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Abstract. Neutrosophic sets have garnered significant attention in recent years for their ability to handle

imprecise, indeterminate, and inconsistent information, making them particularly effective in solving complex

decision-making problems. Among their various extensions, Interval-Valued Neutrosophic Sets (IVNS) provide

a more expressive framework than classical fuzzy or intuitionistic fuzzy systems by introducing three inde-

pendent membership intervals: truth, indeterminacy, and falsity. By incorporating this enhanced structure,

decision-making processes can better capture practical situations involving ambiguity, indecision, and missing

data, especially in MCDM contexts. However, traditional reliability assessment methods in the IVNS envi-

ronment often lead to logically inconsistent outcomes, sometimes resulting in negative reliability values—an

issue that directly impacts the reliability of decision-making processes. To overcome this critical limitation, the

present study proposes a normalized reliability function that ensures all reliability estimates are strictly confined

within the [0, 1] range, thereby maintaining both logical consistency and interpretability. For instance, take the

interval-valued neutrosophic number x = <(0.5, 0.9), (0.1, 0.2), (0.2, 0.3)>. Traditional reliability computations

produce results in the range (0.27, 0.50). In contrast, the new method adjusts this estimation to (0.37, 0.42),

providing outcomes that are both more consistent and practically meaningful. In addition to the normalized

reliability function, the study incorporates score functions, average vector strategies, and the Hamming distance

measure to further improve decision-making accuracy under the IVNS framework. The effectiveness and prac-

ticality of the proposed methodology are demonstrated through a real-world case study in which a customer

selects the most suitable agent from three alternatives based on four decision criteria, showcasing the model’s

robustness and potential for application in complex MCDM scenarios.

Keywords: Interval-valued neutrosophic number (IVNN); reliability estimation; normalized reliability mea-

sure; multi-criteria decision-making (MCDM); hamming distance; score function; aggregation operator.
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1. Introduction

Since its inception by Zadeh in 1965 [14], fuzzy set theory has provided a foundational frame-

work for modeling uncertainty by allowing elements to possess varying degrees of membership.

Building upon this concept, Atanassov [1] introduced Intuitionistic Fuzzy Sets (IFS), which

simultaneously account for both membership and non-membership values, offering a more

comprehensive way to manage uncertainty. However, these models lack the explicit capacity

to represent indeterminate or ambiguous information. To address this limitation, Smaran-

dache [8] introduced Neutrosophic Sets (NS), where the truth, indeterminacy, and falsity

components are treated as independent parameters, thus enabling a more flexible and general-

ized approach to uncertainty modeling. Further developments led Wang et al. [16] to propose

Single-Valued and Interval-Valued Neutrosophic Sets (SVNS and IVNS), constraining each

membership function to the standard unit interval [0, 1]. This constraint facilitates real-world

applications by aligning the theoretical constructs with practical decision-making scenarios.

Among these, Interval-Valued Neutrosophic Numbers (IVNNs) have garnered particular atten-

tion in multi-criteria decision-making (MCDM) [7, 16], medical diagnostics, system reliability

evaluation, and network security analysis. Recent contributions in the journal Neutrosophic

Sets and Systems (NSS) have further enriched this field. For example, Yang et al. [11] pre-

sented an IVNN-based reliability allocation model for cybersecurity risk management, while

Aydogdu [2] developed new entropy and similarity measures grounded in the IVNN frame-

work. These advancements highlight the growing relevance of neutrosophic methodologies in

practical domains. Despite significant progress, a critical gap remains in the domain of relia-

bility estimation using IVNNs. Traditional models, such as those discussed by Smarandache

et al. [8], often yield reliability values in the interval [−1, 1], occasionally resulting in nega-

tive outputs. This is fundamentally problematic, as reliability—by its very nature—should

be a non-negative quantity representing the likelihood of system success or functionality. For

instance, given an IVNN x = ⟨(0.5, 0.9), (0.1, 0.2), (0.2, 0.3)⟩, applying the conventional relia-

bility formula yields r1(x) = (0.27, 0.50), but in other scenarios, negative values may emerge,

violating logical constraints.

To overcome this issue, we propose a normalized reliability function specifically tailored

for IVNNs. Our method guarantees that all results are confined within the interval [0, 1],

thereby eliminating the possibility of negative outputs and enhancing the interpretability of

the results. Using the same example, the proposed approach computes r2(x) = (0.37, 0.42),

producing reliability values that are not only logically consistent but also more informative

and robust for decision-making purposes. This paper presents a mathematically sound and

practically viable framework for IVNN-based reliability estimation. Our approach integrates

seamlessly with existing MCDM methodologies by utilizing score functions, hamming distance
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measures, and weighted aggregation operators. To validate the method, we apply it to a

decision-making scenario involving four alternatives, four evaluation criteria, and expert input

from three decision-makers. The results confirm the stability and effectiveness of the proposed

model, highlighting its potential for broader application. Moreover, the proposed method ad-

dresses critical needs in modern system design, where reliability is a central concern affecting

performance, safety, and sustainability. This is particularly relevant in fields such as electrical

circuits, control systems, and signal processing architectures, where continuous and reliable

operation is essential. Traditional reliability analyses typically assume simplified configura-

tions, such as series, parallel, or hybrid systems, where probabilistic models suffice. However,

real-world engineering systems often involve complex interconnections and dependencies that

cannot be reduced to standard configurations. These are categorized as non-series-parallel

(NSP) systems, and their evaluation requires more sophisticated analytical models. By offer-

ing a normalized reliability framework compatible with IVNNs, this work contributes not only

to theoretical advancement but also to practical system reliability analysis under uncertainty.

Furthermore, the model lays the groundwork for future research in hesitant, bipolar, and gen-

eralized neutrosophic frameworks and supports integration with hybrid artificial intelligence

(AI)-based decision support systems for complex, real-time applications.

2. Preliminaries

An introduction to the basic theories of fuzzy sets (FS), neutrosophic sets (NS), and interval-

valued neutrosophic sets (IVNS) is presented in this section, including their primary compu-

tational methods.

2.1. Fuzzy Set (FS) [14]

“The definition of a fuzzy set is a membership function that associates elements from a

discourse X world with the interval [0, 1]. A fuzzy set A in X can be formalized as a collection

of ordered pairs:

A = {(x, µA(x)) : x ∈ X}

The membership function in this case is represented by µA(x) : X → [0, 1] which gives each

element x a membership degree between 0 and 1. The degree to which x belongs to the fuzzy

set A is indicated by this membership value.”

2.2. Neutrosophic set (NS) [8]

“A neutrosophic set (NS) in a universe ξ is defined by three distinct membership functions:

Truth Membership Function (TA), Indeterminacy Membership Function (IA), Falsity Mem-

bership Function (FA). These functions, TA, IA, and FA, map elements to real standard values
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within the interval ]− 0, 1[. A neutrosophic set A can be represented as:

A = {⟨x, (TA(x), IA(x), FA(x))⟩ : x ∈ ξ, TA, IA, FA ∈]− 0, 1[}

Notably, the sum of these membership functions is unrestricted, allowing for flexibility in

the representation of uncertainty:

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+”

2.3. Interval-valued neutrosophic set (IVNS) [8]

“Consider a universe of discourse ξ comprising points (objects) denoted by x. An interval-

valued neutrosophic set (IVNS) A is defined by three interval-valued membership functions:

Interval Truth Membership: TA(x) = [a1, b1] ⊆ [0, 1], Interval Indeterminacy Membership:

IA(x) = [a2, b2] ⊆ [0, 1], Interval Falsity Membership: FA(x) = [a3, b3] ⊆ [0, 1].

For each x ∈ ξ, the membership functions satisfy TA(x), IA(x), FA(x) ⊆ [0, 1]. The IVNS A

can be represented as:

A = {⟨x, (TA(x), IA(x), FA(x))⟩ : x ∈ ξ}”

2.4. Interval-valued neutrosophic weighted average vector (IVNWAV) [8]

“Let Xi (i = 1, 2, . . . , n) be a set of Interval-Valued Neutrosophic Numbers (IVNNs), where

each Xi is defined as:

Xi =
{(

TL
xi
, TU

xi

)
,
(
ILxi

, IUxi

)
,
(
FL
xi
, FU

xi

)}
.

Let w = (w1, w2, . . . , wn)
T be the associated weight vector, satisfying:

wi ∈ [0, 1],
n∑

i=1

wi = 1.

The interval-valued neutrosophic weighted average vector (IVNWAV) operator is defined

as:

IVNWAV(X1, X2, . . . , Xn) =
{(

TL, TU
)
,
(
IL, IU

)
,
(
FL, FU

)}
,

where:

TL =

n∑
i=1

wi · TL
xi
, TU =

n∑
i=1

wi · TU
xi
,

IL =

n∑
i=1

wi · ILxi
, IU =

n∑
i=1

wi · IUxi
,

FL =

n∑
i=1

wi · FL
xi
, FU =

n∑
i=1

wi · FU
xi
.
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This operator aggregates multiple IVNNs into a single interval-valued neutrosophic number

by considering the relative importance of each element through the assigned weights.”

2.5. Hamming distance of interval-valued neutrosophic number [8]

“Let XA =
{(

TL
A (x), TU

A (x)
)
,
(
ILA(x), IUA (x)

)
,
(
FL
A (x), FU

A (x)
)}

be an Interval-Valued

Neutrosophic Number (IVNN).

Let x =
{(

tLx , tUx
)
,
(
iLx , iUx

)
,
(
fL
x , fU

x

)}
be the comparative IVNN.

The ideal point x+ is defined as:

x+ =
{(

tLx , tUx
)+

,
(
iLx , iUx

)+
,
(
fL
x , fU

x

)+}
,

where:

(tLx , tUx )
+ = max

(
TL
A (x), TU

A (x)
)
,

(iLx , iUx )
+ = min

(
ILA(x), IUA (x)

)
,

(fL
x , fU

x )+ = min
(
FL
A (x), FU

A (x)
)
.

The hamming distance between x and the ideal point x+ is given by:

H(x) = 1
6

( ∣∣TL
A (x)− (tLx )

+
∣∣ +

∣∣TU
A (x)− (tUx )

+
∣∣ +

∣∣ILA(x)− (iLx )
+
∣∣ +

∣∣IUA (x)− (iUx )
+
∣∣ +∣∣FL

A (x)− (fL
x )

+
∣∣+ ∣∣FU

A (x)− (fU
x )+

∣∣ )”
This formula represents the average of the absolute differences between the corresponding

lower and upper bounds of truth, indeterminacy, and falsity in x and the ideal point x+. It

provides a quantitative measure of the distance between two IVNNs under the neutrosophic

environment.

2.6. Computation of a score index for interval-valued fuzzy sets [8]

“Let A =
{(

TL
A (x) + TU

A (x)
)
,
(
ILA(x) + IUA (x)

)
,
(
FL
A (x) + FU

A (x)
)}

be an Interval-Valued

Fuzzy Set (IVFS).

The score function of A, denoted by S(A), is defined as:

S(A) =
{(

TL
A (x) + TU

A (x)− 1
)
,
(
ILA(x) + IUA (x)− 1

)
,
(
FL
A (x) + FU

A (x)− 1
)}

.

This score index represents the aggregated evaluation of the interval-valued fuzzy set by

summing the lower and upper bounds of the truth, indeterminacy, and falsity memberships,

respectively, and adjusting each by subtracting 1. It provides a comparative measure to support

decision-making processes involving interval-valued fuzzy information.”
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3. Reliability Assessment of Data Represented by Interval-Valued Neutrosophic

Numbers

“Smarandache et al. [8] defined the reliability r(x) of an interval-valued neutrosophic number

(IVNN) as:

r(x) =

{
tL − fL

1 + iL
,
tU − fU

1 + iU

}
,

where
(
tL, tU

)
,
(
iL, iU

)
, and

(
fL, fU

)
represent the truth, indeterminacy, and falsity mem-

bership intervals of the IVNN, respectively, and r(x) ∈ [−1, 1].

However, in practical scenarios, reliability values cannot be negative, as this would have no

real-world interpretation. Therefore, we propose an alternative reliability evaluation method

that ensures r(x) remains within the closed interval [0, 1].”

Proposed Reliability Computation

The reliability of an IVNN is computed as follows:

For the lower bound:

rlower(x) =


|tL − fL|

tL + iL + fL
, if tL + iL + fL ̸= 0,

0, if tL + iL + fL = 0.

For the upper bound:

rupper(x) =


|tU − fU |

tU + iU + fU
, if tU + iU + fU ̸= 0,

0, if tU + iU + fU = 0.

As a result, the overall reliability is given by:

r(x) = (rlower(x), rupper(x)) , r(x) ∈ [0, 1].

Numerical Example

Consider the IVNN:

x = ⟨(0.5, 0.9), (0.1, 0.2), (0.2, 0.3)⟩ .

Using the original method defined by Smarandache et al., the reliability is computed as:

r(x) =

{
0.5− 0.2

1 + 0.1
,
0.9− 0.3

1 + 0.2

}
=

(
0.3

1.1
,
0.6

1.2

)
= (0.27, 0.50).

Using the proposed approach, the reliability is calculated as follows:
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For the lower bound:

rlower(x) =
|0.5− 0.2|

0.5 + 0.1 + 0.2
=

0.3

0.8
= 0.37,

For the upper bound:

rupper(x) =
|0.9− 0.3|

0.9 + 0.2 + 0.3
=

0.6

1.4
= 0.42.

Thus, the reliability of x using the proposed method is:

r(x) = (0.37, 0.42).

Comparative Analysis

By comparing the results obtained using the traditional method and the proposed approach,

it is evident that the proposed method provides more practical and meaningful reliability

estimates, as it strictly bounds the result within [0, 1] and avoids negative values.

A detailed comparative analysis of the reliability values computed using the conventional

and proposed methods for various input values of
(
tL, tU

)
,
(
iL, iU

)
, and

(
fL, fU

)
is presented

in Tables 1 and 2.

Table 1. Reliability Comparison

tU iU fU Eq. (4) Eq. (5)

0 0 0 0 0

1 0 0 1 1

0 1 0 0 0

0 0 1 -1 1

1 1 0 0.5 0.5

1 1 1 0 0

1 0 1 0 0
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Table 2. Reliability Comparison

tL iL fL Eq. (4) Eq. (5)

0 0 0 0 0

1 0 0 1 1

0 1 0 0 0

0 0 1 -1 1

1 1 0 0.5 0.5

1 1 1 0 0

1 0 1 0 0

From Tables 1 and 2, it is evident. The values in Eq. (4) come from the interval [-1, 1],

where zero is the least acceptable number. One would want a greater value of the reliability

function, and equation (5) gives values from the interval [0, 1].

4. Solving Multi-Criteria Decision-Making Problems Using Interval-Valued Neu-

trosophic Numbers

To demonstrate the applicability of the proposed method, a practical Multi-Criteria

Decision-Making (MCDM) scenario is considered in which a customer must select the most

appropriate agent from a set of three alternatives: A1, A2, and A3. A panel of three domain

experts is engaged to evaluate each alternative based on four critical criteria: Cost (Cr1), En-

vironmental Impact (Cr2), Social Contribution (Cr3), and Medical Facility Provision (Cr4).

The Cost criterion focuses on the financial aspects, including affordability and the perceived

value of each option. The Environmental Impact criterion assesses the sustainability measures

and ecological footprint associated with each alternative. The Social Contribution criterion

evaluates the broader social implications, such as employment generation, community devel-

opment, and social welfare improvements linked to each choice. Lastly, the Medical Facility

Provision criterion considers the availability, accessibility, and quality of healthcare services fa-

cilitated by the respective alternatives. This structured assessment allows for a comprehensive

and balanced decision-making process that aligns with the customer’s priorities and societal

values. By integrating the expert evaluations using Interval-Valued Neutrosophic Numbers

(IVNNs), the proposed framework ensures that uncertainty, hesitation, and incomplete in-

formation are systematically managed during the decision process. The individual ratings

provided by the first expert are presented in Table 3.
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Table 3. Ratings of Three Experts

(a) First Expert’s Ratings

Criteria Cr1 Cr2 Cr3 Cr4

A1 (0.4, 0.8), (0.2, 0.3), (0.3, 0.5) (0.5, 0.8), (0.2, 0.3), (0.3, 0.4) (0.4, 0.9), (0.1, 0.3), (0.2, 0.4) (0.6, 0.9), (0.1, 0.2), (0.3, 0.4)

A2 (0.6, 0.9), (0.1, 0.2), (0.4, 0.5) (0.3, 0.8), (0.1, 0.4), (0.2, 0.5) (0.5, 0.7), (0.3, 0.5), (0.4, 0.5) (0.5, 0.9), (0.1, 0.2), (0.2, 0.3)

A3 (0.5, 0.8), (0.1, 0.3), (0.3, 0.4) (0.5, 0.7), (0.3, 0.4), (0.4, 0.5) (0.5, 0.9), (0.1, 0.2), (0.2, 0.3) (0.4, 0.8), (0.1, 0.3), (0.3, 0.4)

A4 (0.7, 0.9), (0.2, 0.3), (0.4, 0.5) (0.4, 0.7), (0.1, 0.2), (0.2, 0.3) (0.4, 0.8), (0.1, 0.3), (0.2, 0.3) (0.7, 0.9), (0.3, 0.4), (0.4, 0.5)

(b) Second Expert’s Ratings

Alternatives Cr1 Cr2 Cr3 Cr4

A1 (0.4, 0.9), (0.1, 0.4), (0.3, 0.5) (0.5, 0.9), (0.1, 0.3), (0.2, 0.3) (0.6, 0.9), (0.2, 0.3), (0.3, 0.4) (0.4, 0.9), (0.2, 0.3), (0.2, 0.4)

A2 (0.6, 0.8), (0.2, 0.3), (0.4, 0.5) (0.5, 0.7), (0.2, 0.4), (0.4, 0.5) (0.5, 0.7), (0.1, 0.2), (0.3, 0.4) (0.5, 0.9), (0.1, 0.3), (0.2, 0.3)

A3 (0.4, 0.9), (0.1, 0.2), (0.2, 0.4) (0.6, 0.8), (0.3, 0.4), (0.4, 0.5) (0.5, 0.9), (0.3, 0.4), (0.3, 0.5) (0.6, 0.8), (0.3, 0.5), (0.5, 0.6)

A4 (0.6, 0.9), (0.1, 0.2), (0.4, 0.5) (0.4, 0.7), (0.1, 0.3), (0.2, 0.3) (0.7, 0.9), (0.4, 0.5), (0.5, 0.6) (0.6, 0.9), (0.2, 0.4), (0.4, 0.5)

(c) Third Expert’s Ratings

Alternatives Cr1 Cr2 Cr3 Cr4

A1 (0.6, 0.8), (0.3, 0.4), (0.4, 0.5) (0.6, 0.9), (0.2, 0.3), (0.3, 0.4) (0.4, 0.6), (0.1, 0.4), (0.3, 0.4) (0.5, 0.9), (0.2, 0.4), (0.4, 0.5)

A2 (0.6, 0.9), (0.2, 0.4), (0.3, 0.4) (0.5, 0.8), (0.1, 0.2), (0.3, 0.4) (0.3, 0.8), (0.1, 0.4), (0.2, 0.5) (0.4, 0.7), (0.1, 0.2), (0.2, 0.3)

A3 (0.5, 0.9), (0.3, 0.5), (0.4, 0.5) (0.4, 0.8), (0.2, 0.3), (0.3, 0.5) (0.4, 0.9), (0.1, 0.2), (0.2, 0.4) (0.6, 0.8), (0.3, 0.5), (0.5, 0.6)

A4 (0.4, 0.7), (0.1, 0.2), (0.2, 0.3) (0.5, 0.9), (0.2, 0.5), (0.3, 0.5) (0.5, 0.8), (0.1, 0.6), (0.4, 0.5) (0.4, 0.8), (0.1, 0.3), (0.2, 0.3)
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Table 4 presents the reliability scores computed using both Equation (4), representing the

conventional method, and Equation (5), reflecting the proposed normalized approach. The

table also includes the overall average reliability of the experts’ evaluations, providing a com-

prehensive assessment of the consistency and dependability of the collected ratings.

Table 4. Reliability of Ratings Using Equation (4)

Alternatives Cr1 Cr2 Cr3 Cr4

A1 (0.08, 0.23) (0.16, 0.30) (0.18, 0.38) (0.27, 0.41)

A2 (0.18, 0.33) (0.09, 0.21) (0.07, 0.13) (0.27, 0.54)

A3 (0.18, 0.30) (0.07, 0.14) (0.27, 0.50) (0.09, 0.30)

A4 (0.25, 0.30) (0.18, 0.36) (0.18, 0.38) (0.23, 0.28)

Average (0.171875, 0.318125)

Table 5. First Expert’s Reliability Assessments Using Equation (5)

Alternatives Cr1 Cr2 Cr3 Cr4

A1 (0.11, 0.18) (0.20, 0.26) (0.28, 0.31) (0.30, 0.33)

A2 (0.18, 0.25) (0.16, 0.17) (0.08, 0.11) (0.37, 0.42)

A3 (0.22, 0.26) (0.08, 0.12) (0.37, 0.42) (0.12, 0.26)

A4 (0.2307, 0.2352) (0.28, 0.33) (0.28, 0.35) (0.21, 0.22)

Average (0.21691875, 0.264075)

Table 6 presents the average reliability scores of the evaluations given by the three decision-

makers, determined using the proposed normalized reliability formula (Equation 5). This

analysis serves to assess the overall trustworthiness and consistency of the experts’ inputs in

the MCDM framework.

Table 6. Expert-Based Reliability Assessments

Experts Reliability

Ep1 (0.21691875, 0.264075)

Ep2 (0.204375, 0.24625)

Ep3 (0.185, 0.235625)
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As presented in Table 6, the evaluations provided by all three experts demonstrate a high

degree of consistency, indicating that their judgments are reliable and appropriate for inclusion

in the subsequent alternative assessment process. However, in cases where a respondent’s

average reliability score falls below an acceptable threshold, it is advisable to either exclude

their evaluations from the decision-making process or request a revision to improve reliability

to an acceptable level.

The following section introduces a practical scenario for evaluating multiple alternatives.

Table 7 displays the construction of a group decision matrix based on Equation (1), using

equal weights for each decision criterion, represented as:

wj =

{(
1

3
,
1

3

)
,

(
1

3
,
1

3

)
,

(
1

3
,
1

3

)}
.

Subsequently, the overall ratings of the alternatives are computed using Equation (1) along

with the weighting vector:

wj = (0.21, 0.27, 0.24, 0.28).

Furthermore, the ideal solution is determined by applying Equation (3), which utilizes the

score function. The aggregated results, including the overall ratings and the ideal point, are

summarized in Table 8.
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Table 7. Group Decision Matrix with Weights (Split Criteria)

(a) Criteria Cr1 and Cr2

Alternatives Cr1 Cr2

Weights (wj) 0.21 0.27

A1 (0.46, 0.82), (0.19, 0.36), (0.33, 0.46) (0.52, 0.86), (0.15, 0.30), (0.26, 0.36)

A2 (0.60, 0.86), (0.15, 0.29), (0.36, 0.45) (0.42, 0.75), (0.12, 0.32), (0.29, 0.45)

A3 (0.45, 0.86), (0.16, 0.32), (0.29, 0.42) (0.49, 0.75), (0.26, 0.36), (0.36, 0.48)

A4 (0.56, 0.83), (0.12, 0.22), (0.32, 0.42) (0.42, 0.76), (0.12, 0.32), (0.22, 0.36)

(b) Criteria Cr3 and Cr4

Alternatives Cr3 Cr4

Weights (wj) 0.24 0.28

A1 (0.46, 0.80), (0.12, 0.33), (0.26, 0.39) (0.49, 0.90), (0.15, 0.29), (0.29, 0.42)

A2 (0.42, 0.72), (0.16, 0.35), (0.29, 0.45) (0.54, 0.83), (0.09, 0.22), (0.18, 0.30)

A3 (0.45, 0.90), (0.16, 0.25), (0.22, 0.39) (0.53, 0.78), (0.23, 0.42), (0.42, 0.53)

A4 (0.52, 0.82), (0.19, 0.46), (0.35, 0.46) (0.56, 0.86), (0.19, 0.36), (0.32, 0.42)

Table 8. Overall Ratings with Ideal Point

Alternatives Overall Ratings

A1 (0.4846, 0.8484), (0.1512, 0.317), (0.2831, 0.405)

A2 (0.4914, 0.7883), (0.1275, 0.2929), (0.2739, 0.408)

A3 (0.4832, 0.8175), (0.2066, 0.342), (0.3285, 0.4598)

A4 (0.5126, 0.8171), (0.1564, 0.3438), (0.3002, 0.4134)

A+ (Ideal Point) (0.4846, 0.8484), (0.1275, 0.2929), (0.2739, 0.408)

Table 9. Ranking of Alternatives

Alternatives Hi Rank

A1 0.010 1

A2 0.011 2

A3 0.044 4

A4 0.028 3
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As illustrated in Table 9, the alternative A1 achieves the lowest hamming distance value

of 0.010, indicating its closest proximity to the ideal solution. Consequently, A1 is ranked

first among the available options and is therefore considered the most preferable alternative.

The ranking results suggest that A1 provides the optimal balance across all decision criteria,

making it the most suitable choice for implementation. The remaining alternatives are ranked

in order of increasing hamming distance, with A2, A4, and A3 occupying the subsequent po-

sitions. This ranking reflects the relative performance of each option based on the aggregated

decision-making process.

5. Conclusion

In this study, a novel normalized reliability estimation method for interval-valued neutro-

sophic numbers (IVNNs) has been introduced. Unlike traditional approaches, which may

generate reliability values outside logical bounds including negative outcomes the proposed

method ensures that all computed reliability values are strictly confined within the interval

[0, 1]. This enhancement not only guarantees logical consistency but also improves the in-

terpretability and practical applicability of the results. The proposed method addresses a

significant limitation of existing reliability models by refining the calculation process to reflect

real-world scenarios more accurately. Since reliability in practical systems cannot be negative,

the normalization approach adopted in this study strengthens the decision-making process,

especially in environments characterized by uncertainty, incompleteness, and hesitation.

To validate the effectiveness and feasibility of the method, a comprehensive Multi-Criteria

Decision-Making (MCDM) case study was conducted. The scenario involved the evaluation

of four alternatives based on multiple criteria assessed by domain experts. Using the newly

proposed reliability estimation framework, a group decision matrix was constructed, and the

alternatives were ranked accordingly. The results demonstrated the robustness of the method,

highlighting its capability to handle complex evaluations while maintaining consistency and

fairness in the ranking process. Beyond theoretical contribution, this work holds significant

promise for practical applications. The normalized IVNN-based reliability model can be ef-

fectively employed in system reliability analysis, cybersecurity risk assessment, engineering

system evaluations, and other fields requiring decision-making under uncertain, imprecise, or

incomplete information. It provides a valuable tool for experts and decision-makers dealing

with complex systems where traditional crisp or fuzzy methods fall short.

Looking ahead, there are several potential directions for future research. The current model

can be extended to accommodate more sophisticated uncertainty representations, such as
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hesitant, bipolar, or generalized neutrosophic environments. Additionally, integrating this re-

liability framework into hybrid Artificial Intelligence (AI)-based decision support systems may

open new avenues for real-time and adaptive decision-making applications. Further studies

can also explore its use in big data analytics, supply chain risk management, and predictive

maintenance in smart systems. Overall, the proposed method contributes both theoretical

advancements and practical insights, making it a promising tool for modern reliability assess-

ment and decision analysis in uncertain environments.
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