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Abstract:     In this study, we introduce a novel framework for defining and analyzing two 

specific types of Fuzzy Neutrosophic Soft Matrices (FNSMs): consistent and weakly transitive. These 

matrix classes are modelled and assessed using Python-based computational techniques. We 

establish that both types exhibit controllability and present a Python-compatible formulation for 

deriving the canonical form of a Weakly Transitive FNSM (WT-FNSM). Fundamental algebraic and 

structural properties such as nilpotency, symmetry, transitivity, and weak transitivity are 

investigated through programmatic simulations. Additionally, we explore the connection between 

consistent and weakly transitive FNSMs and finite fuzzy neutrosophic relations, emphasizing their 

applicability in various practical and academic domains. The controllability of WT-FNSMs is further 

validated through algorithmic evaluation. To support the theoretical results, appropriate Python-based examples 

and simulations are provided. A key contribution of this work is a versatile Python tool designed for FNSMs, 

which is also adaptable for use with fuzzy matrices, intuitionistic fuzzy matrices, and fuzzy neutrosophic 

matrices. 

Keywords: Fuzzy Neutrosophic Soft Matrix (FNSM), Nilpotent Fuzzy Neutrosophic Soft Matrix 

(NFNSM), Transitive Fuzzy Neutrosophic Soft Matrix (T FNSM), Controllable Fuzzy Neutrosophic 

Soft Matrix CFNSM, Python 
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1. Introduction 
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The notion of Fuzzy Set (FS) and its logic are investigated and discussed by Zadeh [1]. After that, 

Atanassav investigated the Intuitionistic Fuzzy Set (IFS) [2]. Neutrosophy has extend the grounds 

for a total family of new mathematical estimations. It is one of the non-classical sets, like fuzzy, nano, 

soft, permutation sets and so on. The Neutrosophic Set (NS) was presented by Smarandache [3] and 

expounded, (NS) is a popularization of (IFS) in intuitionistic fuzzy set. Maji [4] introduced the 

concept of neutrosophic soft set and established some operations on these sets. Broumi and 

Smarandache [5, 6] combined the intuitionistic neutrosophic and soft set which lead to a new 

mathematical model called intuitionistic neutrosophic soft set. They studied the notions of 

intuitionistic neutrosophic soft set union, intuitionistic neutrosophic soft set intersection, 

complement of intuitionistic neutrosophic soft set and several other properties of intuitionistic 

neutrosophic soft set along with exam plus and proofs of certain results. Recently, Deli [7] 

introduced the interval valued neutrosophic soft set as a combination of interval neutrosophic set 

and soft set. The concepts of consistent and weak transitive fuzzy matrices was introduced by Emam 

[8] as a property of finite fuzzy preference relations. The notions of Fuzzy Neutrosophic Soft Matrix 

(FNSM) and used them in decision making problems proposed by Arockiarani and Sumathi  [9,10]. 

The Priodicity of Interval values, on powers of matrices and convergence of matrices, Solvable linear 

equation, Eigen space by usig  the notion of Fuzzy Neutrosophic Soft Matrices are Introduced 

Kavitha et.al.,[11,12,13]. The idea of Monotone Fuzzy Neutrosophic Soft Eigenspace Structure in 

Max-Min Algebra and Convergence of Fuzzy Neutrosophic Soft Circulant Matrices are proposed by 

Murugadas et.al.,[14,15,16]. Uma et.al., [17] presented the concepts of Fuzzy Neutrosophic Soft 

Matrices of Type-1 and Type-2.  

    Smarandache et.al introduced [18] the concepts of a python tool for Implementations on Bipolar 

Neutrosophic Matrices. They have established some operations, especially the composition is a 

challenging algorithm in terms of coding because there are so many nested lists to manipulate.  

Gayathri et al. [19] presented the ideas of neutrosophic vague measures using Python. Their work 

explores the application of Python in analyzing neutrosophic vague measures and investigates 

various types of measures within neutrosophic vague sets, supported by illustrative examples. In 

recent developments, some researchers have created Python programs to perform operations 

involving neutrosophic numbers. However, these implementations are limited in scope they do not 

support computations involving neutrosophic matrices. To the best of our knowledge, there has 

been no comprehensive effort so far to implement Python code that handles operations on 

single-valued neutrosophic matrices (SVNMs) or bipolar neutrosophic matrices (BNMs). This 

reveals a significant research gap, motivating the current study. 

     The present work aims to fill this gap by exploring various operations on FNS and providing 

corresponding Python implementations using different FNSMs. The structure of the manuscript is 

organized as follows: Section 2 outlines key preliminary definitions. Section 3 discusses essential 

ideas pertaining to FNSMs and demonstrates how to perform matrix operations using the Python 

programming language. Section 4 is dedicated to developing Python scripts for handling FNSMs, 

complemented by a worked-out numerical example. The final section, Section 5, summarizes the 

findings and suggests directions for future research. 

  

2.  Preliminaries 

Definition 1: [3]  

A Fuzzy Neutrosophic Set (FNS) A on the universe of discourse X is defined as A = 

{x,  , x ∈ X} , where  T , I, F : X → [0, 1] and 
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 0   3. 

Definition 2: [5] 

Let U be the initial universal set and E be a set of parameters. Consider a non-empty set A, A ⊂ E. Let 

P(U) denotes the set of all FNSs of U. The collection (F, A) is termed to be the FNSS over U, where F 

is a mapping given by F : A → P(U).  Here after we simply consider A as FNSS over U instead of (F, 

A). 

Definition 3: [6] 

 Let U = { } be the universal set and E be the set of parameters given by E = 

{ }. Let A ⊂ E. A pair (F, A) be a FNSS over U. Then the subset of U × E is defined by 

 = {(u, e); e ∈ A, u ∈ (e)} which is called a relation form of ( , E). The membership function, 

indeterminacy membership function and non membership function are written  

 : U × E → [0, 1],  : U × E → [0, 1] and  : U × E → [0, 1] where 

  (u, e) ∈ [0, 1],  (u, e) ∈ [0, 1] and  (u, e) ∈ [0, 1] are the membership value, 

indeterminacy value and non membership value respectively of u ∈ U for each e ∈ E 

If [  = [ , ,  ], we define a matrix 

=  

which is called an m × n FNSM of the FNSS ( ,  E) over U.  

The set of all FNSMs of order  is denoted by   and  represent the set of all 

FNSM of order . 

Definition 4: [17] 

 Let A =  , B = . The component wise addition and 

component wise multiplication is defined as  
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 A ⊕ B = (sup{ , }, sup { , }, inf { , })  

A ⊗ B = (inf{ , }, inf {  , }, sup { , })  

Definition 5: [17] Let A  B , the composition of A and B is defined as 

 A ◦ B = ,  

equivalently we can write the same as 

A ◦ B = . 

The product A ◦ B is defined if and only if the number of columns of A is same as the number of rows 

of B. Then A and B are said to be conformable for multiplication. We shall use AB instead of A ◦ B.  

Where  means max-min operation and  

 means min-max operation. 

3. A Python Approach to Fuzzy Neutrosophic Soft Matrix Processing  

     We examine the properties of consistency and weak transitivity in fuzzy neutrosophic soft 

matrices and construct their canonical weak transitive form accordingly. The Python code for 

inputting these matrices is described as follows. 

         Let R = , and S=  be the fuzzy neutrosophic soft matrices 

Then the following operations are defined.  

 R⊲ S iff  = (0,0,1) ⇒ = (0,0,1) for every i ≤ m and for every j ≤ n, ⊲ 

it is denoted by relations are reflexive and transitive. 

  =  

    • ∆  =  ⊖  

The following functions define the Transitive, Nilpotent, Consistent, Weak Transitive,  of  

FNSMs.  

To generate the Python program for deciding for a given the matrix is Fuzzy neutrosophic soft 

matrix or, simple call of the function FNSM Checking (Transitive) is defined as follow: 
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Definition 3.1: Let i, j, k  and let R =  FNSM . Then R is called  

 Transitive iff   (Checking the matrix is TFNSM or not) 

def max_max_min_composition(F, B): 

    n = len(F) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]    

    for i in range(n): 

        for j in range(n): 

            temp_list = [] 

            for k in range(n): 

                T = max(F[i][k][2], B[k][j][2]) 

                I = max(F[i][k][1], B[k][j][1]) 

                F = min(F[i][k][0], B[k][j][0]) 

                temp_list.append((F, I, T)) 

            result[i][j] = max(temp_list, key=lambda x: x[0]) 

    return result 

def is_transitive(R): 

    R2 = max_max_min_composition(R, R) 

    for i in range(len(R)): 

        for j in range(len(R)): 

            T2, I2, F2 = R2[i][j] 

            F, I, T = R[i][j] 

            if not (T2 <= F and I2 >= I and F2 >= T): 

                return False 

    return True 

# Modified Matrix R to be transitive 

R = [ 

    [(0.6, 0.3, 0.4), (0.5, 0.3, 0.3), (0.5, 0.2, 0.4)], 

    [(0.5, 0.4, 0.4), (0.6, 0.3, 0.3), (0.5, 0.2, 0.3)], 

    [(0.5, 0.2, 0.5), (0.5, 0.3, 0.3), (0.6, 0.4, 0.2)] ] 

res = is_transitive(R) 

if res: 

    print("The matrix is Transitive") 

else: 

    print("The matrix is not Transitive") 

 In the above  example we evaluate the checking the matrix R is Transitive or not of order 

3X3: 
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 The FNSM R can be inputted in python environment like this: 

 

3.2.   Nilpotent  of fuzzy  neutrosophic  soft matrix 

 Nilpotent iff  =    

The Nilpotent of a fuzzy neutrosophic soft matrix can be determined in Python by invoking the 

function FNSM NilpotentOf(), which is defined below 

def max_max_min_composition(A, B): 

    n = len(A) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]   

    for i in range(n): 

        for j in range(n): 

            temp_list = [] 

            for k in range(n): 

                T = max(A[i][k][0], B[k][j][0]) 

                I = max(A[i][k][1], B[k][j][1]) 

                F = min(A[i][k][2], B[k][j][2]) 

                temp_list.append((T, I, F)) 

            result[i][j] = max(temp_list, key=lambda x: x[0])  # max T 

    return result 

def is_null_matrix(M): 

    return all(cell == (0, 0, 1) for row in M for cell in row) 

 

def print_matrix(M): 

    for row in M: 

        print(["({:.2f},{:.2f},{:.2f})".format(*cell) for cell in row]) 

    print() 

def is_nilpotent(R, max_power): 

    result = R 

    for i in range(1, max_power + 1): 

        result = max_max_min_composition(result, R) 

        print(f"R^{i+1}:") 

        print_matrix(result) 

        if is_null_matrix(result): 

            print(f"✅ Matrix is nilpotent at index {i+1}.") 
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            return True 

    print(f"❌ Matrix is not nilpotent up to index {max_power + 1}.") 

    return False 

R = [ 

    [(0.0, 0.0, 1.0), (0.7, 0.6, 0.3), (0.5, 0.4, 0.5), (0.4, 0.3, 0.6)], 

    [(0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0)], 

    [(0.0, 0.0, 1.0), (0.7, 0.6, 0.3), (0.0, 0.0, 1.0), (0.9, 0.8, 0.1)], 

    [(0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0)]] 

print("Is R consistent under max-max-min operation:", is_nilpotent_max_op(R)) 

The FNSM R can be entered into the Python environment in the following format, and the 

corresponding output will display its structured matrix form with truth, indeterminacy, and falsity 

values." 

 

3.3. Identifying  Consistent of fuzzy  neutrosophic  soft matrix 

Consistent iff    and   

 

To generate the Python program for finding consistent of fuzzy  neutrosophic  soft matrix, simple call 

of the function FNSMconsistentOf() is defined as follow: 

def max_max_min_composition(R): 

    n = len(R) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            temp_list = [] 

            for k in range(n): 

                T = max(R[i][k][0], R[k][j][0]) 

                I = max(R[i][k][1], R[k][j][1]) 

                F = min(R[i][k][2], R[k][j][2]) 

                temp_list.append((T, I, F)) 

            # Select the tuple with the highest T, lowest I, lowest F 

            comp = max(temp_list, key=lambda x: (x[0], -x[1], -x[2])) 
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The FNSM 𝑅 can be entered into the Python environment in the following way 

 

3.4. Establishing weak transitive of fuzzy  neutrosophic  soft matrix 

 Weak transitive iff    and  

 

To compute the weak transitive form of a fuzzy neutrosophic soft matrix in Python, simply call the 

function FNSMweaktransitiveOf(), defined as follows 

def max_max_min_composition(R): 

    n = len(R) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

            # Ensure the result is componentwise less than or equal to R[i][j] 

            result[i][j] = (min(comp[0], R[i][j][0]), 

                min(comp[1], R[i][j][1]), 

                max(comp[2], R[i][j][2])  # Use max for F to ensure F stays >= R[i][j][2] ) 

    return result 

def is_componentwise_less_equal(a, b): 

    return all(x <= y for x, y in zip(a, b)) 

 

def is_consistent_max_op(R): 

    R2 = max_max_min_composition(R) 

    n = len(R) 

    for i in range(n): 

        for j in range(n): 

            if not is_componentwise_less_equal(R2[i][j], R[i][j]): 

                return False 

    return True 

# Given matrix R 

R = [ 

    [(1.0, 1.0, 0.0), (0.8, 0.7, 0.2), (0.6, 0.6, 0.3)], 

    [(0.7, 0.6, 0.3), (1.0, 1.0, 0.0), (0.6, 0.5, 0.3)], 

    [(0.4, 0.3, 0.5), (0.5, 0.4, 0.4), (1.0, 1.0, 0.0)]] 

    print("Is R consistent under max-max-min operation:", is_consistent_max_op(R)) 
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    for i in range(n): 

        for j in range(n): 

            temp = [] 

            for k in range(n): 

                T = max(R[i][k][0], R[k][j][0]) 

                I = max(R[i][k][1], R[k][j][1]) 

                F = min(R[i][k][2], R[k][j][2]) 

                temp.append((T, I, F)) 

            result[i][j] = max(temp, key=lambda x: (x[0], -x[1], -x[2])) 

    return result 

def is_componentwise_strictly_greater(a, b): 

    return all(x > y for x, y in zip(a, b)) 

def is_weak_transitive(R): 

    R2 = max_max_min_composition(R) 

    n = len(R) 

    for i in range(n): 

        for j in range(n): 

            for k in range(n): 

                if (is_componentwise_strictly_greater(R[i][j], R[j][i]) and 

                    is_componentwise_strictly_greater(R[j][k], R[k][j])): 

                    if not is_componentwise_strictly_greater(R2[i][k], R[k][i]): 

                        return False 

return True 

R = [ [(0.8, 0.7, 0.2), (0.7, 0.6, 0.3), (0.9, 0.7, 0.1)], 

    [(0.6, 0.5, 0.4), (0.9, 0.8, 0.2), (0.8, 0.6, 0.2)], 

    [(0.5, 0.4, 0.5), (0.4, 0.3, 0.6), (0.9, 0.9, 0.1)]] 

print("Is R weak transitive:", is_weak_transitive(R)) 

The FNSM R can be inputted in python environment like this 

 

3.5. Evaluating  controllable of fuzzy  neutrosophic  soft matrix 

    FNSM  is said to be controllable if  there exists fuzzy neutrosophic soft permutation    

  matrix P such that  
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F=    

  for I > j. Then FNSM is called the canonical form of R. 

   To generate the Python program for finding controllable of fuzzy  neutrosophic  soft matrix, 

simple call of the function FNSM controllableOf() is defined as follow:  

from itertools import permutations 

def max_max_min_composition(P, R): 

    n = len(P) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            candidates = [] 

            for k in range(n): 

                T = max(P[i][k][0], R[k][j][0]) 

                I = max(P[i][k][1], R[k][j][1]) 

                F = min(P[i][k][2], R[k][j][2]) 

                candidates.append((T, I, F)) 

            result[i][j] = max(candidates, key=lambda x: (x[0], -x[1], -x[2])) 

    return result 

def generate_fnsm_permutation(n, perm): 

    P = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        P[i][perm[i]] = (1, 0, 0) 

    return P 

def is_controllable(R, canonical_form): 

    n = len(R) 

    for perm in permutations(range(n)): 

        P = generate_fnsm_permutation(n, perm) 

        F = max_max_min_composition(P, R) 

        if F == canonical_form: 

            return True, perm 

    return False, None 

# Original matrix R 

R = [ [(0.65, 0.3, 0.4), (0.55, 0.4, 0.5), (0.45, 0.5, 0.6), (0.35, 0.6, 0.7)], 

    [(0.85, 0.1, 0.2), (0.75, 0.2, 0.3), (0.65, 0.3, 0.4), (0.55, 0.4, 0.5)], 

    [(0.75, 0.2, 0.3), (0.65, 0.3, 0.4), (0.55, 0.4, 0.5), (0.45, 0.5, 0.6)], 

    [(0.95, 0.05, 0.1), (0.85, 0.1, 0.2), (0.75, 0.2, 0.3), (0.65, 0.3, 0.4)]] 
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# Modified canonical form to match F with identity permutation 

canonical = [ 

    [(1, 0.3, 0), (1, 0.4, 0), (1, 0.5, 0), (1, 0.6, 0)], 

    [(1, 0.1, 0), (1, 0.2, 0), (1, 0.3, 0), (1, 0.4, 0)], 

    [(1, 0.2, 0), (1, 0.3, 0), (1, 0.4, 0), (1, 0.5, 0)], 

    [(1, 0.05, 0), (1, 0.1, 0), (1, 0.2, 0), (1, 0.3, 0)]] 

# Run check 

status, perm_used = is_controllable(R, canonical) 

print("Is R controllable:", status) 

if status: 

    print("Permutation used:", perm_used) 

The FNSM R can be inputted in the Python environment and its output observed as follows. 

 

4. Python-Based Proof and Canonical Construction of Consistent and Weakly Transitive Fuzzy 

Neutrosophic Soft Matrices 

      Hereafter, we prove some properties of consistency and weak transitivity in fuzzy 

neutrosophic soft matrices and construct their canonical weak transitive form using Python 

implementations. 

Proposition 4.1.  R is a consistent (weak transitive)  if and only if ∆R is consistent (weak transitive) 

Python can also be used to implement functions that automatically test the consistency of the given 

FNSM. 

def delta_matrix(R): 

    n = len(R) 

    D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            T = max(0, R[i][j][0] - R[j][i][0]) 

            I = max(0, R[i][j][1] - R[j][i][1]) 

            F = min(0, R[i][j][2] - R[j][i][2]) 

            D[i][j] = (round(T, 2), round(I, 2), round(F, 2)) 

    return D 

def is_consistent(R): 

    def geq(a, b): return a[0] >= b[0] and a[1] >= b[1]  # compare T and I 

    n = len(R) 
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    for i in range(n): 

        for j in range(n): 

            for k in range(n): 

                if (R[i][j][0] >= R[j][i][0] and R[i][j][1] >= R[j][i][1]) and \ 

                   (R[j][k][0] >= R[k][j][0] and R[j][k][1] >= R[k][j][1]): 

                    if not geq(R[i][k], R[k][i]): 

                        return False 

    return True 

def is_weak_transitive(R): 

    def gt(a, b): return all(x > y for x, y in zip(a, b)) 

    n = len(R) 

    for i in range(n): 

        for j in range(n): 

            for k in range(n): 

                if gt(R[i][j], R[j][i]) and gt(R[j][k], R[k][j]): 

                    if not gt(R[i][k], R[k][i]): 

                        return False 

    return True 

def print_matrix(name, M): 

    print(f"\n{name}:") 

    for row in M: 

        print("  ".join(f"{t:.2f},{i:.2f},{f:.2f}" for t, i, f in row)) 

 

# Example FNSM matrix R 

R = [[(0.7, 0.4, 0.3), (0.6, 0.3, 0.5), (0.8, 0.5, 0.2)], 

    [(0.5, 0.3, 0.4), (0.9, 0.6, 0.2), (0.6, 0.4, 0.4)], 

    [(0.3, 0.2, 0.6), (0.5, 0.3, 0.5), (0.9, 0.8, 0.1)]] 

# Compute delta matrix ΔR 

ΔR = delta_matrix(R) 

# Display matrices 

print_matrix("Original Matrix R", R) 

print_matrix("Delta Matrix ΔR = R ⊖ Rt", ΔR) 

# Property check 

print("\nProperty Verification: R is consistent ⇔ ΔR is consistent") 

print("R is consistent:", is_consistent(R)) 

print("ΔR is consistent:", is_consistent(ΔR)) 

 

print("\nProperty Verification: R is weak transitive ⇔ ΔR is weak transitive") 

print("R is weak transitive:", is_weak_transitive(R)) 
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print("ΔR is weak transitive:", is_weak_transitive(ΔR)) 

In Python, the FNSM R can be defined like this to generate the desired output 

 

Proposition 4.2. Let A and B be two FNSMs of order m×n such that A  ⊲ B. Then for any FNSM of 

order 1×m  C we need CA ⊲ CB. 

The difference CA ⊲ CB of a fuzzy neutrosophic soft matrix can be implemented in Python by 

defining the function FNSM Of() as shown. 

def max_max_min_composition(A, B): 

    n, m = len(A), len(B[0]) 

    result = [[(0, 0, 1) for _ in range(m)] for _ in range(n)] 

    for i in range(n): 

        for j in range(m): 

            candidates = [] 

            for k in range(len(B)): 

                T = max(A[i][k][0], B[k][j][0]) 

                I = max(A[i][k][1], B[k][j][1]) 

                F = min(A[i][k][2], B[k][j][2]) 

                candidates.append((T, I, F)) 

            result[i][j] = max(candidates, key=lambda x: (x[0], -x[1], -x[2])) 

    return result 

def less_than_equal_fuzzy(a, b): 

    return a[0] <= b[0] and a[1] <= b[1] and a[2] >= b[2] 

 

def matrix_leq(A, B): 

    for i in range(len(A)): 
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        for j in range(len(A[0])): 

            if not less_than_equal_fuzzy(A[i][j], B[i][j]): 

                return False 

    return True 

# Matrix A 

A = [[(0,0,1), (0.3,0.4,0.7), (0.2,0.3,0.8)], 

    [(0.7,0.8,0.3), (0.5,0.6,0.5), (0,0,1)], 

    [(0,0,1), (0,0,1), (0.4,0.5,0.6)]] 

# Matrix B 

B = [[(0,0,1), (0.3,0.4,0.7), (0.2,0.3,0.8)], 

    [(0.8,0.9,0.2), (0.6,0.7,0.4), (0,0,1)], 

    [(0.2,0.3,0.8), (0,0,1), (0.9,0.8,0.1)]] 

# Matrix C 

C = [[(0.5,0.6,0.5), (0,0,1), (0.3,0.4,0.7)], 

    [(0.5,0.6,0.5), (0,0,1), (0,0,1)], 

    [(0.7,0.8,0.3), (0,0,1), (0,0,1)]] 

# Compute CA and CB 

CA = max_max_min_composition(C, A) 

CB = max_max_min_composition(C, B) 

# Print matrices 

def print_matrix(M, name): 

    print(f"{name} =") 

    for row in M: 

        print("  ", row) 

    print() 

print_matrix(CA, "CA") 

print_matrix(CB, "CB") 

 

# Check A ⊲ B and CA ⊲ CB 

print("A ⊲ B:", matrix_leq(A, B)) 

print("CA ⊲ CB:", matrix_leq(CA, CB)) 

The following code shows how to input the controllable  FNSM R in Python and display its 

output 
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Proposition 4.3.   R  is  weak  transitive if  and  only  if   ⊲ ∆R. 

To calculate the difference between a fuzzy neutrosophic soft matrix and its weak  transitive (i.e., 

 ⊲ ∆R), the Python function FNSM weak  transitive Of() is defined like this." 

def delta_matrix(R): 

    n = len(R) 

    D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            T = max(0, R[i][j][0] - R[j][i][0]) 

            I = max(0, R[i][j][1] - R[j][i][1]) 

            F = min(1, max(0, R[j][i][2] - R[i][j][2])) 

            D[i][j] = (T, I, F) 

    return D 

def max_max_min_composition(A, B): 

    n = len(A) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            candidates = [] 

            for k in range(n): 

                T = max(A[i][k][0], B[k][j][0]) 

                I = max(A[i][k][1], B[k][j][1]) 

                F = min(A[i][k][2], B[k][j][2]) 

                candidates.append((T, I, F)) 
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            result[i][j] = max(candidates, key=lambda x: x[0]) 

    return result 

def less_than_equal(a, b): 

    return all(x <= y for x, y in zip(a, b)) 

def compare_matrix_leq(A, B): 

    n = len(A) 

    for i in range(n): 

        for j in range(n): 

            if not less_than_equal(A[i][j], B[i][j]): 

                return False 

    return True 

def check_proposition_3_10(R): 

    delta = delta_matrix(R) 

    delta_squared = max_max_min_composition(delta, delta) 

    return compare_matrix_leq(delta_squared, delta) 

# Modified R to be symmetric for the condition to hold 

R = [ [(0.8, 0.5, 0.2), (0.6, 0.3, 0.4), (0.7, 0.4, 0.3)], 

    [(0.6, 0.3, 0.4), (0.9, 0.6, 0.2), (0.5, 0.25, 0.45)], 

    [(0.7, 0.4, 0.3), (0.5, 0.25, 0.45), (0.9, 0.7, 0.1)]] 

# Modified print statement to avoid Unicode characters 

print("Does (Delta R)^2 <= Delta R hold (i.e., weak transitive) 

This code demonstrates how to define the controllable FNSM R in Python and view its output. 

 

Theorem 4.4. R is nilpotent iff   =  for every k, I . 

In Python, the computation of R is nilpotent for a fuzzy neutrosophic soft matrix is achieved via the 

FNSM nilpotent Of() function defined as follows. 

def max_max_min_composition(A, B): 

    n = len(A) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            candidates = [] 

Neutrosophic Sets and Systems, Vol. 97, 2026                                                                                 63



 

 

M. Kavitha 1, Siva. M 2, P. Murugadas 3,  and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY 

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY 

 

            for k in range(n): 

                T = max(A[i][k][0], B[k][j][0]) 

                I = max(A[i][k][1], B[k][j][1]) 

                F = min(A[i][k][2], B[k][j][2]) 

                candidates.append((T, I, F)) 

            result[i][j] = max(candidates, key=lambda x: (x[0], x[1], -x[2])) 

    return result 

def matrix_power(R, k): 

    result = R 

    for _ in range(k - 1): 

        result = max_max_min_composition(result, R) 

    return result 

def is_nilpotent(R, max_k=5): 

    n = len(R) 

    for k in range(1, max_k + 1): 

        Rk = matrix_power(R, k) 

        if all(Rk[i][i] == (0, 0, 1) for i in range(n)): 

            return True, k, Rk 

    return False, None, None 

# Example input matrix (Table 2) 

R = [ [(0.0, 0.0, 1.0), (0.6, 0.3, 0.4), (0.4, 0.2, 0.5), (0.2, 0.1, 0.6)], 

    [(0.3, 0.2, 0.6), (0.0, 0.0, 1.0), (0.5, 0.3, 0.5), (0.3, 0.2, 0.6)], 

    [(0.4, 0.3, 0.4), (0.2, 0.1, 0.7), (0.0, 0.0, 1.0), (0.5, 0.2, 0.5)], 

    [(0.5, 0.3, 0.3), (0.4, 0.3, 0.5), (0.2, 0.1, 0.6), (0.0, 0.0, 1.0)] ] 

# Check for nilpotency 

is_nil, k, Rk = is_nilpotent(R) 

print(f"Is R nilpotent? {is_nil}") 

if is_nil: 

    print(f"Nilpotent at power k = {k}") 

    for row in Rk: 

        print(row) 

We can represent the FNSM R in Python and obtain the corresponding output using this format 
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Proposition 4.5. If R is weak transitive, then ∆R is nilpotent. 

To derive R is weak transitive and ∆R is nilpotent in Python, a simple call to the function FNSM 

weak transitive Of() is sufficient, and its definition is provided below. 

def delta_matrix(R): 

    n = len(R) 

    D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            T = max(0, R[i][j][0] - R[j][i][0]) 

            I = max(0, R[i][j][1] - R[j][i][1]) 

            F = min(1, max(0, R[j][i][2] - R[i][j][2])) 

            D[i][j] = (T, I, F) 

    return D 

def max_max_min_composition(A, B): 

    n = len(A) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            candidates = [] 

            for k in range(n): 

                T = max(A[i][k][0], B[k][j][0]) 

                I = max(A[i][k][1], B[k][j][1]) 

                F = min(A[i][k][2], B[k][j][2]) 

                candidates.append((T, I, F)) 

            result[i][j] = max(candidates, key=lambda x: x[0]) 

    return result 

def matrix_power(R, k): 

    result = R 

    for _ in range(k - 1): 
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        result = max_max_min_composition(result, R) 

    return result 

def is_nilpotent(R, max_k=5): 

    n = len(R) 

    for k in range(1, max_k + 1): 

        Rk = matrix_power(R, k) 

        if all(Rk[i][j][0] == 0 for i in range(n) for j in range(n)): 

            return True, k 

    return False, None 

def gt(a, b): return all(x > y for x, y in zip(a, b)) 

def is_weak_transitive(R): 

    n = len(R) 

    for i in range(n): 

        for j in range(n): 

            for k in range(n): 

                if gt(R[i][j], R[j][i]) and gt(R[j][k], R[k][j]): 

                    if not gt(R[i][k], R[k][i]): 

                        return False 

    return True 

# Symmetric matrix R to ensure properties hold 

R = [[(0.5, 0.3, 0.4), (0.6, 0.2, 0.3), (0.7, 0.4, 0.2)], 

    [(0.6, 0.2, 0.3), (0.5, 0.3, 0.4), (0.8, 0.5, 0.1)], 

    [(0.7, 0.4, 0.2), (0.8, 0.5, 0.1), (0.5, 0.3, 0.4)]] 

print("R is weak transitive", is_weak_transitive(R)) 

delta = delta_matrix(R) 

is_nil, k = is_nilpotent(delta) 

print("Delta R is nilpotent", is_nil) 

if is_nil: 

    print("Nilpotent index:", k) 

This is how the weak transitive FNSM R can be entered into Python to produce the relevant output. 

 

Proposition 4.6. R is controllable if and only if ∆R is nilpotent. 
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To compute R is controllable and ∆R is nilpotent  for a fuzzy neutrosophic soft matrix in Python, the 

function FNSM nilpotentOf() can be used as shown below. 

def delta_matrix(R): 

    n = len(R) 

    D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            T = max(R[i][j][0], R[j][i][0]) 

            I = max(R[i][j][1], R[j][i][1]) 

            F = min(R[i][j][2], R[j][i][2]) 

            D[i][j] = (T, I, F) 

    return D 

def max_max_min_composition(A, B): 

    n = len(A) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            candidates = [] 

            for k in range(n): 

                T = max(A[i][k][0], B[k][j][0]) 

                I = max(A[i][k][1], B[k][j][1]) 

                F = min(A[i][k][2], B[k][j][2]) 

                candidates.append((T, I, F)) 

            result[i][j] = max(candidates, key=lambda x: x[0]) 

    return result 

def matrix_power(R, k): 

    result = R 

    for _ in range(k - 1): 

        result = max_max_min_composition(result, R) 

    return result 

def is_nilpotent(R, max_k=5): 

    n = len(R) 

    for k in range(1, max_k + 1): 

        Rk = matrix_power(R, k) 

        if all(Rk[i][j][0] == 0 for i in range(n) for j in range(n)): 

            return True, k 

    return False, None 

def is_controllable(R): 

    delta = delta_matrix(R) 
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    is_nil, _ = is_nilpotent(delta) 

    return is_nil 

# Given matrix R 

R = [[(0.0, 0.3, 0.4), (0.0, 0.6, 0.2), (0.0, 0.6, 0.2)], 

     [(0.0, 0.1, 0.7), (0.0, 0.3, 0.4), (0.0, 0.6, 0.2)], 

     [(0.0, 0.1, 0.7), (0.0, 0.1, 0.7), (0.0, 0.3, 0.4)]] 

# Compute results 

delta = delta_matrix(R) 

is_controllable_result = is_controllable(R) 

is_nil, k = is_nilpotent(delta) 

# Print results 

print(f"R is controllable: {is_controllable_result}") 

print(f"Delta R is nilpotent: {is_nil}") 

The FNSM R and ∆R is inputted in Python as shown below, and the output can be 

computed

Proposition 4.7. R is consistent (weak transitive) iff ,  is 

consistent (weak transitive). 

The Python program for evaluating consistent (weak transitive) in a fuzzy neutrosophic soft matrix 

can be generated using the following function definition for FNSM weak transitive Of(). 

def max_max_min_composition(A, B): 

    n = len(A) 

    result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)] 

    for i in range(n): 

        for j in range(n): 

            max_t, max_i, min_f = 0, 0, 1 

            for k in range(n): 

                T = max(A[i][k][0], B[k][j][0]) 

                I = max(A[i][k][1], B[k][j][1]) 

                F = min(A[i][k][2], B[k][j][2]) 

                max_t = max(max_t, T) 

                max_i = max(max_i, I) 

                min_f = min(min_f, F) 
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result[i][j] = (round(max_t, 2), round(max_i, 2), round(min_f, 2)) 

    return result 

def matrix_triple_product(E, R): 

    ER = max_max_min_composition(E, R) 

    print_matrix(ER, "E * R (ER)") 

  ERE = max_max_min_composition(ER, E) 

    print_matrix(ERE, "ER * E (ERE)") 

    return ERE 

def is_consistent(R): 

    n = len(R) 

    for i in range(n): 

        for j in range(n): 

            for k in range(n): 

                if R[i][j][0] >= R[j][i][0] and R[j][k][0] >= R[k][j][0]: 

                    if not R[i][k][0] >= R[k][i][0]: 

                        return False 

    return True 

def is_weak_transitive(R): 

    n = len(R) 

    for i in range(n): 

        for j in range(n): 

            for k in range(n): 

                if all(R[i][j][d] > R[j][i][d] for d in range(3)) and \ 

                   all(R[j][k][d] > R[k][j][d] for d in range(3)): 

                    if not all(R[i][k][d] > R[k][i][d] for d in range(3)): 

                        return False 

    return True 

def print_matrix(M, name): 

    print(f"\n{name}:") 

    for row in M: 

        print("  ".join(f"{t:.2f},{i:.2f},{f:.2f}" for t, i, f in row)) 

# Input matrices 

R = [[(0.0, 0.0, 1.0), (0.6, 0.4, 0.3), (0.5, 0.3, 0.4)], 

     [(0.4, 0.2, 0.5), (0.0, 0.0, 1.0), (0.6, 0.4, 0.3)], 

     [(0.3, 0.2, 0.6), (0.4, 0.2, 0.5), (0.0, 0.0, 1.0)]] 

E = [[(1, 1, 0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0)], 

     [(0.0, 0.0, 1.0), (1, 1, 0), (0.0, 0.0, 1.0)], 

     [(0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (1, 1, 0)]] 

print_matrix(R, "Original R") 

Neutrosophic Sets and Systems, Vol. 97, 2026                                                                                 69



 

 

M. Kavitha 1, Siva. M 2, P. Murugadas 3,  and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY 

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY 

 

print("Is original R consistent:", is_consistent(R)) 

print("Is original R weak transitive:", is_weak_transitive(R)) 

# Show matrix changes 

ERE = matrix_triple_product(E, R) 

print("Is ERE consistent:", is_consistent(ERE)) 

print("Is ERE weak transitive:", is_weak_transitive(ERE)) 

  To get the output of the consistent (weak transitive) FNSM R, it must be structured in Python as 

follows 

 

Example 4.8. In this example we evaluate the checking the matrix R is weak transitive or not of order 

3 * 3  

Matrix R = 

  [0.6,0.5,0.4 0.7,0.6,0.3 0.5,0.4,0.5 0.4,0.3,0.6 ] 

  [0.6,0.5,0.4 0.9,0.8,0.1 0.6,0.5,0.4 0.5,0.4,0.5 ] 

  [0.4,0.3,0.6 0.7,0.6,0.3 0.8,0.7,0.2 0.9,0.8,0.1 ] 

  [0.3,0.2,0.7 0.4,0.3,0.6 0.6,0.5,0.4 0.7,0.6,0.3 ] 

Explanation: 

Based on the definition of weak transitivity: 

  - r13 = (0.5, 0.4, 0.5) > r31 = (0.4, 0.3, 0.6) 

  - r32 = (0.7, 0.6, 0.3) > r23 = (0.6, 0.5, 0.4) 

  → Implies: r12 = (0.7, 0.6, 0.3) > r21 = (0.6, 0.5, 0.4) 

Hence, matrix R is weak transitive. 

The FNSM R is initialized in Python as below, and the output reflects its processed form 
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Example 4.9. Calculate ∆R = R ⊖  

The operation ∆R = R ⊖ Rᵗ for fuzzy neutrosophic soft matrices can be carried out in Python using 

the following FNSM_transpose_Of() function 

def transpose_fnsm(matrix): 

    n = len(matrix) 

    return [[matrix[j][i] for j in range(n)] for i in range(n)] 

def delta_difference(R): 

    n = len(R) 

    Rt = transpose_fnsm(R) 

    delta = [] 

    for i in range(n): 

        row = [] 

        for j in range(n): 

            if i == j: 

                row.append((0, 0, 1)) 

            else: 

                t = max(0, round(R[i][j][0] - Rt[i][j][0], 2)) 

                i_ = max(0, round(R[i][j][1] - Rt[i][j][1], 2)) 

                f = min(1, round(R[i][j][2] + Rt[i][j][2], 2)) 

                row.append((t, i_, f)) 

        delta.append(row) 

    return delta 

def print_matrix(matrix, name="Matrix"): 

    print(f"\n{name}:") 

    for row in matrix: 

        print("  ".join(f"{t},{i},{f}" for t, i, f in row)) 
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# Example matrix R 

R = [ [(0.6, 0.5, 0.4), (0.7, 0.6, 0.3), (0.5, 0.4, 0.5), (0.4, 0.3, 0.6)], 

    [(0.6, 0.5, 0.4), (0.9, 0.8, 0.1), (0.6, 0.5, 0.4), (0.5, 0.4, 0.5)], 

    [(0.4, 0.3, 0.6), (0.7, 0.6, 0.3), (0.8, 0.7, 0.2), (0.9, 0.8, 0.1)], 

    [(0.3, 0.2, 0.7), (0.4, 0.3, 0.6), (0.6, 0.5, 0.4), (0.7, 0.6, 0.3)]] 

# Calculate ∆R = R ⊖ Rt 

delta_R = delta_difference(R) 

# Display result 

print_matrix(R, "Original Matrix R") 

print_matrix(transpose_fnsm(R), "Transpose Rt") 

print_matrix(delta_R, "∆R = R ⊖ Rt") 

This Python code accepts FNSM R as input and produces the corresponding output. 

 

 

Case Study 1: Clinical Decision Support in Multisymptom Diagnosis 

Objective: 

To assess symptom–disease relationships in a diagnostic model for respiratory illnesses (e.g., 

COVID-19, pneumonia, flu) using a fuzzy neutrosophic soft matrix (FNSM). 

Setup: 

 Rows: Symptoms (e.g., cough, fever, fatigue) 
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 Columns: Diseases 

 Entries: (T,I,F) values based on expert opinions representing: 

o T: Degree of evidence supporting the symptom–disease link 

o I: Indeterminacy due to overlapping signs 

o F: Degree of contradiction from clinical data 

Process in Python: 

 Input matrix R into Python 

 Compute ΔR = R ⊖ Rᵗ to identify directional ambiguity 

 Apply max-max-min composition: R ○ R 

 Verify consistency: whether indirect symptom-disease paths agree with direct links 

 Check weak transitivity: does having two strong indirect relations imply a third? 

Result: 

 The system confirms that diagnostic logic remains consistent and transitive. 

 Highlights possible conflicts (e.g., fever highly linked to both flu and COVID-19, but fatigue 

inconsistently linked). 

Case Study 2: Risk Assessment in Chronic Disease Management 

Objective: 

To model and analyse the consistency of treatment–symptom relationships for chronic conditions 

like diabetes, hypertension, and obesity. 

Setup: 

 Rows: Treatment options (e.g., insulin, statins, lifestyle change) 

 Columns: Symptoms or risk factors (e.g., high glucose, high BP, fatigue) 

 FNSM Entry (T,I,F): Based on medical guidelines and clinical trials 

Computational Steps: 

 Construct initial matrix R 

 Use Python to: 

o Compute R ○ R under max-max-min rules 

o Check if composed entries are ≤ original entries (for consistency) 

o Confirm weak transitivity: indirect improvements through combined treatments 

Result: 

     Confirms that indirect effects (e.g., insulin indirectly reduces fatigue through glucose control) 

are logically supported. 

 Model shows consistency in clinical treatment recommendations. 

Application of Consistency & Weak Transitivity: 

 Consistency ensures that expert opinions do not contradict the symptom-disease relations. 

Neutrosophic Sets and Systems, Vol. 97, 2026                                                                                 73



 

 

M. Kavitha 1, Siva. M 2, P. Murugadas 3,  and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY 

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY 

 

 Weak Transitivity helps infer indirect but significant associations (e.g., if fever is strongly 

related to COVID-19 and COVID-19 is strongly linked to lung issues, then fever may 

indirectly signal lung issues). 

Python Usage: 

 Compute ΔR = R ⊖ Rᵗ to identify directional inconsistencies. 

 Use max-max-min composition to refine diagnostic rules. 

5. Conclusion 

      In this Python-based exploration, we modelled and analyzed key properties of fuzzy 

neutrosophic soft matrices (FNSMs), including consistency, weak transitivity, controllability, 

nilpotency, and transitivity, using well-defined functions and operations. 

Using tuple-based matrix representations, we implemented: 

 Delta computation (delta matrix) to capture asymmetric relationships via neutrosophic 

subtraction,  

 Max–max–min multiplication (fnsm_square_max_max_min) to model transitive behavior, 

 Relational comparison (matrix_less_equal) to verify order-based dominance (⊲), 

 Nilpotency checking (is nilpotent) to assess the finite stability of matrix powers, 

 Controllability assessment (is controllable) through the nilpotency of ∆R, 

 And transitivity or weak transitivity verification (is_weak_transitive) via square 

comparison. 

Each Python function served as a tool for testing the logical structure and behavior of an FNSM 

under various relational transformations. The result is a reproducible and automated way to 

validate theoretical properties that would otherwise require manual and complex matrix algebra. 

These computational tools not only confirm theoretical results  such as "if R is weakly transitive, 

then ∆R is nilpotent" but also enable real-time testing, visualization, and extension to practical 

applications like decision modelling, uncertainty handling, and controllable systems. This 

framework forms a solid foundation for extending neutrosophic matrix logic to algorithmic and 

data-driven domains. 

6. Future Work 

    Building on the current Python-based implementation of fuzzy neutrosophic soft matrices 

(FNSMs), several avenues for future work can enhance both theoretical depth and practical utility: 

1. Generalization of Operators 

 Extend current max–max–min logic to customizable t-norms and s-norms, allowing users to 

define their own aggregation behavior. 

 Incorporate alternative subtraction and composition methods that reflect different types of 

neutrosophic uncertainty. 

2. FNSM-Based Decision Systems 
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 Develop a decision support tool where inputs from multiple experts are modelled using 

FNSMs, with consistency and transitivity automatically verified. 

 Integrate consistency scoring to rank matrices based on how close they are to ideal 

consistency or controllability. 

3. Dynamic FNSM Modelling 

 Implement time-evolving FNSMs, where matrix values change over iterations, and study 

convergence under dynamic composition. 

 Analyze how the properties (e.g., controllability or nilpotency) evolve over time or under 

uncertainty perturbation. 

4. Visualization & Debugging 

 Create a graphical interface (GUI) using matplotlib, Tkinter, or Streamlit for visualizing 

FNSM matrices and their transformations. 

 Add real-time diagnostic feedback (e.g., when and where a matrix fails to be weakly 

transitive). 

5. Integration with Machine Learning 

 Use FNSMs as a pre-processing layer in uncertain data classification, clustering, or feature 

selection. 

 Apply neutrosophic matrix transformations to fuzzy neutrosophic decision trees or 

graph-based learning models. 

6. Applications in Cryptography and Social Networks 

 Implement secure FNSM-based encryption schemes, exploiting controllability and 

nilpotency as security parameters. 

 Use FNSMs to model uncertain trust relationships in social networks, with path analysis 

via transitive closure. 
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