

University of New Mexico

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

COMPUTATIONAL STUDY OF FUZZY NEUTROSOPHIC

SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK

TRANSITIVITY

M Kavitha 1, Sive M 2 , P Murugadas 3 and K Rameshware 4

1 Department of Mathematics, Chennai Institute of Technology, Chennai, India 1; kavithakathir3@gmail.com

2 Department of Mathematics, St. Joseph’s Institute of Technology, Chennai, India; sivam@stjosephstechnology.ac.in

3 Department of Mathematics, Annamalai University, Annamalai Nagar, India; bodi_muruga@yahoo.com

4 Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai;

krameshmath@gmail.com

* Correspondence: kavithakathir3@gmail.com

Abstract: In this study, we introduce a novel framework for defining and analyzing two

specific types of Fuzzy Neutrosophic Soft Matrices (FNSMs): consistent and weakly transitive. These

matrix classes are modelled and assessed using Python-based computational techniques. We

establish that both types exhibit controllability and present a Python-compatible formulation for

deriving the canonical form of a Weakly Transitive FNSM (WT-FNSM). Fundamental algebraic and

structural properties such as nilpotency, symmetry, transitivity, and weak transitivity are

investigated through programmatic simulations. Additionally, we explore the connection between

consistent and weakly transitive FNSMs and finite fuzzy neutrosophic relations, emphasizing their

applicability in various practical and academic domains. The controllability of WT-FNSMs is further

validated through algorithmic evaluation. To support the theoretical results, appropriate Python-based examples

and simulations are provided. A key contribution of this work is a versatile Python tool designed for FNSMs,

which is also adaptable for use with fuzzy matrices, intuitionistic fuzzy matrices, and fuzzy neutrosophic

matrices.

Keywords: Fuzzy Neutrosophic Soft Matrix (FNSM), Nilpotent Fuzzy Neutrosophic Soft Matrix

(NFNSM), Transitive Fuzzy Neutrosophic Soft Matrix (T FNSM), Controllable Fuzzy Neutrosophic

Soft Matrix CFNSM, Python

__

1. Introduction

Neutrosophic Sets and Systems, Vol. 97, 2026

mailto:kavithakathir3@gmail.com
mailto:sivam@stjosephstechnology.ac.in
mailto:muruga@yahoo.com
mailto:krameshmath@gmail.com
mailto:kavithakathir3@gmail.com

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

The notion of Fuzzy Set (FS) and its logic are investigated and discussed by Zadeh [1]. After that,

Atanassav investigated the Intuitionistic Fuzzy Set (IFS) [2]. Neutrosophy has extend the grounds

for a total family of new mathematical estimations. It is one of the non-classical sets, like fuzzy, nano,

soft, permutation sets and so on. The Neutrosophic Set (NS) was presented by Smarandache [3] and

expounded, (NS) is a popularization of (IFS) in intuitionistic fuzzy set. Maji [4] introduced the

concept of neutrosophic soft set and established some operations on these sets. Broumi and

Smarandache [5, 6] combined the intuitionistic neutrosophic and soft set which lead to a new

mathematical model called intuitionistic neutrosophic soft set. They studied the notions of

intuitionistic neutrosophic soft set union, intuitionistic neutrosophic soft set intersection,

complement of intuitionistic neutrosophic soft set and several other properties of intuitionistic

neutrosophic soft set along with exam plus and proofs of certain results. Recently, Deli [7]

introduced the interval valued neutrosophic soft set as a combination of interval neutrosophic set

and soft set. The concepts of consistent and weak transitive fuzzy matrices was introduced by Emam

[8] as a property of finite fuzzy preference relations. The notions of Fuzzy Neutrosophic Soft Matrix

(FNSM) and used them in decision making problems proposed by Arockiarani and Sumathi [9,10].

The Priodicity of Interval values, on powers of matrices and convergence of matrices, Solvable linear

equation, Eigen space by usig the notion of Fuzzy Neutrosophic Soft Matrices are Introduced

Kavitha et.al.,[11,12,13]. The idea of Monotone Fuzzy Neutrosophic Soft Eigenspace Structure in

Max-Min Algebra and Convergence of Fuzzy Neutrosophic Soft Circulant Matrices are proposed by

Murugadas et.al.,[14,15,16]. Uma et.al., [17] presented the concepts of Fuzzy Neutrosophic Soft

Matrices of Type-1 and Type-2.

 Smarandache et.al introduced [18] the concepts of a python tool for Implementations on Bipolar

Neutrosophic Matrices. They have established some operations, especially the composition is a

challenging algorithm in terms of coding because there are so many nested lists to manipulate.

Gayathri et al. [19] presented the ideas of neutrosophic vague measures using Python. Their work

explores the application of Python in analyzing neutrosophic vague measures and investigates

various types of measures within neutrosophic vague sets, supported by illustrative examples. In

recent developments, some researchers have created Python programs to perform operations

involving neutrosophic numbers. However, these implementations are limited in scope they do not

support computations involving neutrosophic matrices. To the best of our knowledge, there has

been no comprehensive effort so far to implement Python code that handles operations on

single-valued neutrosophic matrices (SVNMs) or bipolar neutrosophic matrices (BNMs). This

reveals a significant research gap, motivating the current study.

 The present work aims to fill this gap by exploring various operations on FNS and providing

corresponding Python implementations using different FNSMs. The structure of the manuscript is

organized as follows: Section 2 outlines key preliminary definitions. Section 3 discusses essential

ideas pertaining to FNSMs and demonstrates how to perform matrix operations using the Python

programming language. Section 4 is dedicated to developing Python scripts for handling FNSMs,

complemented by a worked-out numerical example. The final section, Section 5, summarizes the

findings and suggests directions for future research.

2. Preliminaries

Definition 1: [3]

A Fuzzy Neutrosophic Set (FNS) A on the universe of discourse X is defined as A =

{x, , x ∈ X} , where T , I, F : X → [0, 1] and

Neutrosophic Sets and Systems, Vol. 97, 2026 49

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 0 3.

Definition 2: [5]

Let U be the initial universal set and E be a set of parameters. Consider a non-empty set A, A ⊂ E. Let

P(U) denotes the set of all FNSs of U. The collection (F, A) is termed to be the FNSS over U, where F

is a mapping given by F : A → P(U). Here after we simply consider A as FNSS over U instead of (F,

A).

Definition 3: [6]

 Let U = { } be the universal set and E be the set of parameters given by E =

{ }. Let A ⊂ E. A pair (F, A) be a FNSS over U. Then the subset of U × E is defined by

 = {(u, e); e ∈ A, u ∈ (e)} which is called a relation form of (, E). The membership function,

indeterminacy membership function and non membership function are written

 : U × E → [0, 1], : U × E → [0, 1] and : U × E → [0, 1] where

 (u, e) ∈ [0, 1], (u, e) ∈ [0, 1] and (u, e) ∈ [0, 1] are the membership value,

indeterminacy value and non membership value respectively of u ∈ U for each e ∈ E

If [= [, ,], we define a matrix

=

which is called an m × n FNSM of the FNSS (, E) over U.

The set of all FNSMs of order is denoted by and represent the set of all

FNSM of order .

Definition 4: [17]

 Let A = , B = . The component wise addition and

component wise multiplication is defined as

Neutrosophic Sets and Systems, Vol. 97, 2026 50

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 A ⊕ B = (sup{ , }, sup { , }, inf { , })

A ⊗ B = (inf{ , }, inf { , }, sup { , })

Definition 5: [17] Let A B , the composition of A and B is defined as

 A ◦ B = ,

equivalently we can write the same as

A ◦ B = .

The product A ◦ B is defined if and only if the number of columns of A is same as the number of rows

of B. Then A and B are said to be conformable for multiplication. We shall use AB instead of A ◦ B.

Where means max-min operation and

 means min-max operation.

3. A Python Approach to Fuzzy Neutrosophic Soft Matrix Processing

 We examine the properties of consistency and weak transitivity in fuzzy neutrosophic soft

matrices and construct their canonical weak transitive form accordingly. The Python code for

inputting these matrices is described as follows.

 Let R = , and S= be the fuzzy neutrosophic soft matrices

Then the following operations are defined.

 R⊲ S iff = (0,0,1) ⇒ = (0,0,1) for every i ≤ m and for every j ≤ n, ⊲

it is denoted by relations are reflexive and transitive.

 =

 • ∆ = ⊖

The following functions define the Transitive, Nilpotent, Consistent, Weak Transitive, of

FNSMs.

To generate the Python program for deciding for a given the matrix is Fuzzy neutrosophic soft

matrix or, simple call of the function FNSM Checking (Transitive) is defined as follow:

Neutrosophic Sets and Systems, Vol. 97, 2026 51

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

Definition 3.1: Let i, j, k and let R = FNSM . Then R is called

 Transitive iff (Checking the matrix is TFNSM or not)

def max_max_min_composition(F, B):

 n = len(F)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 temp_list = []

 for k in range(n):

 T = max(F[i][k][2], B[k][j][2])

 I = max(F[i][k][1], B[k][j][1])

 F = min(F[i][k][0], B[k][j][0])

 temp_list.append((F, I, T))

 result[i][j] = max(temp_list, key=lambda x: x[0])

 return result

def is_transitive(R):

 R2 = max_max_min_composition(R, R)

 for i in range(len(R)):

 for j in range(len(R)):

 T2, I2, F2 = R2[i][j]

 F, I, T = R[i][j]

 if not (T2 <= F and I2 >= I and F2 >= T):

 return False

 return True

Modified Matrix R to be transitive

R = [

 [(0.6, 0.3, 0.4), (0.5, 0.3, 0.3), (0.5, 0.2, 0.4)],

 [(0.5, 0.4, 0.4), (0.6, 0.3, 0.3), (0.5, 0.2, 0.3)],

 [(0.5, 0.2, 0.5), (0.5, 0.3, 0.3), (0.6, 0.4, 0.2)]]

res = is_transitive(R)

if res:

 print("The matrix is Transitive")

else:

 print("The matrix is not Transitive")

 In the above example we evaluate the checking the matrix R is Transitive or not of order

3X3:

Neutrosophic Sets and Systems, Vol. 97, 2026 52

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 The FNSM R can be inputted in python environment like this:

3.2. Nilpotent of fuzzy neutrosophic soft matrix

 Nilpotent iff =

The Nilpotent of a fuzzy neutrosophic soft matrix can be determined in Python by invoking the

function FNSM NilpotentOf(), which is defined below

def max_max_min_composition(A, B):

 n = len(A)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 temp_list = []

 for k in range(n):

 T = max(A[i][k][0], B[k][j][0])

 I = max(A[i][k][1], B[k][j][1])

 F = min(A[i][k][2], B[k][j][2])

 temp_list.append((T, I, F))

 result[i][j] = max(temp_list, key=lambda x: x[0]) # max T

 return result

def is_null_matrix(M):

 return all(cell == (0, 0, 1) for row in M for cell in row)

def print_matrix(M):

 for row in M:

 print(["({:.2f},{:.2f},{:.2f})".format(*cell) for cell in row])

 print()

def is_nilpotent(R, max_power):

 result = R

 for i in range(1, max_power + 1):

 result = max_max_min_composition(result, R)

 print(f"R^{i+1}:")

 print_matrix(result)

 if is_null_matrix(result):

 print(f"✅ Matrix is nilpotent at index {i+1}.")

Neutrosophic Sets and Systems, Vol. 97, 2026 53

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 return True

 print(f"❌ Matrix is not nilpotent up to index {max_power + 1}.")

 return False

R = [

 [(0.0, 0.0, 1.0), (0.7, 0.6, 0.3), (0.5, 0.4, 0.5), (0.4, 0.3, 0.6)],

 [(0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0)],

 [(0.0, 0.0, 1.0), (0.7, 0.6, 0.3), (0.0, 0.0, 1.0), (0.9, 0.8, 0.1)],

 [(0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0)]]

print("Is R consistent under max-max-min operation:", is_nilpotent_max_op(R))

The FNSM R can be entered into the Python environment in the following format, and the

corresponding output will display its structured matrix form with truth, indeterminacy, and falsity

values."

3.3. Identifying Consistent of fuzzy neutrosophic soft matrix

Consistent iff and

To generate the Python program for finding consistent of fuzzy neutrosophic soft matrix, simple call

of the function FNSMconsistentOf() is defined as follow:

def max_max_min_composition(R):

 n = len(R)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 temp_list = []

 for k in range(n):

 T = max(R[i][k][0], R[k][j][0])

 I = max(R[i][k][1], R[k][j][1])

 F = min(R[i][k][2], R[k][j][2])

 temp_list.append((T, I, F))

 # Select the tuple with the highest T, lowest I, lowest F

 comp = max(temp_list, key=lambda x: (x[0], -x[1], -x[2]))

Neutrosophic Sets and Systems, Vol. 97, 2026 54

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

The FNSM 𝑅 can be entered into the Python environment in the following way

3.4. Establishing weak transitive of fuzzy neutrosophic soft matrix

 Weak transitive iff and

To compute the weak transitive form of a fuzzy neutrosophic soft matrix in Python, simply call the

function FNSMweaktransitiveOf(), defined as follows

def max_max_min_composition(R):

 n = len(R)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 # Ensure the result is componentwise less than or equal to R[i][j]

 result[i][j] = (min(comp[0], R[i][j][0]),

 min(comp[1], R[i][j][1]),

 max(comp[2], R[i][j][2]) # Use max for F to ensure F stays >= R[i][j][2])

 return result

def is_componentwise_less_equal(a, b):

 return all(x <= y for x, y in zip(a, b))

def is_consistent_max_op(R):

 R2 = max_max_min_composition(R)

 n = len(R)

 for i in range(n):

 for j in range(n):

 if not is_componentwise_less_equal(R2[i][j], R[i][j]):

 return False

 return True

Given matrix R

R = [

 [(1.0, 1.0, 0.0), (0.8, 0.7, 0.2), (0.6, 0.6, 0.3)],

 [(0.7, 0.6, 0.3), (1.0, 1.0, 0.0), (0.6, 0.5, 0.3)],

 [(0.4, 0.3, 0.5), (0.5, 0.4, 0.4), (1.0, 1.0, 0.0)]]

 print("Is R consistent under max-max-min operation:", is_consistent_max_op(R))

Neutrosophic Sets and Systems, Vol. 97, 2026 55

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 for i in range(n):

 for j in range(n):

 temp = []

 for k in range(n):

 T = max(R[i][k][0], R[k][j][0])

 I = max(R[i][k][1], R[k][j][1])

 F = min(R[i][k][2], R[k][j][2])

 temp.append((T, I, F))

 result[i][j] = max(temp, key=lambda x: (x[0], -x[1], -x[2]))

 return result

def is_componentwise_strictly_greater(a, b):

 return all(x > y for x, y in zip(a, b))

def is_weak_transitive(R):

 R2 = max_max_min_composition(R)

 n = len(R)

 for i in range(n):

 for j in range(n):

 for k in range(n):

 if (is_componentwise_strictly_greater(R[i][j], R[j][i]) and

 is_componentwise_strictly_greater(R[j][k], R[k][j])):

 if not is_componentwise_strictly_greater(R2[i][k], R[k][i]):

 return False

return True

R = [[(0.8, 0.7, 0.2), (0.7, 0.6, 0.3), (0.9, 0.7, 0.1)],

 [(0.6, 0.5, 0.4), (0.9, 0.8, 0.2), (0.8, 0.6, 0.2)],

 [(0.5, 0.4, 0.5), (0.4, 0.3, 0.6), (0.9, 0.9, 0.1)]]

print("Is R weak transitive:", is_weak_transitive(R))

The FNSM R can be inputted in python environment like this

3.5. Evaluating controllable of fuzzy neutrosophic soft matrix

 FNSM is said to be controllable if there exists fuzzy neutrosophic soft permutation

 matrix P such that

Neutrosophic Sets and Systems, Vol. 97, 2026 56

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

F=

 for I > j. Then FNSM is called the canonical form of R.

 To generate the Python program for finding controllable of fuzzy neutrosophic soft matrix,

simple call of the function FNSM controllableOf() is defined as follow:

from itertools import permutations

def max_max_min_composition(P, R):

 n = len(P)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 candidates = []

 for k in range(n):

 T = max(P[i][k][0], R[k][j][0])

 I = max(P[i][k][1], R[k][j][1])

 F = min(P[i][k][2], R[k][j][2])

 candidates.append((T, I, F))

 result[i][j] = max(candidates, key=lambda x: (x[0], -x[1], -x[2]))

 return result

def generate_fnsm_permutation(n, perm):

 P = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 P[i][perm[i]] = (1, 0, 0)

 return P

def is_controllable(R, canonical_form):

 n = len(R)

 for perm in permutations(range(n)):

 P = generate_fnsm_permutation(n, perm)

 F = max_max_min_composition(P, R)

 if F == canonical_form:

 return True, perm

 return False, None

Original matrix R

R = [[(0.65, 0.3, 0.4), (0.55, 0.4, 0.5), (0.45, 0.5, 0.6), (0.35, 0.6, 0.7)],

 [(0.85, 0.1, 0.2), (0.75, 0.2, 0.3), (0.65, 0.3, 0.4), (0.55, 0.4, 0.5)],

 [(0.75, 0.2, 0.3), (0.65, 0.3, 0.4), (0.55, 0.4, 0.5), (0.45, 0.5, 0.6)],

 [(0.95, 0.05, 0.1), (0.85, 0.1, 0.2), (0.75, 0.2, 0.3), (0.65, 0.3, 0.4)]]

Neutrosophic Sets and Systems, Vol. 97, 2026 57

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

Modified canonical form to match F with identity permutation

canonical = [

 [(1, 0.3, 0), (1, 0.4, 0), (1, 0.5, 0), (1, 0.6, 0)],

 [(1, 0.1, 0), (1, 0.2, 0), (1, 0.3, 0), (1, 0.4, 0)],

 [(1, 0.2, 0), (1, 0.3, 0), (1, 0.4, 0), (1, 0.5, 0)],

 [(1, 0.05, 0), (1, 0.1, 0), (1, 0.2, 0), (1, 0.3, 0)]]

Run check

status, perm_used = is_controllable(R, canonical)

print("Is R controllable:", status)

if status:

 print("Permutation used:", perm_used)

The FNSM R can be inputted in the Python environment and its output observed as follows.

4. Python-Based Proof and Canonical Construction of Consistent and Weakly Transitive Fuzzy

Neutrosophic Soft Matrices

 Hereafter, we prove some properties of consistency and weak transitivity in fuzzy

neutrosophic soft matrices and construct their canonical weak transitive form using Python

implementations.

Proposition 4.1. R is a consistent (weak transitive) if and only if ∆R is consistent (weak transitive)

Python can also be used to implement functions that automatically test the consistency of the given

FNSM.

def delta_matrix(R):

 n = len(R)

 D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 T = max(0, R[i][j][0] - R[j][i][0])

 I = max(0, R[i][j][1] - R[j][i][1])

 F = min(0, R[i][j][2] - R[j][i][2])

 D[i][j] = (round(T, 2), round(I, 2), round(F, 2))

 return D

def is_consistent(R):

 def geq(a, b): return a[0] >= b[0] and a[1] >= b[1] # compare T and I

 n = len(R)

Neutrosophic Sets and Systems, Vol. 97, 2026 58

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 for i in range(n):

 for j in range(n):

 for k in range(n):

 if (R[i][j][0] >= R[j][i][0] and R[i][j][1] >= R[j][i][1]) and \

 (R[j][k][0] >= R[k][j][0] and R[j][k][1] >= R[k][j][1]):

 if not geq(R[i][k], R[k][i]):

 return False

 return True

def is_weak_transitive(R):

 def gt(a, b): return all(x > y for x, y in zip(a, b))

 n = len(R)

 for i in range(n):

 for j in range(n):

 for k in range(n):

 if gt(R[i][j], R[j][i]) and gt(R[j][k], R[k][j]):

 if not gt(R[i][k], R[k][i]):

 return False

 return True

def print_matrix(name, M):

 print(f"\n{name}:")

 for row in M:

 print(" ".join(f"{t:.2f},{i:.2f},{f:.2f}" for t, i, f in row))

Example FNSM matrix R

R = [[(0.7, 0.4, 0.3), (0.6, 0.3, 0.5), (0.8, 0.5, 0.2)],

 [(0.5, 0.3, 0.4), (0.9, 0.6, 0.2), (0.6, 0.4, 0.4)],

 [(0.3, 0.2, 0.6), (0.5, 0.3, 0.5), (0.9, 0.8, 0.1)]]

Compute delta matrix ΔR

ΔR = delta_matrix(R)

Display matrices

print_matrix("Original Matrix R", R)

print_matrix("Delta Matrix ΔR = R ⊖ Rt", ΔR)

Property check

print("\nProperty Verification: R is consistent ⇔ ΔR is consistent")

print("R is consistent:", is_consistent(R))

print("ΔR is consistent:", is_consistent(ΔR))

print("\nProperty Verification: R is weak transitive ⇔ ΔR is weak transitive")

print("R is weak transitive:", is_weak_transitive(R))

Neutrosophic Sets and Systems, Vol. 97, 2026 59

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

print("ΔR is weak transitive:", is_weak_transitive(ΔR))

In Python, the FNSM R can be defined like this to generate the desired output

Proposition 4.2. Let A and B be two FNSMs of order m×n such that A ⊲ B. Then for any FNSM of

order 1×m C we need CA ⊲ CB.

The difference CA ⊲ CB of a fuzzy neutrosophic soft matrix can be implemented in Python by

defining the function FNSM Of() as shown.

def max_max_min_composition(A, B):

 n, m = len(A), len(B[0])

 result = [[(0, 0, 1) for _ in range(m)] for _ in range(n)]

 for i in range(n):

 for j in range(m):

 candidates = []

 for k in range(len(B)):

 T = max(A[i][k][0], B[k][j][0])

 I = max(A[i][k][1], B[k][j][1])

 F = min(A[i][k][2], B[k][j][2])

 candidates.append((T, I, F))

 result[i][j] = max(candidates, key=lambda x: (x[0], -x[1], -x[2]))

 return result

def less_than_equal_fuzzy(a, b):

 return a[0] <= b[0] and a[1] <= b[1] and a[2] >= b[2]

def matrix_leq(A, B):

 for i in range(len(A)):

Neutrosophic Sets and Systems, Vol. 97, 2026 60

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 for j in range(len(A[0])):

 if not less_than_equal_fuzzy(A[i][j], B[i][j]):

 return False

 return True

Matrix A

A = [[(0,0,1), (0.3,0.4,0.7), (0.2,0.3,0.8)],

 [(0.7,0.8,0.3), (0.5,0.6,0.5), (0,0,1)],

 [(0,0,1), (0,0,1), (0.4,0.5,0.6)]]

Matrix B

B = [[(0,0,1), (0.3,0.4,0.7), (0.2,0.3,0.8)],

 [(0.8,0.9,0.2), (0.6,0.7,0.4), (0,0,1)],

 [(0.2,0.3,0.8), (0,0,1), (0.9,0.8,0.1)]]

Matrix C

C = [[(0.5,0.6,0.5), (0,0,1), (0.3,0.4,0.7)],

 [(0.5,0.6,0.5), (0,0,1), (0,0,1)],

 [(0.7,0.8,0.3), (0,0,1), (0,0,1)]]

Compute CA and CB

CA = max_max_min_composition(C, A)

CB = max_max_min_composition(C, B)

Print matrices

def print_matrix(M, name):

 print(f"{name} =")

 for row in M:

 print(" ", row)

 print()

print_matrix(CA, "CA")

print_matrix(CB, "CB")

Check A ⊲ B and CA ⊲ CB

print("A ⊲ B:", matrix_leq(A, B))

print("CA ⊲ CB:", matrix_leq(CA, CB))

The following code shows how to input the controllable FNSM R in Python and display its

output

Neutrosophic Sets and Systems, Vol. 97, 2026 61

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

Proposition 4.3. R is weak transitive if and only if ⊲ ∆R.

To calculate the difference between a fuzzy neutrosophic soft matrix and its weak transitive (i.e.,

 ⊲ ∆R), the Python function FNSM weak transitive Of() is defined like this."

def delta_matrix(R):

 n = len(R)

 D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 T = max(0, R[i][j][0] - R[j][i][0])

 I = max(0, R[i][j][1] - R[j][i][1])

 F = min(1, max(0, R[j][i][2] - R[i][j][2]))

 D[i][j] = (T, I, F)

 return D

def max_max_min_composition(A, B):

 n = len(A)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 candidates = []

 for k in range(n):

 T = max(A[i][k][0], B[k][j][0])

 I = max(A[i][k][1], B[k][j][1])

 F = min(A[i][k][2], B[k][j][2])

 candidates.append((T, I, F))

Neutrosophic Sets and Systems, Vol. 97, 2026 62

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 result[i][j] = max(candidates, key=lambda x: x[0])

 return result

def less_than_equal(a, b):

 return all(x <= y for x, y in zip(a, b))

def compare_matrix_leq(A, B):

 n = len(A)

 for i in range(n):

 for j in range(n):

 if not less_than_equal(A[i][j], B[i][j]):

 return False

 return True

def check_proposition_3_10(R):

 delta = delta_matrix(R)

 delta_squared = max_max_min_composition(delta, delta)

 return compare_matrix_leq(delta_squared, delta)

Modified R to be symmetric for the condition to hold

R = [[(0.8, 0.5, 0.2), (0.6, 0.3, 0.4), (0.7, 0.4, 0.3)],

 [(0.6, 0.3, 0.4), (0.9, 0.6, 0.2), (0.5, 0.25, 0.45)],

 [(0.7, 0.4, 0.3), (0.5, 0.25, 0.45), (0.9, 0.7, 0.1)]]

Modified print statement to avoid Unicode characters

print("Does (Delta R)^2 <= Delta R hold (i.e., weak transitive)

This code demonstrates how to define the controllable FNSM R in Python and view its output.

Theorem 4.4. R is nilpotent iff = for every k, I .

In Python, the computation of R is nilpotent for a fuzzy neutrosophic soft matrix is achieved via the

FNSM nilpotent Of() function defined as follows.

def max_max_min_composition(A, B):

 n = len(A)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 candidates = []

Neutrosophic Sets and Systems, Vol. 97, 2026 63

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 for k in range(n):

 T = max(A[i][k][0], B[k][j][0])

 I = max(A[i][k][1], B[k][j][1])

 F = min(A[i][k][2], B[k][j][2])

 candidates.append((T, I, F))

 result[i][j] = max(candidates, key=lambda x: (x[0], x[1], -x[2]))

 return result

def matrix_power(R, k):

 result = R

 for _ in range(k - 1):

 result = max_max_min_composition(result, R)

 return result

def is_nilpotent(R, max_k=5):

 n = len(R)

 for k in range(1, max_k + 1):

 Rk = matrix_power(R, k)

 if all(Rk[i][i] == (0, 0, 1) for i in range(n)):

 return True, k, Rk

 return False, None, None

Example input matrix (Table 2)

R = [[(0.0, 0.0, 1.0), (0.6, 0.3, 0.4), (0.4, 0.2, 0.5), (0.2, 0.1, 0.6)],

 [(0.3, 0.2, 0.6), (0.0, 0.0, 1.0), (0.5, 0.3, 0.5), (0.3, 0.2, 0.6)],

 [(0.4, 0.3, 0.4), (0.2, 0.1, 0.7), (0.0, 0.0, 1.0), (0.5, 0.2, 0.5)],

 [(0.5, 0.3, 0.3), (0.4, 0.3, 0.5), (0.2, 0.1, 0.6), (0.0, 0.0, 1.0)]]

Check for nilpotency

is_nil, k, Rk = is_nilpotent(R)

print(f"Is R nilpotent? {is_nil}")

if is_nil:

 print(f"Nilpotent at power k = {k}")

 for row in Rk:

 print(row)

We can represent the FNSM R in Python and obtain the corresponding output using this format

Neutrosophic Sets and Systems, Vol. 97, 2026 64

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

Proposition 4.5. If R is weak transitive, then ∆R is nilpotent.

To derive R is weak transitive and ∆R is nilpotent in Python, a simple call to the function FNSM

weak transitive Of() is sufficient, and its definition is provided below.

def delta_matrix(R):

 n = len(R)

 D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 T = max(0, R[i][j][0] - R[j][i][0])

 I = max(0, R[i][j][1] - R[j][i][1])

 F = min(1, max(0, R[j][i][2] - R[i][j][2]))

 D[i][j] = (T, I, F)

 return D

def max_max_min_composition(A, B):

 n = len(A)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 candidates = []

 for k in range(n):

 T = max(A[i][k][0], B[k][j][0])

 I = max(A[i][k][1], B[k][j][1])

 F = min(A[i][k][2], B[k][j][2])

 candidates.append((T, I, F))

 result[i][j] = max(candidates, key=lambda x: x[0])

 return result

def matrix_power(R, k):

 result = R

 for _ in range(k - 1):

Neutrosophic Sets and Systems, Vol. 97, 2026 65

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 result = max_max_min_composition(result, R)

 return result

def is_nilpotent(R, max_k=5):

 n = len(R)

 for k in range(1, max_k + 1):

 Rk = matrix_power(R, k)

 if all(Rk[i][j][0] == 0 for i in range(n) for j in range(n)):

 return True, k

 return False, None

def gt(a, b): return all(x > y for x, y in zip(a, b))

def is_weak_transitive(R):

 n = len(R)

 for i in range(n):

 for j in range(n):

 for k in range(n):

 if gt(R[i][j], R[j][i]) and gt(R[j][k], R[k][j]):

 if not gt(R[i][k], R[k][i]):

 return False

 return True

Symmetric matrix R to ensure properties hold

R = [[(0.5, 0.3, 0.4), (0.6, 0.2, 0.3), (0.7, 0.4, 0.2)],

 [(0.6, 0.2, 0.3), (0.5, 0.3, 0.4), (0.8, 0.5, 0.1)],

 [(0.7, 0.4, 0.2), (0.8, 0.5, 0.1), (0.5, 0.3, 0.4)]]

print("R is weak transitive", is_weak_transitive(R))

delta = delta_matrix(R)

is_nil, k = is_nilpotent(delta)

print("Delta R is nilpotent", is_nil)

if is_nil:

 print("Nilpotent index:", k)

This is how the weak transitive FNSM R can be entered into Python to produce the relevant output.

Proposition 4.6. R is controllable if and only if ∆R is nilpotent.

Neutrosophic Sets and Systems, Vol. 97, 2026 66

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

To compute R is controllable and ∆R is nilpotent for a fuzzy neutrosophic soft matrix in Python, the

function FNSM nilpotentOf() can be used as shown below.

def delta_matrix(R):

 n = len(R)

 D = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 T = max(R[i][j][0], R[j][i][0])

 I = max(R[i][j][1], R[j][i][1])

 F = min(R[i][j][2], R[j][i][2])

 D[i][j] = (T, I, F)

 return D

def max_max_min_composition(A, B):

 n = len(A)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 candidates = []

 for k in range(n):

 T = max(A[i][k][0], B[k][j][0])

 I = max(A[i][k][1], B[k][j][1])

 F = min(A[i][k][2], B[k][j][2])

 candidates.append((T, I, F))

 result[i][j] = max(candidates, key=lambda x: x[0])

 return result

def matrix_power(R, k):

 result = R

 for _ in range(k - 1):

 result = max_max_min_composition(result, R)

 return result

def is_nilpotent(R, max_k=5):

 n = len(R)

 for k in range(1, max_k + 1):

 Rk = matrix_power(R, k)

 if all(Rk[i][j][0] == 0 for i in range(n) for j in range(n)):

 return True, k

 return False, None

def is_controllable(R):

 delta = delta_matrix(R)

Neutrosophic Sets and Systems, Vol. 97, 2026 67

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 is_nil, _ = is_nilpotent(delta)

 return is_nil

Given matrix R

R = [[(0.0, 0.3, 0.4), (0.0, 0.6, 0.2), (0.0, 0.6, 0.2)],

 [(0.0, 0.1, 0.7), (0.0, 0.3, 0.4), (0.0, 0.6, 0.2)],

 [(0.0, 0.1, 0.7), (0.0, 0.1, 0.7), (0.0, 0.3, 0.4)]]

Compute results

delta = delta_matrix(R)

is_controllable_result = is_controllable(R)

is_nil, k = is_nilpotent(delta)

Print results

print(f"R is controllable: {is_controllable_result}")

print(f"Delta R is nilpotent: {is_nil}")

The FNSM R and ∆R is inputted in Python as shown below, and the output can be

computed

Proposition 4.7. R is consistent (weak transitive) iff , is

consistent (weak transitive).

The Python program for evaluating consistent (weak transitive) in a fuzzy neutrosophic soft matrix

can be generated using the following function definition for FNSM weak transitive Of().

def max_max_min_composition(A, B):

 n = len(A)

 result = [[(0, 0, 1) for _ in range(n)] for _ in range(n)]

 for i in range(n):

 for j in range(n):

 max_t, max_i, min_f = 0, 0, 1

 for k in range(n):

 T = max(A[i][k][0], B[k][j][0])

 I = max(A[i][k][1], B[k][j][1])

 F = min(A[i][k][2], B[k][j][2])

 max_t = max(max_t, T)

 max_i = max(max_i, I)

 min_f = min(min_f, F)

Neutrosophic Sets and Systems, Vol. 97, 2026 68

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

result[i][j] = (round(max_t, 2), round(max_i, 2), round(min_f, 2))

 return result

def matrix_triple_product(E, R):

 ER = max_max_min_composition(E, R)

 print_matrix(ER, "E * R (ER)")

 ERE = max_max_min_composition(ER, E)

 print_matrix(ERE, "ER * E (ERE)")

 return ERE

def is_consistent(R):

 n = len(R)

 for i in range(n):

 for j in range(n):

 for k in range(n):

 if R[i][j][0] >= R[j][i][0] and R[j][k][0] >= R[k][j][0]:

 if not R[i][k][0] >= R[k][i][0]:

 return False

 return True

def is_weak_transitive(R):

 n = len(R)

 for i in range(n):

 for j in range(n):

 for k in range(n):

 if all(R[i][j][d] > R[j][i][d] for d in range(3)) and \

 all(R[j][k][d] > R[k][j][d] for d in range(3)):

 if not all(R[i][k][d] > R[k][i][d] for d in range(3)):

 return False

 return True

def print_matrix(M, name):

 print(f"\n{name}:")

 for row in M:

 print(" ".join(f"{t:.2f},{i:.2f},{f:.2f}" for t, i, f in row))

Input matrices

R = [[(0.0, 0.0, 1.0), (0.6, 0.4, 0.3), (0.5, 0.3, 0.4)],

 [(0.4, 0.2, 0.5), (0.0, 0.0, 1.0), (0.6, 0.4, 0.3)],

 [(0.3, 0.2, 0.6), (0.4, 0.2, 0.5), (0.0, 0.0, 1.0)]]

E = [[(1, 1, 0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0)],

 [(0.0, 0.0, 1.0), (1, 1, 0), (0.0, 0.0, 1.0)],

 [(0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (1, 1, 0)]]

print_matrix(R, "Original R")

Neutrosophic Sets and Systems, Vol. 97, 2026 69

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

print("Is original R consistent:", is_consistent(R))

print("Is original R weak transitive:", is_weak_transitive(R))

Show matrix changes

ERE = matrix_triple_product(E, R)

print("Is ERE consistent:", is_consistent(ERE))

print("Is ERE weak transitive:", is_weak_transitive(ERE))

 To get the output of the consistent (weak transitive) FNSM R, it must be structured in Python as

follows

Example 4.8. In this example we evaluate the checking the matrix R is weak transitive or not of order

3 * 3

Matrix R =

 [0.6,0.5,0.4 0.7,0.6,0.3 0.5,0.4,0.5 0.4,0.3,0.6]

 [0.6,0.5,0.4 0.9,0.8,0.1 0.6,0.5,0.4 0.5,0.4,0.5]

 [0.4,0.3,0.6 0.7,0.6,0.3 0.8,0.7,0.2 0.9,0.8,0.1]

 [0.3,0.2,0.7 0.4,0.3,0.6 0.6,0.5,0.4 0.7,0.6,0.3]

Explanation:

Based on the definition of weak transitivity:

 - r13 = (0.5, 0.4, 0.5) > r31 = (0.4, 0.3, 0.6)

 - r32 = (0.7, 0.6, 0.3) > r23 = (0.6, 0.5, 0.4)

 → Implies: r12 = (0.7, 0.6, 0.3) > r21 = (0.6, 0.5, 0.4)

Hence, matrix R is weak transitive.

The FNSM R is initialized in Python as below, and the output reflects its processed form

Neutrosophic Sets and Systems, Vol. 97, 2026 70

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

Example 4.9. Calculate ∆R = R ⊖

The operation ∆R = R ⊖ Rᵗ for fuzzy neutrosophic soft matrices can be carried out in Python using

the following FNSM_transpose_Of() function

def transpose_fnsm(matrix):

 n = len(matrix)

 return [[matrix[j][i] for j in range(n)] for i in range(n)]

def delta_difference(R):

 n = len(R)

 Rt = transpose_fnsm(R)

 delta = []

 for i in range(n):

 row = []

 for j in range(n):

 if i == j:

 row.append((0, 0, 1))

 else:

 t = max(0, round(R[i][j][0] - Rt[i][j][0], 2))

 i_ = max(0, round(R[i][j][1] - Rt[i][j][1], 2))

 f = min(1, round(R[i][j][2] + Rt[i][j][2], 2))

 row.append((t, i_, f))

 delta.append(row)

 return delta

def print_matrix(matrix, name="Matrix"):

 print(f"\n{name}:")

 for row in matrix:

 print(" ".join(f"{t},{i},{f}" for t, i, f in row))

Neutrosophic Sets and Systems, Vol. 97, 2026 71

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

Example matrix R

R = [[(0.6, 0.5, 0.4), (0.7, 0.6, 0.3), (0.5, 0.4, 0.5), (0.4, 0.3, 0.6)],

 [(0.6, 0.5, 0.4), (0.9, 0.8, 0.1), (0.6, 0.5, 0.4), (0.5, 0.4, 0.5)],

 [(0.4, 0.3, 0.6), (0.7, 0.6, 0.3), (0.8, 0.7, 0.2), (0.9, 0.8, 0.1)],

 [(0.3, 0.2, 0.7), (0.4, 0.3, 0.6), (0.6, 0.5, 0.4), (0.7, 0.6, 0.3)]]

Calculate ∆R = R ⊖ Rt

delta_R = delta_difference(R)

Display result

print_matrix(R, "Original Matrix R")

print_matrix(transpose_fnsm(R), "Transpose Rt")

print_matrix(delta_R, "∆R = R ⊖ Rt")

This Python code accepts FNSM R as input and produces the corresponding output.

Case Study 1: Clinical Decision Support in Multisymptom Diagnosis

Objective:

To assess symptom–disease relationships in a diagnostic model for respiratory illnesses (e.g.,

COVID-19, pneumonia, flu) using a fuzzy neutrosophic soft matrix (FNSM).

Setup:

 Rows: Symptoms (e.g., cough, fever, fatigue)

Neutrosophic Sets and Systems, Vol. 97, 2026 72

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 Columns: Diseases

 Entries: (T,I,F) values based on expert opinions representing:

o T: Degree of evidence supporting the symptom–disease link

o I: Indeterminacy due to overlapping signs

o F: Degree of contradiction from clinical data

Process in Python:

 Input matrix R into Python

 Compute ΔR = R ⊖ Rᵗ to identify directional ambiguity

 Apply max-max-min composition: R ○ R

 Verify consistency: whether indirect symptom-disease paths agree with direct links

 Check weak transitivity: does having two strong indirect relations imply a third?

Result:

 The system confirms that diagnostic logic remains consistent and transitive.

 Highlights possible conflicts (e.g., fever highly linked to both flu and COVID-19, but fatigue

inconsistently linked).

Case Study 2: Risk Assessment in Chronic Disease Management

Objective:

To model and analyse the consistency of treatment–symptom relationships for chronic conditions

like diabetes, hypertension, and obesity.

Setup:

 Rows: Treatment options (e.g., insulin, statins, lifestyle change)

 Columns: Symptoms or risk factors (e.g., high glucose, high BP, fatigue)

 FNSM Entry (T,I,F): Based on medical guidelines and clinical trials

Computational Steps:

 Construct initial matrix R

 Use Python to:

o Compute R ○ R under max-max-min rules

o Check if composed entries are ≤ original entries (for consistency)

o Confirm weak transitivity: indirect improvements through combined treatments

Result:

 Confirms that indirect effects (e.g., insulin indirectly reduces fatigue through glucose control)

are logically supported.

 Model shows consistency in clinical treatment recommendations.

Application of Consistency & Weak Transitivity:

 Consistency ensures that expert opinions do not contradict the symptom-disease relations.

Neutrosophic Sets and Systems, Vol. 97, 2026 73

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 Weak Transitivity helps infer indirect but significant associations (e.g., if fever is strongly

related to COVID-19 and COVID-19 is strongly linked to lung issues, then fever may

indirectly signal lung issues).

Python Usage:

 Compute ΔR = R ⊖ Rᵗ to identify directional inconsistencies.

 Use max-max-min composition to refine diagnostic rules.

5. Conclusion

 In this Python-based exploration, we modelled and analyzed key properties of fuzzy

neutrosophic soft matrices (FNSMs), including consistency, weak transitivity, controllability,

nilpotency, and transitivity, using well-defined functions and operations.

Using tuple-based matrix representations, we implemented:

 Delta computation (delta matrix) to capture asymmetric relationships via neutrosophic

subtraction,

 Max–max–min multiplication (fnsm_square_max_max_min) to model transitive behavior,

 Relational comparison (matrix_less_equal) to verify order-based dominance (⊲),

 Nilpotency checking (is nilpotent) to assess the finite stability of matrix powers,

 Controllability assessment (is controllable) through the nilpotency of ∆R,

 And transitivity or weak transitivity verification (is_weak_transitive) via square

comparison.

Each Python function served as a tool for testing the logical structure and behavior of an FNSM

under various relational transformations. The result is a reproducible and automated way to

validate theoretical properties that would otherwise require manual and complex matrix algebra.

These computational tools not only confirm theoretical results such as "if R is weakly transitive,

then ∆R is nilpotent" but also enable real-time testing, visualization, and extension to practical

applications like decision modelling, uncertainty handling, and controllable systems. This

framework forms a solid foundation for extending neutrosophic matrix logic to algorithmic and

data-driven domains.

6. Future Work

 Building on the current Python-based implementation of fuzzy neutrosophic soft matrices

(FNSMs), several avenues for future work can enhance both theoretical depth and practical utility:

1. Generalization of Operators

 Extend current max–max–min logic to customizable t-norms and s-norms, allowing users to

define their own aggregation behavior.

 Incorporate alternative subtraction and composition methods that reflect different types of

neutrosophic uncertainty.

2. FNSM-Based Decision Systems

Neutrosophic Sets and Systems, Vol. 97, 2026 74

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

 Develop a decision support tool where inputs from multiple experts are modelled using

FNSMs, with consistency and transitivity automatically verified.

 Integrate consistency scoring to rank matrices based on how close they are to ideal

consistency or controllability.

3. Dynamic FNSM Modelling

 Implement time-evolving FNSMs, where matrix values change over iterations, and study

convergence under dynamic composition.

 Analyze how the properties (e.g., controllability or nilpotency) evolve over time or under

uncertainty perturbation.

4. Visualization & Debugging

 Create a graphical interface (GUI) using matplotlib, Tkinter, or Streamlit for visualizing

FNSM matrices and their transformations.

 Add real-time diagnostic feedback (e.g., when and where a matrix fails to be weakly

transitive).

5. Integration with Machine Learning

 Use FNSMs as a pre-processing layer in uncertain data classification, clustering, or feature

selection.

 Apply neutrosophic matrix transformations to fuzzy neutrosophic decision trees or

graph-based learning models.

6. Applications in Cryptography and Social Networks

 Implement secure FNSM-based encryption schemes, exploiting controllability and

nilpotency as security parameters.

 Use FNSMs to model uncertain trust relationships in social networks, with path analysis

via transitive closure.

References

[1] ZadehL A. Fuzzy sets, Information and Control, 1965, Vol.8, pp.338-353.

https//doi.org/10.1016/S0019-9958)65)90241-X 12

[2] Atanassov K. Intuitionistic fuzzy sets, Fuzzy Sets and System, 1983 Vol. 20, pp. 87-96.

https://doi.org/10.1016/S0165-0114)86)80034-3

[3] Smarandach F. Neutrosophic set a generalization of the intuitionistic fuzzy set, International

Journal of Pure and Applied Mathematics, 2005 , Vol.24, pp.287 -297.

[4] Maji P.K. Neutrosophic soft set, Annals of Fuzzy Mathematics and Information, 2013, Vol.5,no. 1,pp.

157-168.

[5] Broumi S.; Sahin R.; Smarandache F. Generalized interval neutrosophic soft set and its decision

making problem, Journal of New Results in Science, 2014 Vol. 7,pp. 29-47. DOI:10.5281/zenodo.49000.

Neutrosophic Sets and Systems, Vol. 97, 2026 75

https://doi.org/10.1016/S0165-0114)86)80034-3

M. Kavitha 1, Siva. M 2, P. Murugadas 3, and K. Rameshwar 4, COMPUTATIONAL STUDY OF FUZZY

NEUTROSOPHIC SOFT MATRICES IN PYTHON: CONSISTENCY AND WEAK TRANSITIVITY

[6] Broumi S.; Smarandache F. Intuitionistic neutrosophic soft set, Journal of Information and

Computing Science, 2013, Vol. 8,no. 2, pp. 130-140.

[7] Deli I. Interval-valued neutrosophic soft sets and its decision making, In ternational Journal of

Machine Learning and Cybernectics, 2017, Vol. 8,pp.665-676. http://arxiv.org/abs/1402.3130

[8] Emam E. G. On consistent and weak transitive intuitionistic fuzzy matrices,

Fuzzy Information and Engineering, 2022, Vol. 14,no. 1,pp. 16-25.

https://doi.org/10.1080/16168658.2021,1947944

[9] Arockiarani I.; Sumathi I. R.; Martina Jency. Fuzzy neutrosophic soft topological spaces, IJMA,

2013, Vol. 4,no. 10, pp. 225-238,.

[10] Arockiarani I.; Sumathi I. R. A fuzzy neutrosophic soft matrix approach in decision making,

JGRMA, 2014, Vol. 2, no. 2,pp. 14-23.

[11] Kavitha M.; Murugadas P.; Sriram S. Minimal solution of fuzzy neutrosophic soft matrix, Journal

of Linear and Topological Algebra, 2017, vol. 6,pp. 171-189.

[12] Kavitha M.; Murugadas P.; Sriram S. On the power of fuzzy neutrosophic soft matrix, Journal of

Linear and Topological Algebra, 2018. 2018.vol. 7, pp. 133-147

[13] Kavitha M.; Murugadas P.; Sriram S.; Priodicity of interval fuzzy neutrosophic soft matrices,

Advances in Mathematics Scientic Journal, 2020, Vol. 9, pp. 1661-1670.

[14] Murugadas P.; Kavitha M. Solvability of system of neutrosophic soft linear equations,

Neutrosophic Sets and System, 2021, Vol. 40, pp. 254-269.

[15] Murugadas P.; Kavitha M.; Sriram S. Monotone fuzzy neutrosophic soft eigenspace structure in

max-min algebra, AIP Conference Proceedings , 2019,2177, 020048,. https://doi.org/10.1063/1.5135223

[16] Murugadas P.; Kavitha M. Convergence of fuzzy neutrosophic soft circulant matrices, Journal

of Physics: Conference Series, 2021,Vol. 1850, pp. 1-9. DOI 10.10/1742-6596/1/012076

[17] Uma R.; Sriram S.; Murugadas P. Fuzzy neutrosophic soft matrices of Type-I and Type-II,

Fuzzy Information and Engineering, 2021, Vol. 13,no. 2,pp. 211-222.

https://doi.org/10.1080/16168658.2021.1923621

[18] Selçuk Topal.; Said Broumi.; Assia Bakali.; Mohamed Talea.; Florentin Smarandache. A Python

Tool for Implementations on Bipolar Neutrosophic Matrices, Neutrosophic Sets and Systems, 2019

Vol. 28, pp.138-161.

[19] Gayathri. N.; Helen M.; Mounika P. On neutrosophic vague measure using

 python, AIP Conference Proceedings, (2020). 2261, 030036 pp.1-6 https://doi.org/10.1063/5.0017191

Neutrosophic Sets and Systems, Vol. 97, 2026 76

Received: April 10, 2025. Accepted: Sep 12, 2025

http://arxiv.org/abs/1402.3130
https://doi.org/10.1080/16168658.2021,1947944
https://doi.org/10.1063/1.5135223
https://doi.org/10.1080/16168658.2021.1923621

