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Abstract: Neutrosophic logic, introduced by Smarandache, offers a powerful framework for 

modeling uncertainty and inconsistency in real-world problems. This paper presents a novel 

approach for solving both unconstrained and constrained Neutrosophic Geometric Programming 

(NGP) problems with integer decision variables under a three-level framework of truth, 

indeterminacy, and falsity. By representing uncertain coefficients as triangular neutrosophic 

numbers, the proposed method translates the NGP model into a crisp equivalent using score and 

accuracy functions. Standard optimization techniques, including duality and normality conditions, 

are applied to derive optimal integer solutions. The approach addresses limitations in fuzzy and 

intuitionistic fuzzy systems by incorporating indeterminacy, thus providing a more robust solution 

framework. This method increases the degree of truth and minimizes indeterminacy and falsity, 

making it a viable tool for solving uncertainty problems within a neutrosophic environment. To 

validate the methodology's effectiveness and demonstrate the NGP's potential, numerical examples 

and a real-world case application were solved, showing its use in operations research, such as the 

Gravel Box Design Problem, and engineering optimization, such as supply chain management and 

truss structure design. 

Keywords: Neutrosophic logic; Geometric programming, Integer optimization; Uncertainty 

modeling; Triangular neutrosophic numbers. 

 

 

1. Introduction 

Florentine Smarandache introduced Neutrosophic logic in (1999), which is essential when 

dealing with incomplete, inconsistent, or generalizes classical, fuzzy, and intuitionistic fuzzy logics 

by introducing components using three levels: these degrees called acceptance (T), indeterminacy (I), 

falsity (F) unlike traditional frameworks that consider only degrees of truth or membership, 

neutrosophic logic models uncertainty more comprehensively by explicitly incorporating 

indeterminacy contradictory information [1].  

Geometric programming (GP) is an effective method to solve special structure problems, which 

is easier than non-linear programming problems, especially in design problems fluid dynamics 

robotics and control systems where we minimize cost and maximize volume. GP has many 

advantages compared with other optimization techniques. In GP the complexity of the solution 

determines according to degree of difficulty. The degree of difficulty is defined as the total number 

of terms in the objective function and constraints, minus the total number of decision variables and 

one. Since the late 1960s, GP has gained prominence and has been applied across various fields, 

including operations research and engineering. Pioneering works by Duffin, Peterson, and Zener [2, 
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3] established its theoretical foundations, while later references [4] offered expanded applications. 

Ecker [5], in a survey paper, noted many applications and methods that handle problems with both 

positive and zero degrees of difficulty. However, real case problems that need to be decided in a lot 

of fields like multi-dimensional and multi-objective in nature, spanning economic, environmental, 

social, and technical domains. 

Integer Programming (IP) is a subfield of mathematical optimization where some or all the 

variables are restricted to being integers. This distinguishes it from traditional linear programming, 

which allows variables to take on any real value, making IP problems computationally more complex. 

IP problems are used to solve real case problems requiring discrete decisions, like resource allocation, 

production scheduling, and network design, where units or tasks cannot be fractional. Solving these 

problems often involves sophisticated algorithms like the branch and bound method or cutting plane 

techniques for solving problems and getting the optimal solution using the feasible integer-

constrained set [6]. 

This paper addresses the challenge of effectively handling uncertainty and imprecision in real-

world optimization problems, which traditional methods often fail to manage. It directly tackles a 

significant gap in the field by proposing a comprehensive approach to solve NGP problems that 

simultaneously incorporates truth, indeterminacy, and falsity. The methodology achieves this by 

systematically converting these uncertain problems into a solvable crisp model using specific 

membership and score functions. The main objective is to provide a validated, efficient tool applicable 

to both unconstrained and constrained optimization problems with integer variables, demonstrating 

its potential for a wide range of practical applications. 

This paper is consisting of 6 sections: In section 2 we present preliminaries of the Neutrosophic. 

NGP problems with an unconstrained NGP optimization model and constrained NGP optimization 

model presented in section 3. Section 4 discusses general solutions for NGP Problems with 

unconstrained NGP optimization and constrained NGP Optimization. Section 5 presents the 

proposed approach steps. Lastly, we solved several numerical examples, with an unconstrained NGP 

model and constrained NGP model in section 6.  

2. Mathematical Preliminaries 

2.1 Fuzzy Set [7] 

Suppose an exist fixed set Z with fuzzy set X: where X  set of Z is an objective can be expressed 

as 𝑿̃  =  {(𝒛, 𝑻𝒙 (𝒙)): 𝒛 ∈  𝒁} the function 𝑻𝒙 : Z → [0, 1] defined the acceptance membership of the 

element  𝒛 ∈  𝒁 to the set X. 

2.2 Intuitionistic Fuzzy Set [8] 

Suppose an exist fixed set Z with an intuitionistic fuzzy set 𝑿𝒊̃ in Z is an object of the form 

𝑿𝒊̃ = {< 𝒁, 𝑻𝑿(𝒛), 𝑭𝒙(𝒛) > | 𝒛 ∈ 𝒁} where 𝑻𝒙 : Z → [0, 1] where 𝑭𝒙: Z → [0, 1] define the true and 

false membership respectively, ∀𝒛 ∈ 𝒁, 0 ≤ 𝑻𝒙(𝒛) + 𝑭𝒙(𝒛) ≤ 1 

2.3  Neutrosophic Set  

A neutrosophic set (NS) is an advanced mathematical framework that handles uncertainty and 

ambiguity more flexibly than traditional and fuzzy sets. It's defined on a space of objects X by 

membership functions with three independent levels: T-membership (acceptance) function, I-
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membership function, and F-membership (reject) function F(x). These functions are unique because 

they map to non-standard intervals, denoted as] 0−,1+ [, which allows for values infinitesimally smaller 

than zero or larger than one, providing greater flexibility. A key feature of NS is no limitation on the 

summation of T-membership function, I-membership function, and F-membership function, which 

allows it to model situations where belief, disbelief, and doubt are entirely independent of one 

another [9]. 

2.4 Single Valued Neutrosophic Sets 

Single valued neutrosophic sets are a mathematical concept that extends traditional and fuzzy 

set theories to handle uncertainty and ambiguity more comprehensively. Neutrosophic sets with 

single valued, denoted as A, are defined over a universe of discourse X where each element x is 

associated with three independent membership degrees: acceptance degree, I-membership degree, 

and reject degree. All these degrees fall within the range [0,1], and their sum must satisfy the 

condition 0  ≤ acceptance degree + indeterminacy degree + reject degree ≤  3 [10]. 

 

Figure 1. Neutrosophication process [9] 

2.5 Complement 

Single valued neutrosophic sets complement is defined by symbol Ac and it defined given by 
swapping the truth TA(x), and falsity membership degrees FA(x), while the indeterminacy degree is 
calculated as one minus its original value [9]. For an element x in the universe of discourse, if A = {⟨x, 
TA(x), IA(x), FA(x)⟩}, as equation (1) Ac is given by: 

Ac ={⟨x,TAc(x),IAc(x),FAc(x)⟩} 

2.6 Union 

Single valued neutrosophic sets union [9] denoted as K=M ∪ N, membership functions defined as 

in equation (2): 

(1) 
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T-membership: TK(x) = max (TM(x), TN(x)) 

I-membership: IK(x) = min (IM(x), IN(x)) 

F-membership: FK(x) = min (FM(x), FN(x)) 

2.7 Intersection  

The intersection of two SVN set M and N [9], denoted as K=M ∩ N, is a NSSV with membership 
functions defined as in equation (3): 

T-membership: TK(x) = min (TM(x), TN(x)) 

I-membership: IK(x) = max (IM(x), IN(x)) 

F-membership: FK(x) = max (FM(x), FN(x)) 

3. Mathematical model for NGP Problems 

NGP problem is essentially an extension of a traditional geometric programming problem, 

sharing the same fundamental structure of an objective function, general constraints, and decision 

variables. The key distinction, however, is that an NGP problem incorporates at least one 

neutrosophic geometric function which can serve as neutrosophic objective function, neutrosophic 

constraints, or even all of them. Consequently, solving these types of problems requires the 

development of various specialized NGP optimization models to effectively handle the unique 

neutrosophic components [11]. 

3.1 Unconstrained NGP Optimization Model 

Based on the principles of NGP, as equation (4) an unconstrained NGP problem in n decision 

variables is an optimization problem that seeks to minimize or maximize a neutrosophic objective 

function without any constraints [12].  

𝒇(𝐱)  =  ∑𝑼𝒋(𝒙) =  ∑(𝑪𝒋̃)

𝑵

𝒋=𝟏

𝑵

𝒋=𝟏

∏𝒙
𝒊

𝒂𝒊𝒋

𝒏

𝒊=𝟏

 

Where: 

 𝑥i ≥ 0,  i = 1, … 𝑛, 

𝑥i: integer for i ∈ {0,1, … 𝑛}. 

(𝑪𝒋̃): is neutrosophic numbers. 

3.2 Constrained NGP Optimization Model 

NGP problem with constraints is a specific type of optimization problem. As equations (5) Both 

the objective and constraints are defined using neutrosophic geometric functions. 

Maximize  

𝒇(𝐱) =  𝒈𝒐(𝐱) =∑ (𝑪𝒋̃)

𝑵

𝒋=𝟏

∏𝒙
𝒊

𝒂𝒊𝒋

𝒏

𝒊=𝟏

 

(2) 

(3) 

(4) 

(5) 
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Subject to 

𝒈𝒌(𝐱)  =  ∑(𝒂𝒊𝒋 
𝒏̃∏𝒙

𝒊

𝒂𝒊𝒋

𝒏

𝒊=𝟏

)

𝑵

𝒋=𝟏

 ≤ 𝒃𝒊 

𝒙𝒋 ≥ 0,        i = 1, 2,….,m; j = 1, 2, ……,n 

𝒙𝒋  Integer for 𝑗 ∈ {0,1, … 𝑛}. 

Where 𝒄𝒋 ,̃  𝒂𝒊𝒋
~𝒏

  

 
are neutrosophic numbers. 

The single valued neutrosophic sets (𝒂𝒊𝒋𝒏̃) is expressed by A=(l,m,n) where l,m,n ∈ [0,1] and l,m,n ≤ 3 

𝐓𝒂𝒊𝒋
~ 𝒏(𝐱) function of neutrosophic number 𝒂𝒊𝒋

~𝒏  is expressed as equation (6): 

T𝒂𝒊𝒋
~ 𝒏(x) =

{
 
 

 
 
𝑥 − 𝑙1
𝑙2  −  𝑙1

         𝑙1  ≤  𝑥 ≤  𝑙2

𝑙2  −  𝑥

𝑙3  −  𝑙2 
         𝑙2  ≤  𝑥 ≤  𝑙3

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝐈𝒂𝒊𝒋
~ 𝒏(𝐱) function of neutrosophic number 𝒂𝒊𝒋

~𝒏is expressed as equation (7): 

I𝒂𝒊𝒋
~ 𝒏(x) =

{
 
 

 
 
𝑥 − 𝑚1

𝑚2  −  𝑚1
         𝑚1  ≤  𝑥 ≤  𝑚2

𝑚2  −  𝑥

𝑚3  −  𝑚2 
         𝑚2  ≤  𝑥 ≤  𝑚3

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 𝐅𝒂𝒊𝒋
~ 𝒏(𝐱)function of neutrosophic number 𝒂𝒊𝒋

~𝒏 is expressed as equation (8): 

F𝒂𝒊𝒋
~ 𝒏(x) =

{
 
 

 
 
𝑥 − 𝑛1
𝑛2  −  𝑛1

         𝑛1  ≤  𝑥 ≤  𝑛2

𝑛2  −  𝑥

𝑛3  −  𝑛2 
         𝑛2  ≤  𝑥 ≤  𝑛3

1                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

As equations (9, 10), minimum and maximum for objective function can be expressed according to 
truth, indeterminacy and falsity membership 

z𝑚𝑎𝑥 = max{z(𝑥𝑖∗)} and z𝑚𝑖𝑛 =min{z(𝑥𝑖∗)},               1≤ 𝑖 ≤ 𝑘 

𝒛𝒎𝒊𝒏
𝑭  =  𝒛𝒎𝒊𝒏

𝑻  and  𝒛𝒎𝒂𝒙
𝑭  =  𝒛𝒎𝒂𝒙

𝑻  – P (𝒛𝒎𝒂𝒙
𝑻  −  𝒛𝒎𝒊𝒏

𝑻  ) 

𝒛𝒎𝒂𝒙
𝑰  =  𝒛𝒎𝒂𝒙

𝑰  and  𝒛𝒎𝒊𝒏
𝑰  =  𝒛𝒎𝒊𝒏

𝑰  – Q (𝒛𝒎𝒂𝒙
𝑻  −  𝒛𝒎𝒊𝒏

𝑻  ) 

where P, Q ∈ (0, 1) 

(8) 

(7) 

(6) 

(9) 

(10) 



Neutrosophic Sets and Systems, Vol. 95, 2026     132  

 

 

Alaa Mokhtar, Mohamed Solomon, Rabie Mosaad and Eman Mostafa, An Approach for Solving Unconstrained and 

Constrained Neutrosophic Geometric Integer Programming Problems 

The acceptance, indeterminacy and falsity membership of objective function can bd defined as in 
equations 11, 12 and 13: 

𝑇𝑧(x) =

{
 

 
1                  𝑖𝑓 𝑧   ≤  𝑧

𝑚𝑖𝑛 

𝑧𝑚𝑎𝑥 − 𝑧(𝑥)

𝑧𝑚𝑎𝑥   −  𝑧𝑚𝑖𝑛  
         𝑧𝑚𝑖𝑛 ≤ 𝑧(𝑥) ≤ 𝑧𝑚𝑎𝑥

0                    𝑖𝑓𝑧(𝑥) >  𝑧
𝑚𝑎𝑥

 

𝑇𝑧(x) =

{
 

 
0                  𝑖𝑓 𝑧  ≤ 𝑧

𝑚𝑖𝑛 

𝑧(𝑥) − 𝑧𝑚𝑎𝑥

𝑧𝑚𝑎𝑥   −  𝑧𝑚𝑖𝑛  
            𝑧𝑚𝑖𝑛 < 𝑧(𝑥) ≤ 𝑧𝑚𝑎𝑥

0                    𝑖𝑓   𝑧(𝑥) >  𝑧
𝑚𝑎𝑥

 

𝑇𝑧(x) =

{
 

 
0                  𝑖𝑓 𝑧   ≤  𝑧

𝑚𝑖𝑛 

𝑧(𝑥) − 𝑧𝑚𝑖𝑛

𝑧𝑚𝑎𝑥   −  𝑧𝑚𝑖𝑛  
           𝑧𝑚𝑖𝑛 < 𝑧(𝑥) ≤ 𝑧𝑚𝑎𝑥

1                    𝑖𝑓       𝑧(𝑥) >  𝑧
𝑚𝑎𝑥

 

The neutrosophic set of the 𝑗𝑡ℎ decision variable ai is expressed as equations 14, 15 and 16: 

𝑇𝑥𝑗
(𝑥)
 =

{
 
 

 
 1                𝑖𝑓  𝑎𝑖 ≤  0
𝑘𝑗  −  𝑎𝑖

 𝑘𝑗  
         𝑖𝑓  0 <  𝑎𝑖  ≤  𝑘𝑗

0                 𝑖𝑓  𝑎𝑗  >  𝑘𝑗

 

𝐹𝑥𝑗
(𝑥)

=

{
 

 
0                𝑖𝑓  𝑎𝑖 ≤  0

 𝑎𝑖
𝑘𝑗  −  𝑙𝑗  

         𝑖𝑓  0 <  𝑎𝑖  ≤  𝑘𝑗

1                 𝑖𝑓  𝑎𝑖  >  𝑘𝑗

 

𝐼 𝑗
(𝑥) =

{
 

 
0              𝑖𝑓  𝑎𝑖 ≤  0

𝑎2  −  𝑎

𝑘𝑗  −  𝑙𝑗  
          𝑖𝑓  0 <  𝑎𝑖  ≤  𝑘𝑗

0                 𝑖𝑓  𝑎𝑖  >  𝑘𝑗

 

where k𝑗, l𝑗 are integer numbers. 

4. NGP Problems Solution 

The exploration of NGP problems aims to provide a robust framework for optimization under 

indeterminacy. Unlike classical GP, NGP accounts for incomplete, indeterminate, and inconsistent 

information inherent in real case scenarios by employing neutrosophic numbers. The general 

approach typically involves transforming the NGP problem into an equivalent crisp (classical) GP 

problem through various defuzzification or score function methods. This transformation allows for 

the application of established optimization techniques, such as duality theory and condensation 

(11) 

(12) 

(13) 

(16) 

(15) 

(14) 
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methods, ultimately providing a more comprehensive and adaptable solution in an uncertain 

environment [13-14]. 

4.1 Unconstrained NGP Solution 

Using equation (17) 

𝒛(𝐱)  =  ∑𝑼𝒋(𝒙) =  ∑(𝑪𝒋̃)

𝑵

𝒋=𝟏

𝑵

𝒋=𝟏

∏𝒙
𝒊

𝒂𝒊𝒋

𝒏

𝒊=𝟏

 

Where 𝑥𝑖𝑗, 𝑐𝑗  > 0. The minima or maxima of a function can be expressed as equation (18), which states 

that the differentiation of function = 0 occurs. 

𝜕𝑧

𝜕𝑥𝑖
 = 0 

The orthogonality condition gets the solution as defined in equation (19). 

 ∑𝑤𝑗
∗𝑎𝑖𝑗

𝑁

𝑗=1

= 0 

And the normality condition as in equation (20) 

∑𝑤𝑗
∗

𝑁

𝑗=1

= 1 

Where: 

𝑤𝑗
∗ = 

𝑈𝑗(𝑥
∗)

𝑧∗
 

 The optimal objective function can be write as equation (21):  

𝑧 
∗ = (

𝑈1
∗

𝑤1
∗)
𝑤1
∗

(
𝑈2
∗

𝑤2
∗)
𝑤2
∗

……… . (
𝑈𝑛
∗

𝑤𝑛
∗)
𝑤𝑛
∗

 

the orthogonality and normality equations can be solved using 𝑤𝑗
∗ values. 

We can calculate the degree of difficulty in GP using equation DD = k – (m+1) 

DD: refer Difficulty Degree. 

(17) 

(18) 

(19) 

(20) 

(21) 
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m: refer to Decision Variables.  

k: refer to Objective Function terms as Posynomial. 

If the problem has one solution this is called zero difficulty. While the problem has a positive 

number of solutions this can express variables in many terms of variables to represent solution. The 

degree of difficulty negative is not allowed in GP. 

Using 𝑧 
∗ and 𝑈𝐽 

∗,  we can get optimal solution for decision variables using equation (22)  

𝑼𝒋
∗  =  𝒘𝒋

∗ 𝒛 
∗ = 𝒄𝒋 ∏ 𝒙

𝒊

𝒂𝒊𝒋𝒏
𝒊=𝟏  

For a problem with zero DD, the equation can be reduced as equation (23) 

ln 
𝒘𝟏 
∗ 𝒛 

∗

𝒄𝒋
 = 𝒂𝟏𝒋 ln 𝒙𝟏

∗  + 𝒂𝟐𝒋 ln 𝒙𝟐
∗  + ……………………+𝒂𝒏𝒋 ln 𝒙𝒏

∗  

The design variables can be obtained as equation (24) 

𝒌𝒊 = ln 𝒙𝒊
∗  

𝑥𝑖
∗ = 𝑒𝑘𝑖  

4.2 Constrained NGP Solution 

Using equation (25) 

𝒇(𝐱) =  𝒈𝒐(𝐱) =∑ (𝑪𝒋̃)

𝑵

𝒋=𝟏

∏𝒙
𝒊

𝒂𝒊𝒋

𝒏

𝒊=𝟏

 

S.t  

𝒈𝒌(𝐱)  =  ∑(𝒂𝒊𝒋 
𝒏̃∏𝒙

𝒊

𝒂𝒊𝒋

𝒏

𝒊=𝟏

)

𝑵

𝒋=𝟏

 ≤ 𝟏 

The standard form of primal problems and dual problems are expressed as equation (26):  

 

∏ 

𝑚

𝑘=0

∏((
𝑐𝑘𝑗

𝑤𝑘𝑗
)∑𝑤𝑘𝐼

𝑁

𝐽=1

)

𝑤𝑘𝐼𝑁

𝑗=1

 

S.t  

(22) 

(23) 

(24) 

(25) 

(26) 
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∑ 

𝑚

𝑘=0

∑𝑎𝑘𝑖𝑗𝑤𝑘𝑙

𝑁

𝑗=1

 =  0 

∑𝑤𝑘𝑗

𝑁

𝑗=1

 =  0 , 𝑘 =  0 

The standard form can be defined as equation (28) 

𝑔𝑘(𝑥) ≤  𝑣(𝑥) 

𝑔𝑘(𝑥)

𝑣(𝑥)
 ≤  1 

5. The proposed approach steps  

Step 1: Use score and accuracy functions as equations (29,30) to transform NGP problem into a crisp 

model using triangular neutrosophic numbers. According to definition 𝑥̃ = 〈(k1, m1, n1), 𝑤𝑥̃, 𝑢𝑥̃, 𝑦𝑥̃ 〉 

triangular neutrosophic number can be expressed as: 

score (𝑥̃) = 
1

16
 [k + m + n] × (2 + 𝜇𝑥̃ − 𝑣𝑥̃ − 𝜆𝑥̃) 

accuracy (𝑥̃) = 
1

16
 [k + m + n] × (2 + 𝜇𝑥̃ − 𝑣𝑥̃ + 𝜆𝑥̃) 

Using score & accuracy degrees of 𝑥̃. NGP converted into crisp model using equations (29, 30). 

Step 2: Construct a decision by selecting the greatest T-membership degree, I- membership and the 

lowest F-membership degree. 

Step 3: Use equations from 25-28 to solve GP problems. 

Step 4: Use roundoff technique to get optimal solution as integer decision variables. If it is, the 

solution is valid, else use Lingo 18 to get optimal solution. 

Step 5: Otherwise return to Step 1 and repeat the process. 

 

 

 

 

 

 

 

 

 

 

 

(28) 

(27) 

(30) 

(29) 

NGP Problem 
Construct a decision by 

selecting membership degree 

Solve GP Problems 
Get optimal solution as integer 

decision variables 

Crisp model using triangular 

neutrosophic numbers 
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Figure 2. The proposed approach steps 

 

 

6. Numerical Examples 

6.1 Unconstrained problem 

Illustrative Example (1):  

Minimize                    𝑧 =  
5̃

𝑥1 𝑥2
3  +  

3̃ 𝑥1
2 𝑥2

𝑥3
2  +

4̃ 𝑥1 𝑥2
4

𝑥3
  +  1̃ 𝑥3 

Where:  

5̃ =  ⟨(4,5,6 ), 0.80, 0.60, 0.40 ⟩ 

3̃ = ⟨(2.5,3,3.5 ), 0.75, 0.50, 0.30⟩ 

4̃ = ⟨(3.5,4,4.1 ), 1, 0.50, 0.0 ⟩ 

1̃ = ⟨(0,1,2 ), 1, 0.50, 0 ⟩ 

The neutrosophic model is then converted into a crisp model using the method outlined in 

Equation (30), as follows. 

Minimize  

𝑧 =  
5.6875

𝑥1 𝑥2
3  +  

 3.5968 𝑥1
2 𝑥2

𝑥3
2  +  

 4.3125 𝑥1 𝑥2
4

𝑥3
 +  0.2815 𝑥3 

DD = 4 - (3+1) = 0 then a unique solution exists  

[

𝑎11 𝑎12
𝑎21 𝑎22

𝑎13 𝑎14
𝑎23 𝑎24

𝑎31 𝑎32
𝑎41 𝑎42

𝑎33 𝑎34
𝑎43 𝑎44

] =  [

−1 2
−3 1

1 0
4 0

0 −2
1 1

−1 1
1 1

] and [

𝑐1
𝑐2
𝑐3
𝑐4

] = [

5.6875
3.5968
4.3125
0.2815

] 

Matrix form using normality and orthogonality conditions  

[

−1 2
−3 1

1 0
4 0

0 −2
1 1

−1 1
1 1

] [

𝑤1
𝑤2
𝑤3
𝑤4

] = [

0
0
0
1

] 
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[

𝑤1
𝑤2
𝑤3
𝑤4

] = [

−1 2
−3 1

1 0
4 0

0 −2
1 1

−1 1
1 1

]

−1

 [

0
0
0
1

] 

After we solve the above system, we get values of W: 

[

𝑤1
𝑤2
𝑤3
𝑤4

] = 

[
 
 
 
 
 
7

20
1

20
1

4
7

20]
 
 
 
 
 

 

Substitute with the optimal values of w in equation (21) to get value of z* 

z* =  (
5.6875

𝑤1
)
𝑤1
(
3.5968

𝑤2
)
𝑤2
(
4.3125

𝑤3
)
𝑤3
(
0.2815

𝑤4
)
𝑤4

 = 6.2 

[

−1
2
1

−3
1
4

0
−2
−1

0 0 1

] [

𝑘1
𝑘2
𝑘3
𝑘4

] = 

[
 
 
 
 
 
 
 ln

6.2049 ×
7

20

5.6875

ln
6.2049 ×

1

20

3.5968

ln
6.2049 ×

1

4

4.3125

ln
6.2049 ×

7

20

0.2815 ]
 
 
 
 
 
 
 

 

As equation (24) values of ki is used for finding values of design variables 𝑥𝑖
∗  

[

𝑥1
∗

𝑥2
∗

𝑥3
∗
] = [

9.39
−3.26
7.71

] 

Table 1. optimal solution for Illustrative Example (1) 

 Continuous optimum Round off Integer optimum 

x1 9.39 9 3 

x2 −3.26 1 (0 not allowed) 1 

x3 7.71 8 8 

z* 6.2 11.8 6.4 

The optimal integer solutions as Table 1 are: 
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[

𝑥1
∗

𝑥2
∗

𝑥3
∗
] = [

3
1
8
] 

 

6.2 Constrained problem 

Application Example (2): 

Application of Neutrosophic Optimization in Gravel box Design Problem [15].  

Transport cost: 
25̃

𝑥1𝑥2𝑥3
, Material cost: 48̃ 𝑥2 𝑥3

 . So, the problem 

Min  𝑓(𝑥) = 𝑔0(𝑥) =
25̃

𝑥1𝑥2𝑥3
+ 48̃ 𝑥2 𝑥3

  

subject to 

𝑔1(𝑥) =  
1

2
 𝑥1
  𝑥3

 + 
1

4
 𝑥1 𝑥2

 ≤ 1 

Where:  

25̃ =  ⟨(19,25,33 ), 0.80,0.50,0.0 ⟩; 

48̃ = ⟨(44,48,54 ), 0.90,0.50,0.0 ⟩ 

The neutrosophic coefficient converted to a crisp using the method specified in equation (30). 

This conversion process is typically achieved by using a defined ranking method, such as a score 

function or an accuracy function, to transform the neutrosophic numbers into a single, definite value. 

Minimize  

 𝑓(𝑥) = 𝑔0(𝑥) =
27.9

𝑥1𝑥2𝑥3
+  55.3 𝑥2 𝑥3

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑔1(𝑥) =  0.5 𝑥1
  𝑥3

 +  0.25 𝑥1 𝑥2
 ≤ 1 

DD = 3 - (2+1) = 0.  

 f* =  (
27.9 

𝑤1
)
𝑤1
(
55.3

𝑤2
)
𝑤2
(
0.5

𝑤3
)
𝑤3
(
0.25

𝑤4
)
𝑤4

 (𝑤3 +𝑤4)
𝑤3+𝑤4  

Matrix form of normality and orthogonality can be expressed as   
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[

−1 0
−1 1

1 1
0 1

−1 1
1 1

1 0
0 0

] [

𝑤1
𝑤2
𝑤3
𝑤4

] = [

0
0
0
1

] 

[

−1 0
−1 1

1 1
0 1

−1 1
1 1

1 0
0 0

] [

𝑤1
𝑤2
𝑤3
𝑤4

] = [

−1 0
−1 1

1 1
0 1

−1 1
1 1

1 0
0 0

]

−1

 [

0
0
0
1

] = 

[
 
 
 
 
 
2

3
1

3
1

3
1

3]
 
 
 
 
 

 

After we solve the above system, we get values of W 

[

𝑤1
𝑤2
𝑤3
𝑤4

]  = 

[
 
 
 
 
 
2

3
1

3
1

3
1

3]
 
 
 
 
 

 

Substitute as equation (21) to get the optimal value f* 

f* =  (
27.9 

𝑤1
)
𝑤1
(
55.3

𝑤2
)
𝑤2
(
0.5

𝑤3
)
𝑤3
(
0.25

𝑤4
)
𝑤4

 (𝑤3 + 𝑤4)
𝑤3+𝑤4 = 52.35 

Design variables x1 and x2 can be calculated from the equations:  

𝑈1
∗= 𝑊1𝑓

∗ = 34.9 =  27.9 𝑥1
−1 𝑥2

−1𝑥3
−1 

𝑈2
∗= 𝑊2𝑓

∗ = 17.45 =  55.3 𝑥2 𝑥3
  

This gives: 

[

𝑥1
∗

𝑥2
∗

𝑥3
∗
] = [

2.534

1
0.3155

] 

Table2. optimal solution for Illustrative Example (2) 

 Continuous optimum Round off Integer optimum 

x1 2.534 3 1 

x2 1 1 1 

x3 0.3155 1 1 
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f* 52.35 Infeasible 83.2 

The optimal integer solutions as table 2 are: 

[

𝑥1
∗

𝑥2
∗

𝑥3
∗
] = [

1
1
1
] 

Illustrative Example (3): 

Minimize  

 𝑓(𝑥) = 𝑔0(𝑥) =
30

𝑥1𝑥2𝑥3
+  30 𝑥2 𝑥3

  

𝑠. 𝑡 

𝑔1(𝑥) =  4̃ 𝑥1
  𝑥3

 + 3̃ 𝑥1 𝑥2
 ≤ 1 

Where:  

4̃ =  ⟨(3.5,4,4.1 ), 1, 0.50, 0.0 ⟩; 

3̃ = ⟨(2.5,3,3.5 ), 0.75, 0.50, 0.25 ⟩ 

The neutrosophic expressed to a crisp as in Equation (30). This conversion process is typically 

achieved by using a defined ranking method. 

Minimize  

 𝑓(𝑥) = 𝑔0(𝑥) =  
30

𝑥1𝑥2𝑥3
+  30 𝑥2 𝑥3

  

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑔1(𝑥) =  4.31 𝑥1
  𝑥3

 +  3.63 𝑥1 𝑥2
 ≤ 1 

DD = 3 - (2+1) = 0, so the minimization problem can be written in dual form as equation (21) 

 f* =  (
30 

𝑤1
)
𝑤1
(
30

𝑤2
)
𝑤2
(
4.31

𝑤3
)
𝑤3
(
3.63

𝑤4
)
𝑤4

 (𝑤3 + 𝑤4)
𝑤3+𝑤4 

Matrix form using normality and orthogonality conditions 

[

−1 0
−1 1

1 1
0 1

−1 1
1 1

1 0
0 0

] [

𝑤1
𝑤2
𝑤3
𝑤4

] = [

0
0
0
1

] 
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[

−1 0
−1 1

1 1
0 1

−1 1
1 1

1 0
0 0

] [

𝑤1
𝑤2
𝑤3
𝑤4

] = [

−1 0
−1 1

1 1
0 1

−1 1
1 1

1 0
0 0

]

−1

 [

0
0
0
1

] = 

[
 
 
 
 
 
2

3
1

3
1

3
1

3]
 
 
 
 
 

 

[

𝑤1
𝑤2
𝑤3
𝑤4

]  = 

[
 
 
 
 
 
2

3
1

3
1

3
1

3]
 
 
 
 
 

 

Substitute to get optimal value f* 

f* =  (
30

𝑤1
)
𝑤1
(
30

𝑤2
)
𝑤2
(
4.31

𝑤3
)
𝑤3
(
3.63

𝑤4
)
𝑤4

 (𝑤3 + 𝑤4)
𝑤3+𝑤4 = 225 

Design variables x1 and x2 can be calculated from the equations:  

𝑈1
∗= 𝑊1𝑓

∗ = 150 =  
30

𝑥1𝑥2𝑥3
 

𝑈2
∗= 𝑊2𝑓

∗ = 75 =  30 𝑥2 𝑥3
  

This gives  

[

𝑥1
∗

𝑥2
∗

𝑥3
∗
] = [

0.08

1.581

1.581

] 

Table 3. optimal solution for Illustrative Example (3) 

 Continuous optimum Round off Integer optimum 

x1 0.08 1 (0 not allowed) 

No integer feasible 

solution 

x2 1.581 2 

x3 1.581 2 

f* 225 Infeasible 

 

The optimal integer solutions are No feasible solution 
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7. Conclusion 

Nowadays, neutrosophic environments are becoming very important research topics because 

they are a good tool for solving uncertainty problems. This paper proposes an approach for solving 

(NGP) problems under the three levels of truth, indeterminacy, and falsity. The approach was 

applied to two models; the first is an unconstrained optimization problem, and the second is a 

constrained optimization problem with integer variables in both cases. We increase the degree of 

truth and decrease indeterminacy and falsity as much as possible. Our approach depends on 

converting NGP using a crisp model with acceptance, indeterminacy and falsity membership and 

score functions. Finally, the efficiency of this new approach was validated through several numerical 

examples. In the future studies, the proposed approach can be solved by metaheuristic algorithms. 

Also, it can be developed to solve a lot of real-world problems such as healthcare and medical 

diagnosis (like breast cancer diagnosis), industrial and engineering design (like supply chain 

management and truss structure design), and environmental and sustainability (like water resource 

allocation). The paper validates its method with numerical examples, but it does not explicitly 

discuss the computational complexity or scalability of the approach when applied to large-scale, 

highly complex real-world problems. 
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