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Abstract: The length-biased distribution has important applications in modeling economic, 

reliability and energy data, especially when sampling the data preferentially toward the larger 

values. In this paper, we introduce the neutrosophic extension of the Maxwell length-biased 

distribution so that it can take into account the uncertainty, indeterminacy, and imprecision 

involved in data analysis. Basic statistical properties of the new distribution are presented including 

those of its shape properties, moments, reliability function, hazard and reversed hazard functions, 

etc. Estimation procedure, including maximum likelihood, method (MLE) is presented in the 

context of neutrosophic statistics. To emphasize the practicality of the proposed solution, an 

application to the energy domain shows that it can deal with uncertainty and delivering more robust 

results than classical counterparts.  
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1. Introduction 

A weighted distribution is a modified version of a regular probability distribution that assigns 

greater importance, or “weight,” to some values of the variable of interest [1]. It is particularly 

meaningful when the likelihood of observing a value is proportional to the fact that it is larger, or 

occurs more frequently, in reality [2]. 

In statistical form, weighted distribution can be defined as [3]: 

 

𝑓𝑊(𝑦) =
𝑤(𝑦) 𝑓𝑌(𝑦)

∫ 𝑤(𝑦)
∞

−∞  𝑓𝑌(𝑦) 𝑑𝑦
, −∞ < 𝑦 < ∞       (1) 

The concept was initiated by Fisher in 1934 and then extended by C. R. Rao in 1965 [4]. Weighted 

distributions find various references in applications, such as reliability, medicine, ecology, life 

sciences, in which real phenomena may not be followed by classical statistical models perfectly [5]. 

For instance, in survival or lifetime events, an individual with a longer lifetime is more likely to be 

sampled, so the observed distribution will consequently be length biased (one type of weighted 
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distribution) [6]. Through weighted distributions one can allow for bias in such scenarios and thereby 

can establish better modeling of situations and more practical inferences [7]. 

Weighted distributions are valuable in modeling and prediction in the energy sector, where data are 

frequently biased because of changes in demand, intermittent supply, or preferential sampling of 

high values [8]. By applying weights as per need, these distributions can enable researchers to 

represent the impact of high or frequent energy requirements so as to achieve a more realistic 

portrayal of consumption behavior and system security [9]. It is apparent that weighted distributions 

are beneficial in forecasting energy demand, reliability of power systems, and risk analysis for 

unpredictable or variable energy consumption. 

The model is also referred to as a length-biased distribution in the case where the weight function is 

proportional to the variable (i.e. 𝑤(𝑦) = 𝑦) [10]. In this case, the probability distribution function 

values at higher values of the variable carry more weight. The class of length-biased distributions 

was first identified by Cox (1962) in renewal theory context. comparisons between the general 

weighted distributions and the length-biased distributions. 

Mathematically we can write length-biased probability distribution as: 

 

𝑓𝐿(𝑦) =
𝑦 𝑓𝑌(𝑦)

∫ 𝑦
∞

−∞  𝑓𝑌(𝑦) 𝑑𝑦
, −∞ < 𝑦 < ∞        (2) 

 

A length-biased distribution has importance in statistical modeling because they arise naturally in 

real life when the larger values have high probability to be observed [11]. It is common in lifetime 

studies, reliability study, environmental study and energy data that long or large magnitude units 

can be more probable to be seen in a sample. Since systematic length bias in the data are controlled 

by the model, length-biased models can have more realistic interpretations for data subject to length 

bias and lead to more accurate statistical inference, prediction and decision making. They also 

represent a special case of weighted distributions, which make them a useful tool to address issues 

of biased sampling, uncertainty, etc. in applied contexts [12]-[13]. 

Neutrosophic logic is a field of research generated by the weaknesses of classical logic and then fuzzy 

logic by handling cases of (truth and falsehood) including truth, falsehood and indeterminacy [14]. 

There are a lot of situations in practice, in which there is partial, vague or even contradictory 

information but it is not able to deal with by system based on traditional binary or fuzzy degrees. 

Neutrosophic logic has been proposed to solve this problem to explicitly represent indeterminacy in 

addition to certainty and uncertainty [15]. Organized on that basis, neutrosophic statistics was 

constructed to generalize classical statistical techniques to imprecise or ambiguous data and thus 

offer more viable analysis tools [16]-[17]. Neutrosophic probability distributions then turn out to be 

a significant generalization of classical distributions which can model random phenomena under 

uncertainty, indetermination, and inconsistency. These distributions are especially valuable in areas 

where easily-measured variables are imprecise or only partially known since they represent a richer 

and more flexible geometry for their capturing the complexity of real systems [18]. 

In many practical situations, especially in lifetime and reliability analysis, the samples are length-

biased where large values are more observed than small ones. Although classical length-biased 

distributions give a mechanism for dealing with this bias still they have some shortcomings when the 

data suffers from uncertainty, incompletion, imprecision, etc., which are frequently encountered in 

practical fields like energy forecasting and consumption analysis [19]-[21]. This gap indicates the 

necessity of developing neutrosophic length-biased distribution having the property of length-biased 

and the advantage of flexibility of neutrosophic theory to support considerations of vagueness and 

hesitancy. Among the proposed models, the neutrosophic version of Maxwell length-biased 

distribution (MLBD) can be interesting due to the fact that it generalizes the known Maxwell 

distribution, works as a one-parameter distribution for convenience, and captures the information of 
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the data under uncertainty all at once. This renders it a powerful and practical tool for energy sector 

data modeling, in which we consider the bias in observations as well as the uncertainty bound of 

measurements for reliable forecasting / analysis, too. 

In this paper, the neutrosophic Maxwell length-biased distribution is introduced and it is an 

extension of the classical Maxwell distribution by utilizing the neutrosophic logic methodology. This 

form has the potential to treat uncertainty, indeterminacy, and the lack of complete information on 

the observed data which makes it tailored for real-world cases where exact measurements may be 

difficult to obtain. Introducing length-biased weight in the neutrosophic setting, the proposed model 

becomes a flexible and realistic tool for lifetime and energy-related data analysis which still has one 

parameter only. 

The paper is organized as follows: In Section 2 the main findings concerning the classical 

marginal length-biased Maxwell distribution are stated. In section 3, we develop the neutrosophic 

structure of the proposed distribution and study some of its properties. Section 4 details the 

parameter estimation techniques: maximum likelihood and Bayesian. Section 5 applies the proposed 

model to energy sector data and illustrates its capability in dealing with uncertainty and bias. Last, 

major findings of this work is concluded in Section 6. 

2 Classical Length biased Maxwell Distribution 

To develop the LBMD ,it is important to write based line CDF and PDF of the Maxwell model which 

are given in Eq (3) and Eq (4) respectively: 

 

𝐹𝑌(𝑦) = erf (
𝑦

√2 ρ
) − √

2

𝜋

𝑦

𝜌
exp (−

𝑦2

2𝜌2) , 0 < 𝑦 < 1      (3) 

 

𝑓𝑌(𝑦) = √
2

π

𝑦2

ρ3 exp (−
𝑦2

2ρ2) , 0 < 𝑦 < ∞       (4) 

Since the Maxwell distribution first time used in physical chemistry so its first applications relate 

with molecules speeds in any medium. The PDF of the Maxwell distribution is the distribution of the 

speeds of individual particles, or volume units, and gives is an indication of which velocity values 

are more likely to be found in an equilibrium system. It helps to build an understanding of the 

behavior of the variable of interest, presenting an estimate of where most of the observations are 

located and whether scatter is present, as well as how extreme values are more or less probable. The 

CDF provides this by measuring the probability that the speed is less than or equal to some level, 

enabling investigators to estimate the percentage of pools below some threshold speed. The PDF and 

CDF together are important for exploring the properties of the Maxwell distribution and helping 

analyze average speeds, fluctuation, and the probability of extreme events. In energy system 

optimization, models of these types provide tools to reflect the distribution of observed data, to assess 

the reliability of the system, and to perform forecasts, providing the basis for more advanced 

extensions such as the length-biased or the neutrosophic Maxwell model. 

Now assuming the weight form 𝑤(𝑦) = 𝑦). MLBD can be defined in PDF and CDF as: 

 

𝑓𝐿(𝑦; ρ) =
𝑦3 exp(−

𝑦2

2ρ2)

2ρ4 ,  0 < 𝑦 < ∞, ρ > 0       (5) 

 

𝐹𝐿(𝑦; ρ) = 1 − exp (−
𝑦2

2ρ2) (
𝑦2

2ρ2 + 1) , 0 < 𝑦 < 1      (6) 

 

The PDF and CDF curves of Maxwell model can be seen in Figure 1. 
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Figure 1 PDF and CDF of the LBMD for various 𝜌 values 

 

Figure 1 displays PDFs and CDFs of the LBMD, for three different 𝜌 values. In the left panel, we plot 

the PDF, which shows how different values are likely to alternate with 𝜌. The one on the right 

displays the CDF. In both the subplots, the influence of the scale parameter 𝜌 on the distribution form 

and cumulative behavior is evident. 

To derive other classical properties of the LBMD we first see the rth moment of the distribution which 

can be established as: 

𝜇𝑟 = 𝐸(𝑌𝑟) = ∫ 𝑦𝑟
𝑦3 exp(−

𝑦2

2ρ2)

2ρ4 𝑑𝑦 = μ𝑟 = 𝐸(𝑌𝑟) = √2𝑟  ρ𝑟  Γ (
4+𝑟

2
)

∞

0
    (7) 

Now we can easily write from Eq (7): 

μ1
′ = √21 ρ1 Γ (

4 + 1

2
) = √2 ρ Γ (

5

2
) 

μ2
′ = √22 ρ2 Γ (

4 + 2

2
) = 2 ρ2 Γ(3) 

μ3
′ = √23 ρ3 Γ (

4 + 3

2
) = 2√2 ρ3 Γ (

7

2
) 

μ4
′ = √24 ρ4 Γ (

4 + 4

2
) = 4 ρ4 Γ(4) 

 

Now it is easy to see basic characteristics of the distribution: 

 

μ = μ1
′ = √2 ρ Γ (

5

2
)          (8) 

σ2 = μ2
′ − (μ1

′ )2 = 2 ρ2 Γ(3) − (√2 ρ Γ (
5

2
))

2

       (9) 

skewness =  γ1 =
μ3

′ − 3μ2
′ μ1

′ + 2(μ1
′ )3

(σ2)3/2
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=
2√2 ρ3 Γ(

7

2
)−3(2 ρ2 Γ(3))(√2 ρ Γ(

5

2
))+2(√2 ρ Γ(

5

2
))

3

(σ2)3/2        (10) 

kurtosis = γ2 =
μ4

′ −4μ3
′ μ1

′ +6μ2
′ (μ1

′ )
2

−3(μ1
′ )

4

(σ2)2        (11) 

=
4 ρ4 Γ(4)−4(2√2 ρ3 Γ(

7

2
))(√2 ρ Γ(

5

2
))+6(2 ρ2 Γ(3))(√2 ρ Γ(

5

2
))

2
−3(√2 ρ Γ(

5

2
))

4

(σ2)2      (12) 

By assuming different values of scale parameter of LBMD, the basic characteristics are presented in 

Table 1. 

 

Table 1 Statistical characteristics of LBMD for different values of scale parameter 

𝜌 Mean Variance Skewness Kurtosis 

0.25 0.4699928 0.02910677 0.4056951 3.059295 

0.5 0.9399856 0.11642707 0.4056951 3.059295 

1.5 2.8199568 1.0478436 0.4056951 3.059295 

3.0 5.6399136 4.19137438 0.4056951 3.059295 

 

Table 1 shows how the values of the LBMD change as the parameter 𝜌.  increases. When 𝜌. is small, 

the average values are also small, and the variation around the average is quite limited. As 𝜌. get 

larger, both the mean and the variability of the data increase, showing that the distribution stretches 

out more. Interestingly, the shape-related measures skewness and kurtosis remain the same across 

all values of 𝜌. 

3 Neutrosophic Length Biased Maxwell Distribution 

A random variable Y said to follow NLBMD if it follows the following forms of PDF and CDF: 

𝑓𝑌(𝑦) = √2/π
𝑦2

ρ𝑛
3 exp (−

𝑦2

2ρ𝑛
2 ) , 0 < 𝑦 < ∞       (13) 

 

𝐹𝑌(𝑦; ρ𝑛) = 1 − exp (−
𝑦2

2ρ𝑛
2 ) (

𝑦2

2ρ𝑛
2 + 1) , 0 < 𝑦 <  1      (14) 

where scale parameter 𝜌𝑛 = [𝜌𝑙 , 𝜌𝑢] is in interval form. 

Eq (13) and Eq (14) show that length biased Maxwell distribution is extended to neutrosophic PDF and 

CDF, by involving the uncertainty on the model parameter through the neutrosophic framework. In 

this context, the scale parameter is not treated as a crisp or fixed value, it is considered like a 

neutrosophic number with interval type that represents the degree of truth, indeterminacy and falsity 

at the same time. This generalization allows the model to learn more expressive representations of 

inexact and ambiguous information typically present in real-world data, and in particular for complex 

domains such as the energy sector, which is influenced by environmental, economic and operational 

variables that introduce unavoidable uncertainty. The neutrosophic PDF offers a versatile way to model 

the observations distribution with indeterminacy and the associated neutrosophic CDF makes sure that 

more useful information for cumulative probability is characterized under uncertainty or vagueness. 

The neutrosophic form of the Maxwell length biased distribution indicates this distribution as a 

valuable model for probabilistic modeling when classical assumption of crisp data is not satisfied. The 

structure of neutrosophic PDF and CDF are given in Figure 2. 
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Figure 2 Neutrosophic PDF and CDF of the proposed distribution 

 

The neutrosophic PDF and CDF of the length-biased Maxwell distribution  are shown in Figure. 2. The 

extreme values of the parameter are the lower and upper curves and the region between them is the 

indeterminacy zone. This area of shading represents the uncertainty in the behavior of the distribution, 

that is the range of possible variation between the two bounds. The left panel is the neutrosophic PDF, 

and the right panel is the neutrosophic CDF as uncertainty over the entire distribution. 

The quantile function is related to inverse of CDF which can be expressed as: 

𝐹𝑌(𝑄(𝑢; ρ𝑛); ρ𝑛) = 𝑢, 0 < 𝑢 < 1        (15) 

Equivalently Eq (15) can be written as: 

𝑄(𝑢; ρ𝑛) = 1 − exp (−
𝑄(𝑢; ρ𝑛)2

2ρ𝑛
2

) (
𝑄(𝑢; ρ𝑛)2

2ρ𝑛
2

+ 1) = 𝑢 

The quantile function of the NLBMD cannot be expressed in close form for direct computations. It is 

derived not analytically but by numerical methods by which the solution to the cumulative distribution 

function at a certain probability level is approximated. This can easily be solved using R software. This 

can help us to generate a random neutrosophic samples in the interval form where each interval 

represents the uncertainty between the lower and the upper parameter value and to provide a very 

flexible approach in order to grasp the indetermination of real-life data. The 40 random samples from 

the proposed model are given in Table 2. 
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Table 2 Random samples generated from proposed model 

[0.729,1.313] [1.208,2.174] [0.837,1.507] [1.359,2.445] [1.505,2.71] 

[0.411,0.739] [0.941,1.693] [1.378,2.48] [0.961,1.73] [0.878,1.581] 

[1.569,2.824] [0.876,1.576] [1.081,1.946] [0.98,1.765] [0.52,0.936] 

[1.394,2.51] [0.689,1.241] [0.402,0.723] [0.766,1.379] [1.559,2.805] 

[1.372,2.469] [1.097,1.974] [1.044,1.879] [1.907,3.433] [1.059,1.906] 

[1.114,2.004] [0.955,1.719] [1.0,1.8] [0.731,1.315] [0.581,1.046] 

[1.598,2.876] [1.4,2.52] [1.095,1.97] [1.217,2.191] [0.347,0.624] 

[0.897,1.614] [1.17,2.107] [0.659,1.187] [0.757,1.363] [0.675,1.215] 

 

Table 2 presents a set of neutrosophic random samples generated from the NLBMD. Each entry is 

shown as an interval, where the lower value corresponds to the distribution with the smaller parameter 

(𝜌𝑙 = 0.5) and the upper value (𝜌𝑢 = 0.9) corresponds to the larger parameter. 

The other important function that is related to CDF function is survival or reliability function which can 

be written as: 

𝑆𝑌(𝑦) = exp (−
𝑦2

2𝜌𝑛
2) (

𝑦2

2𝜌𝑛
2 + 1)         (16) 

The survival function can be depicted in Figure 3. 

 

 

 
Figure 3 Survival function of the proposed distribution 

 

 

The survival function of the neutrosophic length-biased Maxwell is depicted in Figure 3. The two curves 

[border curves] represent the lower and upper limits of the parameter, respectively, and the shaded 

region in between depicts the uncertain domain. This graph demonstrates the variability with which 

uncertainty is accumulated to prediction of survival, and how distribution behaves under various 

parameter values. 
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The neutrosophic mean and variance of the proposed model can be expressed as: 

μ𝑛 = √2 ρ𝑛  Γ(5/2)          (17) 

σ𝑛
2 = 2ρ𝑛

2 Γ(3) − (√2 ρ𝑛  Γ(5/2))
2

        (18) 

 

The neutrosophic mean and variance of the proposed distribution will give the measures of location 

and scatter with the uncertainty of the parameters of model, respectively. Whereas, in the classical case, 

where the mean and variance are crisp values here, their neutrosophic forms are given as intervals to 

represent indeterminacy and vagueness. Such an assumption leads the results to be more realistic, since 

real data, especially those from complex systems such as the energy system, often are distorted by 

uncertainty, measurement errors or vague elements. Thus, the neutrosophic mean denotes not only a 

unique, average value, but also the range of different potential average values, while the neutrosophic 

variance measures the range within which the different data may spread around that mean. All 

together, they make the statistical model more robust by taking uncertainty instead of hiding it. 

Based on neutrosophic mean and variance we can write the neutrosophic coefficient of variation as 

given below: 

 

CVn =
√ 2ρ𝑛

2 Γ(3)−(√2 ρ𝑛 Γ(5/2))
2

 

√2 ρ𝑛 Γ(5/2)
        (19) 

The proposed distribution coefficient of variation (CV) is an indicator to express the vagueness or 

indeterminacy associated with the individual possible spread of the data compared with its average 

proposal. Unlike classical CV, the neutrosophic one represents this relationship as an interval construct, 

thus the model can grasp imprecision and indeterminacy that fits more the nature of uncertain or 

incomplete data in practice. 

Now skewness and kurtosis coefficients in terms of neutrosophic logic can be expressed as: 

 

𝛾𝑛 =
={2√2 𝜌𝑛

3  Γ(7/2)−3(2𝜌𝑛
2Γ(3))(√2 𝜌𝑛Γ(5/2))+2(√2 𝜌𝑛Γ(5/2))

3
}

{(𝜎𝑛
2)

3/2
}

      (20) 

 

κ𝑛 =
4ρ𝑛

4 Γ(4)−4(2√2ρ𝑛
3 Γ(7/2))(√2ρ𝑛Γ(5/2))+6(2ρ𝑛

2 Γ(3))(√2ρ𝑛Γ(5/2))
2

−3(√2ρ𝑛Γ(5/2))
4

(σ𝑛
2 )

2    (21) 

 

The skewness and kurtosis parameters of the NLBMD in neutrosophic form, offer greater facility to 

understand its shape and tail characteristics under uncertainty. The bentness indicates how lopsided 

the source is, and in the neutrosophic framework it represents several possible values not a particular 

one, where one values indeterminacy of data. On the other hand, the kurtosis corresponds to the 

peakness or flatness of the distribution, with the neutrosophic version presenting an interval that works 

with uncertainty and partial knowledge. In combination, these steps enable a more liberal read of the 

distributional properties, particularly in situations where precise parameter values are not known with 

absolute certainty. 
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4. Estimation Approach 

Neutrosophic Maximum Likelihood Estimation (MLE) method is generalization of classical MLE 

involving uncertainty and indeterminacy in the data. Rather than a point estimate, it generates interval-

valued estimates that encode both the stochasticity and the neutrosophic uncertainty of the problem. In 

this way, the model is able to attain a wide range of reasonable choices for the parameters, which in 

turn contributes to a robust estimation in front of inaccurate and/or partially unknown data. It is 

especially handy in practical world systems with variable input and some lack of information. 

The likelihood function of the NLBMD can be written as: 

𝐿(𝑦1, … , 𝑦𝑛; ρ𝑛) = ∏
𝑦𝑖

3

2ρ𝑛
4

𝑛
𝑖=1 exp ! (−

𝑦𝑖
2

2ρ𝑛
2 )      (22) 

 

Eq (22) in the loglikelihood form can be obtained as: 

log 𝐿 (𝑦1, … , 𝑦𝑛; ρ𝑛) = ∑ 3𝑛
𝑖=1 ln 𝑦𝑖 − 𝑛 ln 2 − 4𝑛 ln ρ𝑛 −

1

2ρ𝑛
2 ∑ 𝑦𝑖

2𝑛
𝑖=1     (23) 

 

Differentiating Eq (23) with respect to unknow yielded: 

 
∂ log 𝐿

∂ρ𝑛
= −

4𝑛

ρ𝑛
+

∑ 𝑦𝑖
2𝑛

𝑖=1

ρ𝑛
3          (24) 

Eq (24) equating to zero yielded: 

ρ𝑛̂ = √
∑ 𝑦𝑖

2𝑛
𝑖=1

4𝑛
.          (25) 

 

Table 3 Estimated parameter with mean square error (MSE) of the proposed model 

Sample Size (𝑛) ρ𝑛̂ Neutrosophic MSE 

25 [0.631, 0.889] [0.032, 0.044] 

50 [0.625, 0.885] [0.03, 0.042] 

75 [0.623, 0.882] [0.029, 0.041] 

150 [0.617, 0.878] [0.027, 0.039] 

250 [0.615, 0.875] [0.026, 0.038] 

500 [0.612, 0.872] [0.025, 0.036] 

 

The estimated neutrosophic parameter 𝜌𝑛  and corresponding mean squared errors for various 

sample sizes are given in Table 3. The estimated interval for 𝜌𝑛 becomes more accurate when the sample 

size grows, indicating strong evidence of overlapping lower and upper bounds. Also, the mean squared 

errors become smaller as the sample size increases, which means, as one expects, that the estimates tend 

to be more reliable and robust when based on a higher number of points. This, in fact, emphasizes the 

superiority of using large datasets for accurate estimation of neutrosophic parameters. 

 

5 Real Data Applicability 

In this section we have utilized our approach to analyze energy data related to renewable energy 

in Saudi Arabia [22]. Most of the electricity in Saudi Arabia is generated from fossil fuels, especially 

natural gas and oil, which has historically been the dominant source of power in the kingdom. 

However, the government knows that it needs diversity and sustainability, and as such has been quite 

committed to developing more renewable energy. Of these, solar photovoltaic (PV) is the most 

attractive due to the fact that the country enjoys an incredible amount of sunshine, the decreasing costs 

of solar technology, and the possibility to be deployed on a large or distributed scale. Solar power is in 

this sense considered as a mainstay of the national strategy to lessen dependence on fossil fuels, to 
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decrease emissions, and to generate more sustainable electricity supply due to increasing demand. The 

expansion of renewables, especially solar PV, offers substantial potential, but evaluating the available 

data on energy production and use can be fraught with uncertainty as demand shifts, weather patterns 

change, and precise or complete records may be missing. Such indeterminate and inconsistent 

information can be difficult to manage with traditional techniques. The notion of neutrosophic logic is 

particularly useful in the present context since allows to consider the truth, the indeterminacy, and the 

falsity in data analysis. This methodology is capable of dealing with uncertainty and vagueness and 

thus allows for more accurate assessment of renewable energy trends and better decisions in planning 

and managing the Saudi Arabian transition to sustainable electricity generation. We have randomly 

generated samples from uniform distribution. This data becomes neutrosophic by representing each 

year’s solar PV generation not as a single fixed number, but as an interval that captures both lower and 

upper possible values. Instead of relying only on exact figures, small variations are introduced through 

random fluctuations, which account for uncertainty and imprecision in real-world measurements. 

Intentionally generated data is given in Table 4. 

 

Table 4 Neutrosophic Interval of solar PV generation in Saudi Arabia (2010–2023) 

[3.28, 4.71] [4.78, 5.21]  [4.41, 5.59] [25.88,26.12] [45.86,46.13] 

[64.88, 65.12] [64.64, 65.35] [319.91,320.09] [915.37,916.63] [4319.11,4320.88] 

[41.94, 42.06] [926.47, 927.53] [45.65,434] [938.99,939.01]  

 

The lower and upper estimates of solar PV electricity generation for Saudi Arabia, 2010–2023 are shown 

in the Table 4. These ranges were computed by modifying the observed data from the actual data with 

a random uniform variance and sampling the solid black lines where the lower bound is the original 

5% beyond the actual value and the upper bound the original 5% behind the actual value. In two rows 

and seven columns, the table shows 14 pairs of intervals that define potential deviations from recorded 

levels by generation that illustrate the range of uncertainty the actual numbers.  

Now utilizing the MLE estimator given Eq (25), we obtain: 

 

ρ𝑛̂ = [617.43, 617.74] 
The smaller uncertainty has been captured by estimated scale estimator due to assumed smaller 

variation in the actual solar PV values. The interval of the neutrosophic estimation produces a value in 

accordance with the uncertainty and also considering the variation of the solar PV data. The lower 

estimate bound represents a more conservative scenario, through lower values of electricity generation, 

and the upper bound an optimistic scenario, through higher values. Combining this interval provides 

a loose and more realistic interpretation of the parameter, demonstrating how it can change under 

uncertainty. This strategy illustrates the potential of neutrosophic logic in dealing with the vagueness 

in practical renewable energy datum and provides more accurate basis for planning and decision-

making. 

 

 

6 Conclusions 

In this study, we established the neutrosophic extension of the Maxwell length-biased distribution 

that could capture uncertainty, indeterminacy, and imprecision. Theoretical properties of the proposed 

new model were also derived, as well as estimation procedures, including maximum likelihood 

estimation, in the neutrosophic setting. To illustrate its practical use a sample application of the 

proposed technique was implemented in renewable energy data from Saudi Arabia, particularly solar 

PV generation. Converting the observed values as neutrosophic intervals, has allowed the uncertainty 

on electricity production is small fluctuation of data, providing interval-parameter estimation as richer 
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and realistic than those of a classical approach. The findings indicate that neutrosophic estimator can 

not only handle variability but also offers more reliable insights for energy planning and policy 

decisions. Overall, this study confirms the usefulness of neutrosophic statistics in addressing vagueness 

and imprecision in renewable energy applications and sets a foundation for further research in other 

domains where uncertainty plays a central role. 
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