictable processes such that for all k ∈ {T, I, F}:

Ek

[∫ T

0
|ϕ̃t|2dt

]
<∞, Ek

[∫ T

0
|ψ̃t|2dt

]
<∞. (65)

For any deterministic scalars α, β ∈ R, the following equality holds Pk-almost surely for each

k ∈ {T, I, F}: ∫ T

0
(αϕ̃t + βψ̃t)dB̃t = α

∫ T

0
ϕ̃tdB̃t + β

∫ T

0
ψ̃tdB̃t. (66)

Proof. We establish component-wise linearity for each k ∈ {T, I, F}.
Step 1: Simple processes. Let ϕ̃t =

∑n−1
i=0 ai1(ti,ti+1](t) and ψ̃t =

∑n−1
i=0 bi1(ti,ti+1](t)

where 0 = t0 < · · · < tn = T , with each ai, bi bounded and F̃ti-measurable. The linear

combination is:

αϕ̃t + βψ̃t =
n−1∑
i=0

(αai + βbi)1(ti,ti+1](t). (67)
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By definition of the Itô integral for simple processes under each Pk:∫ T

0
(αϕ̃t + βψ̃t)dB̃t =

n−1∑
i=0

(αai + βbi)(B̃ti+1 − B̃ti)

= α
n−1∑
i=0

ai(B̃ti+1 − B̃ti) + β
n−1∑
i=0

bi(B̃ti+1 − B̃ti)

= α

∫ T

0
ϕ̃tdB̃t + β

∫ T

0
ψ̃tdB̃t.

(68)

Step 2: General processes. For each k ∈ {T, I, F}, choose sequences of simple processes

{ϕ̃(n)}, {ψ̃(n)} such that:

lim
n→∞

Ek

[∫ T

0
|ϕ̃t − ϕ̃

(n)
t |2dt

]
= 0, lim

n→∞
Ek

[∫ T

0
|ψ̃t − ψ̃

(n)
t |2dt

]
= 0. (69)

By Step 1: ∫ T

0
(αϕ̃

(n)
t + βψ̃

(n)
t )dB̃t = α

∫ T

0
ϕ̃
(n)
t dB̃t + β

∫ T

0
ψ̃
(n)
t dB̃t. (70)

Applying the Itô isometry under each Pk:

Ek

[∣∣∣∣∫ T

0
(αϕ̃t + βψ̃t)dB̃t −

∫ T

0
(αϕ̃

(n)
t + βψ̃

(n)
t )dB̃t

∣∣∣∣2
]

n→∞−−−→ 0, (71)

and similarly for the right-hand side. Thus, the equality holds in L2(Pk) for each k ∈ {T, I, F}.

6. Extensions

6.1. Integrators as Neutrosophic Martingales

Definition 6.1 (Neutrosophic Martingale). An F̃t-adapted process M̃t = (MT
t ,M

I
t ,M

F
t ) is a

neutrosophic square-integrable martingale if:

(1) Ek
[
(Mk

t )
2
]
<∞ for all t ≥ 0 and k ∈ {T, I, F}.

(2) Ek
[
M̃t | F̃s

]
= M̃s for 0 ≤ s ≤ t and k ∈ {T, I, F}.

Theorem 6.2 (Martingale Integral Construction). Let M̃t be a continuous neutrosophic

square-integrable martingale with component-wise predictable quadratic variations

⟨Mk⟩t =
∫ t

0
(σks )

2ds, k ∈ {T, I, F}. (72)

For any ϕ̃s = (ϕTs , ϕ
I
s, ϕ

F
s ) ∈ V2([0, T ]) where each ϕk ∈ L2(dPk ⊗ d⟨Mk⟩s), the stochastic

integral ∫ T

0
ϕ̃s ⊙ dM̃s :=

(∫ T

0
ϕTs dM

T
s ,

∫ T

0
ϕIsdM

I
s ,

∫ T

0
ϕFs dM

F
s

)
, (73)
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exists and satisfies the neutrosophic Itô isometry component-wise:

Ek

[(∫ T

0
ϕksdM

k
s

)2
]
= Ek

[∫ T

0
(ϕks)

2d⟨Mk⟩s
]
, k ∈ {T, I, F}. (74)

Proof. We proceed in three steps for each component k ∈ {T, I, F}.
Step 1: Simple processes. For ϕks =

∑n−1
i=0 a

k
i 1(ti,ti+1](s) with aki bounded Fti-

measurable: ∫ T

0
ϕksdM

k
s :=

n−1∑
i=0

aki (M
k
ti+1

−Mk
ti). (75)

Cross-terms vanish by the martingale property, and

Ek
[
(Mk

ti+1
−Mk

ti)
2 | Fk

ti

]
= ⟨Mk⟩ti+1 − ⟨Mk⟩ti . (76)

Summation yields the isometry for simple processes.

Step 2: Bounded integrands. For bounded ϕk, choose simple ϕk,(n) with

Ek

[∫ T

0

(
ϕks − ϕk,(n)s

)2
d⟨Mk⟩s

]
→ 0. (77)

Integrals form an L2(Pk)-Cauchy sequence; extend by continuity.

Step 3: General integrands. Truncate via ϕ
k,(n)
s := ϕks1{|ϕk

s |≤n}. Apply Step 2 and pass

to the limit.

6.2. Multi-Dimensional Extension

Definition 6.3 (d-Dimensional Neutrosophic Brownian Motion). A d-dimensional neutro-

sophic Brownian motion is a vector

B̃t =
(
B̃

(1)
t , . . . , B̃

(d)
t

)
, (78)

where each B̃
(j)
t = (B

T,(j)
t , B

I,(j)
t , B

F,(j)
t ) is a one-dimensional neutrosophic Brownian motion

with component-wise variations:

⟨Bk1
· , B

k2
· ⟩t =

∫ t

0
ρk1k2ij ds, k1, k2 ∈ {T, I, F}. (79)

The cross-variation between dimensions i, j is characterized by a neutrosophic correlation

matrix ρ̃ = [ρ̃ij ] where ρ̃ij = (ρTij , ρ
I
ij , ρ

F
ij) ∈ Ñ.

Definition 6.4 (Matrix-Valued Neutrosophic Integrand). Let Φ̃t = [ϕ̃ij(t)]m×d where ϕ̃ij(t) =

(ϕTij(t), ϕ
I
ij(t), ϕ

F
ij(t)). The process is admissible if:

(1) Each ϕkij ∈ L2(dPk ⊗ dt) for k ∈ {T, I, F}.
(2) The integrability holds component-wise:

Ek

∫ T

0

m∑
i=1

d∑
j=1

|ϕkij(t)|2dt

 <∞, k ∈ {T, I, F}. (80)
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Definition 6.5 (Multi-Dimensional Neutrosophic Itô Integral). For admissible Φ̃t and B̃t, the

integral is defined component-wise as

(∫ T

0
Φ̃t ⊙ dB̃t

)
i

:=

 d∑
j=1

∫ T

0
ϕTijdB

T,(j)
t ,

d∑
j=1

∫ T

0
ϕIijdB

I,(j)
t ,

d∑
j=1

∫ T

0
ϕFijdB

F,(j)
t

 , (81)

for i = 1, . . . ,m.

6.3. Localization

Definition 6.6 (Local Neutrosophic Martingale). An F̃t-adapted process M̃t =

(MT
t ,M

I
t ,M

F
t ) is a local neutrosophic martingale if there exist stopping times τn ↑ ∞ such

that for each n and k ∈ {T, I, F}:

(1) Ek[|Mk
t∧τn |] <∞.

(2) Ek[Mk
t∧τn | Fk

s ] =Mk
s∧τn for 0 ≤ s ≤ t.

Definition 6.7 (Locally Square-Integrable Integrands). ϕ̃t = (ϕTt , ϕ
I
t , ϕ

F
t ) ∈ Ṽ2

loc if there exist

stopping times τn ↑ ∞ such that for each k ∈ {T, I, F}:

Ek

[∫ T∧τn

0
|ϕkt |2dt

]
<∞. (82)

Theorem 6.8 (Localized Neutrosophic Stochastic Integral). Let M̃t be a continuous local

neutrosophic martingale and ϕ̃ ∈ Ṽ2
loc. Then there exists a unique continuous local neutrosophic

martingale ∫ t

0
ϕ̃s ⊙ dM̃s :=

(∫ t

0
ϕTs dM

T
s ,

∫ t

0
ϕIsdM

I
s ,

∫ t

0
ϕFs dM

F
s

)
, (83)

such that for any localizing sequence {τn}:(∫ t

0
ϕ̃s ⊙ dM̃s

)
t∧τn

=

∫ t∧τn

0
ϕ̃s ⊙ dM̃ τn

s . (84)

Proof. For each k ∈ {T, I, F}, apply the classical localization procedure to the pairs (ϕkt ,M
k
t )

using stopping times τkn that localize both. Define τn = τTn ∧ τ In ∧ τFn ↑ ∞. The integral for

each component is constructed as:∫ t

0
ϕksdM

k
s := lim

n→∞

∫ t∧τn

0
ϕks1{s≤τn}dM

k
s , (85)

where the right-hand side integrals are well-defined by the global case. The triple satisfies the

required properties component-wise.
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7. Neutrosophic Itô Formula

This structural decomposition embodies the neutrosophic framework established by Smaran-

dache, wherein uncertainty is formally characterized through the explicit and independent

modeling of three constituent dimensions: truth, indeterminacy, and falsity. Algebraic op-

erations on neutrosophic numbers are executed componentwise. Within stochastic analysis,

each component may undergo distinct dynamical evolution while rigorously preserving the

integrated uncertainty structure.

Theorem 7.1 (Itô Formula for Neutrosophic Brownian Motion). Let f : R3 × [0, T ] → R be

C1 in t and C2 in x̃ = (xT , xI , xF ). Consider a canonical neutrosophic Brownian motion

B̃t = (BT
t , B

I
t , B

F
t ),

with quadratic variations and covariations:

d⟨Bk, Bl⟩t = ρkldt, k, l ∈ {T, I, F}.

Then, for the process f(B̃t, t):

f(B̃t, t) = f(B̃0, 0) +

∫ t

0

∂f

∂s
ds+

∑
k∈{T,I,F}

∫ t

0

∂f

∂xk
dBk

s

+
1

2

∑
k,l∈{T,I,F}

∫ t

0

∂2f

∂xk∂xl
d⟨Bk, Bl⟩s,

(86)

where all integrals are defined under Pk.

Proof. Fix k ∈ {T, I, F}. Under the measure Pk, the canonical neutrosophic Brownian motion

B̃t = (BT
t , B

I
t , B

F
t ) is a vector of correlated Brownian motions with quadratic variations and

covariations given by:

d⟨Bk, Bl⟩t = ρkldt, where ρkl ∈ R. (87)

Specifically, ρkk = 1 for each k, and ρkl = ρlk for k ̸= l.

Since f is C1 in t and C2 in x̃, we apply the multi-dimensional Itô formula to the vector

process B̃t under Pk. Consider the Taylor expansion of f :

df =
∂f

∂t
dt+

∑
k∈{T,I,F}

∂f

∂xk
dBk

t +
1

2

∑
k,l∈{T,I,F}

∂2f

∂xk∂xl
dBk

t dB
l
t +R, (88)

where R contains higher-order terms. By the properties of Brownian motion:

• dBk
t dB

l
t = d⟨Bk, Bl⟩t + o(dt) = ρkldt+ o(dt)

• Terms of order (dt)2, dt · dBk
t , and higher vanish in the limit

Thus, we obtain:

df =
∂f

∂t
dt+

∑
k∈{T,I,F}

∂f

∂xk
dBk

t +
1

2

∑
k,l∈{T,I,F}

∂2f

∂xk∂xl
d⟨Bk, Bl⟩t. (89)
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Integrating (100) from 0 to t yields:∫ t

0
df = f(B̃t, t)−f(B̃0, 0) =

∫ t

0

∂f

∂s
ds+

∑
k∈{T,I,F}

∫ t

0

∂f

∂xk
dBk

s+
1

2

∑
k,l∈{T,I,F}

∫ t

0

∂2f

∂xk∂xl
d⟨Bk, Bl⟩s.

(90)

Rearranging terms gives the stated formula.

The integrals are well-defined under Pk because:

(1) The partial derivatives ∂f
∂xk are continuous (hence bounded on compacts) and adapted,

so the Itô integrals
∫ t
0

∂f
∂xk dB

k
s exist as continuous local martingales under Pk.

(2) The Lebesgue-Stieltjes integrals
∫ t
0

∂f
∂sds and

∫ t
0

∂2f
∂xk∂xld⟨Bk, Bl⟩s are well-defined be-

cause:

• ∂f
∂s and ∂2f

∂xk∂xl are continuous (hence bounded on [0, T ]×K for compact K ⊂ R3)

• ⟨Bk, Bl⟩t = ρklt has finite variation

Therefore, the equality holds Pk-almost surely for each k ∈ {T, I, F}.

Definition 7.2 (Neutrosophic Itô Process). A neutrosophic Itô process X̃t = (XT
t , X

I
t , X

F
t )

satisfies component-wise SDEs:

dX̃t = dXk
t = µkt dt+

∑
k,l∈{T,I,F}

σklt dBk
t , (91)

where:

• µkt = (µTt , µ
I
t , µ

F
t ) is adapted with

∫ T
0 |µkt |dt <∞ P-a.s.

• σklt = [σklt ]k,l∈{T,I,F} is a 3× 3 adapted matrix with
∫ T
0

∑
l |σklt |2dt <∞ P-a.s.

• Bk
t = (BT

t , B
I
t , B

F
t ) is a canonical neutrosophic Brownian motion.

Theorem 7.3 (Itô Formula for Neutrosophic Itô Processes). Let f : R3 × [0, T ] → R be C1 in

t and C2 in x̃, and X̃t = (XT
t , X

I
t , X

F
t ) a neutrosophic Itô process with dynamics:

dXk
t = µkt dt+

∑
p∈{T,I,F}

σkpt dBp
t , k ∈ {T, I, F}, (92)

where B̃t = (BT
t , B

I
t , B

F
t ) is a canonical neutrosophic Brownian motion with d⟨Bp, Bq⟩t =

ρpqdt, and σkpt are predictable with
∫ t
0 (σ

kp
s )2ds <∞ a.s. Then:

f(X̃t, t) = f(X̃0, 0) +

∫ t

0

∂f

∂s
ds+

∑
k∈{T,I,F}

∫ t

0

∂f

∂xk
dXk

s

+
1

2

∑
k,l∈{T,I,F}

∫ t

0

∂2f

∂xk∂xl
d⟨Xk, X l⟩s,

(93)

where the cross-variation is:

d⟨Xk, X l⟩t =

 ∑
p,q∈{T,I,F}

σkpt σ
lq
t ρ

pq

 dt, (94)
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and all integrals are defined under a common neutrosophic probability measure Pk.

Proof. Fix k ∈ {T, I, F} and work under Pk. The neutrosophic Itô process X̃t = (XT
t , X

I
t , X

F
t )

has component-wise dynamics:

dXk
t = µkt dt+ dMk

t , dMk
t :=

∑
p∈{T,I,F}

σkpt dBp
t . (95)

The martingale parts Mk
t have cross-variation:

d⟨Mk,M l⟩t =
∑
p,q

σkpt σ
lq
t d⟨Bp, Bq⟩t =

(∑
p,q

σkpt σ
lq
t ρ

pq

)
dt, (96)

since d⟨Bp, Bq⟩t = ρpqdt. As the finite-variation terms µkt dt do not contribute to quadratic

variation:

d⟨Xk, X l⟩t = d⟨Mk,M l⟩t =

(∑
p,q

σkpt σ
lq
t ρ

pq

)
dt. (97)

Apply the multi-dimensional Itô formula to f(X̃t, t). For X̃t = Xk
t = (XT

t , X
I
t , X

F
t ), Taylor’s

expansion gives:

df =
∂f

∂t
dt+

∑
k∈{T,I,F}

∂f

∂xk
dXk

t +
1

2

∑
k,l∈{T,I,F}

∂2f

∂xk∂xl
dXk

t dX
l
t +R, (98)

where R contains higher-order terms. By Itô’s lemma rules:

dXk
t dX

l
t = d⟨Xk, X l⟩t + o(dt),

dXk
t dt = o(dt), (dt)2 = o(dt).

(99)

Substituting the cross-variation yields:

df =
∂f

∂t
dt+

∑
k∈{T,I,F}

∂f

∂xk
dXk

t +
1

2

∑
k,l∈{T,I,F}

∂2f

∂xk∂xl
d⟨Xk, X l⟩t. (100)

Integrate (100) from 0 to t:

f(X̃t, t)− f(X̃0, 0) =

∫ t

0

∂f

∂s
ds+

∑
k∈{T,I,F}

∫ t

0

∂f

∂xk
dXk

s +
1

2

∑
k,l∈{T,I,F}

∫ t

0

∂2f

∂xk∂xl
d⟨Xk, X l⟩s.

(101)

The integrals are well-defined under Pk because:

(1) Itô integrals: For each m,
∫ t
0

∂f
∂xk dX

k
s exists since:∫ t

0

∂f

∂xk
dMk

s =
∑
p

∫ t

0

∂f

∂xk
σkps dBp

s , (102)

is a sum of Itô integrals with Ek

[∫ t
0

∣∣∣ ∂f∂xkσ
kp
s

∣∣∣2 ds] < ∞ by the C2 condition and

adaptedness.
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Neutrosophic Sets and Systems, Vol. 93, 2025                                                                                40



(2) Lebesgue integrals: The terms
∫ t
0

∂f
∂sds and

∫ t
0

∂2f
∂xk∂xld⟨Xk, X l⟩s are Riemann-

Stieltjes integrals with:∫ t

0
gsd⟨Xk, X l⟩s =

∫ t

0
gs

 ∑
p,q∈{T,I,F}

σkps σ
lq
s ρ

pq

 ds, (103)

which converge absolutely as gs is continuous and the volatility is integrable.

Thus, the equality holds Pk-almost surely for each k ∈ {T, I, F}.

8. Conclusions

This research has established the theoretical foundations of stochastic calculus within the

neutrosophic paradigm, creating a rigorous mathematical framework for systems governed by

three-valued uncertainty. Our work introduces essential constructs including Canonical Neu-

trosophic Brownian Motion, the space Ṽ2[0, T ], and Neutrosophic Itô Processes, while

demonstrating the consistent extension of classical stochastic integration to this novel setting.

Crucially, we have proven that fundamental properties—isometry preservation, martingale

characterization with path regularity, effective localization techniques, and the validity of Itô’s

formula—remain intact when operating under truth-indeterminacy-falsehood dynamics. These

theoretical advances provide a powerful toolkit for modeling complex stochastic systems where

traditional probability measures cannot adequately capture pervasive indeterminacy.

Looking forward, this foundation enables multiple research trajectories that naturally extend

our work. Immediate extensions will focus on developing neutrosophic stochastic differential

equations with applications to financial modeling under epistemic uncertainty. Subsequent

efforts should address neutrosophic jump processes incorporating indeterminate amplitudes

and arrival intensities, while connections to rough path theory may yield relaxed regular-

ity conditions. Important theoretical challenges include developing dependence structures for

multivariate neutrosophic processes with interacting truth-indeterminacy relationships. Prac-

tical implementation will require creating computational methods for simulating neutrosophic

processes and approximating integrals. Finally, exploring connections between neutrosophic

uncertainty and quantum superposition states may open new interdisciplinary research av-

enues at the physics-mathematics interface. Collectively, these directions promise to advance

neutrosophic stochastic calculus from theoretical foundation to applicable methodology while

preserving the essential mathematical structures established herein.
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