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Abstract: Nonlinear Optimization, Game theory, economics and study of differential equations are just a 

few of the many domains in which fixed point theory (FPT) is essential. It is possible to construct new forms 

of infinite products by using continuous triangular norms (TN) and continuous triangular co-norms (TC). 

Banach contraction principal has been established in the context of neutrosophic metric space (NMS) within 

the framework through the use of these newly define infinite products. We introduced integral type 

contractive condition in -chainable NMS and establishes a common fixed point theorems (CFPTs) in the 

current work. The result acquired in this study are intended to consolidate and expand upon numerous 

existing discoveries in the field of NMS.  
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1. Introduction 

In 1965, Zadeh [37] introduced the fuzzy set (FS) as a set that is defined by a membership function, serving 

as the first mathematical formalization of the concept. Although fundamental, the single membership grade 

of an FS may not be adequate to capture the complete complexity of real-world uncertainty. Kramosil and 

Michálek [18] introduced fuzzy metric spaces (FMS) that were subsequently refined by George and 
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Veeramani [9] using continuous TC, building upon this concept. The concept on FMS is explored by Grabiec 

[8] in 1988.  

Atanassov [1, 2] introduced the intuitionistic fuzzy set (IFS) in 1986 to expand the expressive capability of 

FS theory. Independent degrees of both belongingness and non-belongingness for each element are 

incorporated into this framework to more effectively model uncertainty. The application of IFS theory 

rapidly penetrated all domains that were impacted by FS, including metric spaces. By employing the TN 

and TC structure of George and Veeramani, Park [24] extended the concept of FMS to intuitionistic fuzzy 

metric spaces (IFMS) and subsequently investigated its fundamental topological properties. For more 

results on IFS (see [23], [25]). 

Heilpern [11] was the first to investigate fuzzy contraction mappings in FPT. Bose and Sahani [5] expanded 

upon this work, while Alaca et al. [3] demonstrated FPTs in the context of IFMS. Mohamad [21] and a 

multitude of other researchers [10, 12, 14, 19] have since made substantial contributions to the field of fixed 

point results for both FMS and IFMS.  

Smarandache [29] was the first to introduce the neutrosophic set (NS) in 1998, after recognizing that neither 

FS nor IFS could entirely resolve issues involving contradictory or indeterminate information. NSs are 

defined by three independent membership functions: truth (T), indeterminacy (I), and falsity (F) as a 

generalization of crisp, fuzzy, and intuitionistic sets. Smarandache [30] observed that an NS is reduced to 

an IFS when its indeterminacy membership grade I(x) is equivalent to the hesitancy degree h(x) of the IFS. 

Kirişci et al. [15] contributed to the development of the fixed point theory in NMS by defining neutrosophic 

contractive mappings and establishing corresponding FPTs.  

Branciari's [4] integral version of the Banach contraction principle was a significant parallel development 

in metric FPT. The results of Rhoades [26], Vijayaraju [32], and Djoudi, Aliouche [7] and Saini [28] 

demonstrate that this seminal work inspired extensive research, resulting in the development of a variety 

of CFPTs and FPTs for integral-type contractive conditions in diverse spaces.  

Our contribution to this ongoing research is the definition of an integral-type contractive condition within 

the framework of ε-chainable NMS in this paper. We establish a CFPT for four weakly compatible 

mappings [13]. Our findings are a significant extension and generalization of several well-known theorems 

in NMS, such as those of Mohamad [22], Kirisci M. [17], Kirişci et al. [15], and Kirişci and Simsek [16]. 

2. Preliminaries 

The following section presents fundamental definitions concerning fuzziness, intuitionistic fuzziness and 

neutrosophic concepts. 

Definition 2.1:   A FS F is defined as a mapping →: [0,1]F X , where X is a universe of discourse. 

Definition 2.2. ([37]):  For a non-empty set X, a FS F is expressed as =   { , ( ) : }
F

F a a a X
 
where  ( )

F
a

 
is 

the membership function that assigns to each element a X  a degree of membership in [0,1]. If the FS F is 

both convex and normalized, then it is referred to as a fuzzy number (FN) on real line .  

Definition 2.3. ([1]): An IFS IF in a non-empty set X is represented as   = , ( ), ( ) : ,I IF

I

F
F a a a Xa  where 

 →: [0,1]IF
X  denotes the membership function and  →: [0,1]IF

X  denotes the non-membership function 

with condition  +   1, .I IF F
a X  The hesitation or indeterminacy degree is given by  

 = − −( ) 1 .( )) (I IF F
h a a a   An IFS IF becomes intuitionistic fuzzy number (IFN), if  

➢ An IFN is a special type of subset of the , 
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➢ An IFN is said to be normal if    =( ) 1IF
a

 
and  =( ) 0IF

a  for each  ,a R  

➢ The membership function  ( )IF
a  is considered convex, if for any 

1 2
,a a R ,  [0,1], we have 

( )      + − 
1 2 1 2

(1 ) min ( ), ( ) .I I IF F F
a a a a  

➢ The membership function  ( )IF
a  is considered concave, if for any 

1 2
,a a R ,  [0,1], we have 

( )      + − 
1 2 1 2

(1 ) max ( ), ( ) .I I IF F F
a a a a  

➢  ( )IF
a  IF

 is assumed to be upper semi continuous while  IF
 is assumed as lower semi continuous, 

➢ ( )supp a =  ( ) { ; 1}I I

I

F F
a Fcl  

 An IFS   = , ( ), ( ) :I IF F

I x x x xF X
 
s.t.  ( )IF

a and −1 ( )IF
a  are IFNs, where   − = −(1 )( ) 1 ( )I IF F

a a
 
and

 
 + ( ) ( ) 1I IF F

a a  is called an IFN. 

Definition 2.4. ([29]):  Let X be non-empty set and a X . A NS N
F  is expressed as 

   =   , ( ), ( ), ( ) : ,
N N N

N F F F
F a a a a Xa  for each number a  in X and  ( ),

NF
a   ( )

NF
a  and  ( )

NF
a  belongs 

− +] 0,1 [ where  − +→: ]0 ,1 [( )
NF

a X  represents the truth membership (TM),  − +→: ]0 ,1 [( )
NF

a X represents the 

indeterminacy membership (IM)  and  − +→: ]0 ,1 [( )
NF

a X  represents the falsity membership (FM) in N
F  

respectively with condition    +− + +  ( ) ( ) ( ) 30
N N NF F F

a a a .  

In 2010, Wang et.al [34, 35] and Deli & S¸uba [6] introduce the single valued neutrosophic numbers (SVNN) 

which provides a fundamental for applying neutrosophic theory in practical settings. Later Ye [36], 

introduced the notion of simplified NSs, characterized by three real-valued components within [0,1]. 

However the improved NSs’ operations may be impractical at certain times.  

Definition 2.5. Let X be non-empty set and  .a  A NS in  is represented as 

    =  , ( ), ( ), ( ) : ,
N N N

N F F F
F a a a a a  for each number  ,a  and  ( ),

NF
a   ( )

NF
a ,  ( )

NF
a  belongs to − +] 0,1 [

where  − +→: ]0 ,1 [( )
NF

a X  represents the TM,  − +→: ]0 ,1 [( )
NF

a X represents the IM  and  − +→: ]0 ,1 [( )
NF

a X  

represents the FM in N
F  respectively with condition   + + 0 3( ) ( ) ( )

N N NF F F
a a a . For continuous SVNS, 

  =  ( ), ( ), ( )   :
N N N

N

N F F F

F

F a a a a a  If  X is discrete then SVNS   
=

=
1

.( ), :( ), ( )   
N N N

n

N iF F F
i

i
a a aF a a  

If NS has only one element then in simplified form  N
F

 express as    ( ), ( ), ( )
N N NF F F

a a a  for each  .a                                                     
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                           Figure 1: Neutrosophic set 

 

Thus it is evident that NS extends the concept of IFSs within [0,1]. For all 
N

a F , a NS ( )
N

F V contains the 

NS ( )
N

F U , ( )U V   

                         

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

V V

V V

V V

   

   

   

  



 

  


( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

inf ( ) inf ( )     and    sup ( ) sup ( )

inf ( ) inf ( )    and    sup ( ) sup ( )

inf ( ) inf ( )    and    sup ( ) sup ( )

N N N N

N N N N

N N N N

F U F F U F

F U F F U F

F U F F U F

a a a a

a a a a

a a a a









 

             

   

   

   

+ −

+ −

+ −

+ =

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ). ( ),

( ) ( ) ( ). ( ),

( ) ( ) ( ). ( )

( ) ( )
N N N N

N N N N

N N N N

F U F V F U F V

N N F U F V F U F V

F U F V F U F V

a a a a

F U F V a a a a

a a a a
 

     =
( ) ( ) ( ) ( ) ( ) ( )

( ). ( ), ( ). ( ), ( ). ( )( ). ( )
N N N N N N

N N F U F V F U F V F U F V
F U F V a a a a a a

 

( ) ( ) ( )
  

   − − − − − −=
( ) ( ) ( )

1 1 ( ) ,1 1 ( ) ,1 1 ( ) ,. ( )
N N N

N F U F U F U
F U a a a

 
for     0,  

( )  


  =
( ) ( ) ( )

( ), ( ), ( ) ,( )
N N N

N F U F U F U
F U a a a for     0.  

Definition 2.6. A binary operation   →: [0,1] [0,1] [0,1]  is continuous TN if ‘ ’ is satisfying: 

(i)   is commutative and associative, 

(ii)   is continuous, 

(iii) for all =   1    [0,1],a a a   

(iv) a b = c d   whenever a c  and  b d,   a,b,c, d [0,1].     

Definition 2.7. A binary operation  →: [0,1] [0,1] [0,1]◇  is continuous TC if ◇  is satisfying: 

(i) ◇  is commutative and associative, 

(ii) ◇  is continuous, 

(iii) a 0 = a  for all  a [0,1]◇  

(iv) a b = c d  ◇ ◇ whenever a c = b d    a c,b d [0,1], ,  . 

From above definitions, we note that if we choose   
1 2

0 , 1  for  
1 2 , then     

3 4
0 , 1  s.t. 

   
1 3 2  and   

1 4 2
◇ . Further if we choose  

5
(0,1), then    

6 7
, (0,1)  s.t.    

6 6 5  and 
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  
7 7 5
◇ . 

Remark 2.1 [23].  For , , , [0,1], l m n p take   and ◇  are continuous TN and TC, respectively  

(i) If    , l m   then there are ,n p  s.t.   l n m  and  .l m p◇  
(ii)   There are ,  s m  ss.t.  m m l  and  .l s s◇    

Example 2.1 [7]: Assume X = N. Define  = + −max{0, 1}x y x y ,  , [0,1].x y  Again let F  be FS on

  (0, )X X  is defined as

  

 
= 



    

  ,  

, if
( , , )

f 

a b a b
F a b t

b a i a b
,   , ,   0.a b X t  Then ( , , )X F  is a FMS described as 

=
+

( , , )
( , )

t
F a b t

t d a b
, where ( ,  )d a b is a MS in X,  , .a b X  

Remark 2.2: Every FMS ( , , )X F  is an IFS of the form − ( , ,1 , , )X F F ◇ s.t. ‘ ’ a TN and ‘◇ ’ a TC are 

associated, i.e.  = − − −  1 (1 ) (1 ),      , .a b a b a b X◇             

Definition 2.8 ([22]).  Let   =   { , ( ), ( ), ( ) / },
N N N

N F F F
F a a a a Xa be a NS for an arbitrary set X s.t. 

+=   → [0,1].
N

X XF R  Let   and ◇  are continuous TN and continuous TC, respectively. The four tuples 

 = ( ), , ,
N

X F ◇ is said to be a NMS, when the following conditions satisfied for all , , ,a b c X  

(i)   ,,0 ( 1, )
NF

a b   ,,0 ( 1, )
NF

a b   ,,0 ( 1, )
NF

a b    +  ,R  

(ii)      + + , , ,,0 ( ) (, , ,( ) ) 3
N N NF F F

a b a b a b     (for  + ),R  

(iii)   =( ) 1, ,
NF

a b                                                       (for   0) , iff =a b , 

(iv)   = ,( ) ( ), , ,
N NF F

a b b a                                      (for   0)  

(v)     +  ( ) ( ,) ( ), , , , ,
N N NF F F

a c a b b c            (for   , 0),  

(vi)   →( ) : [0, ) [0 1, ]. ,,
NF

a b  is continuous,   

(vii) 



→

=lim ( ) 1, ,
NF

a b                                                  (    0),  

(viii)   =( ) 0, ,
NF

a b
                                                       

(for   0) , iff =a b , 

(ix)   = ,( ) ( ), , ,
N NF F

a b b a                                        (for   0)  

(x)      +( ) ( ) ( ), , , , , ,
N N NF F F

a b b c a c◇             (for   , 0),  

(xi)   →( ) : [0, ) [0 1, ]. ,,
NF

a b  is continuous,  

(xii) 



→

=lim ( ) 0, ,
NF

a b                                                   (    0),  

(xiii)   =( ) 0, ,
NF

a b
                                                       

(for   0) , iff =a b , 

(xiv)   = ,( ) ( ), , ,
N NF F

a b b a                                         (for   0)  

(xv)      +( ) ( ) ( ), , , , , ,
N N NF F F

a b b c a c◇              (for   , 0),  

(xvi)   →( ) : [0, ) [0 1, ]. ,,
NF

a b  is continuous, 

(xvii) 



→

=lim ( ) 0, ,
NF

a b                                                     (    0),  

(xviii) If    0, then   =( ) 0,, ,
NF

a b   =( ) 1,, ,
NF

a b   =( ) 1,, ,
NF

a b    +  ,R  

Then the set   = ( , , )
N N N

N F F F
F is called NM on X. 



Neutrosophic Sets and Systems, Vol. 98, 2026                  225 

 

Integral Type Contractive Condition in -Chainable Neutrosophic Metric Space and Common Fixed Point Theorem  

 

 

The function  ( ), ,
NF

a b denotes the degree of nearness, ( ), ,
NF

a b denotes the degree of neutralness and 

 ( ), ,
NF

a b  denotes the degree of non-nearness between ,a b with respect to  . 

Definition 2.9 [22].  Let   be a NMS,    0 1,   0 and  .a X  The set 

       =   −  ( , ,  ) { : ( ) 1 ,   ( ) ,   ( ) }, , , , , ,
N N NF F F

D a b a b aa b X b  is said to be the open ball (center a  

and radius  with respect to  ). 

Lemma 2.1 [22]. Every open ball  ( , ,  )D a  is open set. 

Definition 2.10 [22].  Let { }
n

a  be a sequence in  = ( ),, , ,
N

FX ◇  then the sequence converges to a point 

a X iff for a given   (0,1),   0  there exists 
0

n N  s.t. for all 
0

n n   

or  lim

or  lim

or  lim

   

  



 

  

→

→

→

  − =
 
  =
 
  =
 

, , ,( ) 1 ,      ( ) 1

  ( )       (

,

) 0

( )       ( ) 0

,

, , , ,

, , ,

N N

N N

N N

n

n

n mF F

n mF F

n mF Fn

a b a a

a b a a

a b a a

  as  →                                      (1) 

Definition 2.11 [22].  Let  = ( ),, , ,
N

FX ◇  be a NMS. A sequence { }
n

a  in X is called a Cauchy sequence 

(CS) if for each   0,   0  there exists 
0

n N  s.t.   −( ) 1 , , ,
N

n mF
a b   ( ) , , ,

N
n mF

a b and 

  ( ) , , ,
N

n mF
a b  for all 

0
, .n m n  A NMS   is called complete if every CS is a convergent sequence. 

Lemma 2.2. Let { }
n

a  be a sequence in  = ( ),, , ,
N

FX ◇  with (vii, xii, xviii). If there is a number q  where 

(0,1)q s.t.            

 

 

 



 

 

+ + +

+ + +

+ + +

 
 
 
 
 
 

1 2 1

1 2 1

1 2 1

( ) ( ),

( ) ( ),

( )

, , , ,

, , , ,

, , , ,( )

N N

N N

N N

n n n nF F

n n n nF F

n n n nF F

a a q a a

a a q a a

a a q a a

 for all   0  and = 0,1,2.......,n                                (2) 

then { }
n

a  is a CS in X. 

Proof:  Let p be any positive integer, then by repeated application of (v, x, xv) and in view of (2), we have  

                1 1
, , ,( ) ( ) ( ), 2 , , 2

N N N
n n p n n n n pF F F

a a a a a a    
+ + + +

   

                                         2 2

0 1 1 2 2
( ) ( ) ( ),, , 2 , , 2 , 2

N N N

n

n n n n pF F F
a a q a a a a    

+ + + +
    

                                         2 1 3 2 3

0 1 1 2 2 3 3
( ) ( ) ( ) ( )2, , 2 , , , , 2 , , 2

N N N N

n n n

n n pF F F F
a a q a a q a a q a a     + +

+ +
   

 
Continuing this procedure, we obtain                      

  12 1 3 2

0 1 1 2 2 3 1
( ) ( ) ( ) ( )  ...., (, , , , 2 , 2 , , )2 , , 2

N N N N N

p n pn n n

n n p p n pF F F F F
a a a a q a a q a a q a a q      + −+ +

+ − +
      

since * is the  continuous TN and   →( ) : [0, ) [0 1, ]. ,,
NF

a b  is continuous, letting lim
→n  we have 

                                    
lim 

+→
     =( ) 1 1 1 ........ 1 1., ,

N
n n pFn

a a                                                                         (I) 

similarly
  1 1

, , ,( ) ( ) ( ), 2 , , 2
N N N

n n p n n n n pF F F
a a a a a a    

+ + + +
 ◇  

                                              
2 2

0 1 1 2 2
( ) ( ) ( ),, , 2 , , 2 , 2

N N N

n

n n n n pF F F
a a q a a a a    

+ + + +
 ◇ ◇  

                                              
2 1 3 2 3

0 1 1 2 2 3 3
( ) ( ) ( ) ( )2, , 2 , , , , 2 , , 2

N N N N

n n n

n n pF F F F
a a q a a q a a q a a     + +

+ +
 ◇ ◇ ◇

 
Continuing this procedure, we obtain 
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12 1 3 2

0 1 1 2 2 3 1
( ) ( ) ( ) ( ) ....., (, , , , 2 , 2 , , )2 , , 2

N N N N N

p n pn n n

n n p p n pF F F F F
a a a a q a a q a a q a a q        + −+ +

+ − +
 ◇ ◇ ◇ ◇  

Since ◇  is continuous TC and   →( ) : [0, ) [0 1, ]. ,,
NF

a b  is continuous, letting lim
→n

 we have 

                                         
lim  

+→
 =( ) 0 0 0 ....... 0 0., ,

N
n n pn F

a a ◇ ◇ ◇ ◇                                                              (II) 

and  
   1 1

, , ,( ) ( ) ( ), 2 , , 2
N N N

n n p n n n n pF F F
a a a a a a    

+ + + +
 ◇  

                                     2 2

0 1 1 2 2
( ) ( ) ( ),, , 2 , , 2 , 2

N N N

n

n n n n pF F F
a a q a a a a    

+ + + +
 ◇ ◇  

                                     2 1 3 2 3

0 1 1 2 2 3 3
( ) ( ) ( ) ( )2, , 2 , , , , 2 , , 2

N N N N

n n n

n n pF F F F
a a q a a q a a q a a     + +

+ +
 ◇ ◇ ◇

 
Continuing this procedure, we obtain  

12 1 3 2

0 1 1 2 2 3 1
( ) ( ) ( ) ( ) .... ( ), , , , 2 , , 2 , , 2 , , 2

N N N N N

p n pn n n

n n p p n pF F F F F
a a a a q a a q a a q a a q         + −+ +

+ − +
 ◇ ◇ ◇ ◇  

Since ◇  is CTC and   →( ) : [0, ) [0 1, ]. ,,
NF

a b  is continuous, letting lim
→n

 we have 

                                         
lim  

+→
 =( ) 0 0 0 ....... 0 0., ,

N
n n pn F

a a ◇ ◇ ◇ ◇                                                            (III) 

From (I), (II) and (III) shows that  n
a is a CS and thus the lemma is proved. 

Lemma 2.3: If for all , ,a b X    0 and for a number   (0,1)q  in NMS  ,, , ,( )
N

FX ◇  then   

                                                        
 

 





 

 

 





 
 
 
 
 
 

( ) (

,

),

( ) ( ),

( ) ( )

, , , ,

, , , ,

, , ,

N N

N N

N N

F F

F F

F F

a b q a b

a b q a b

a b q a b

     .a b=  

Proof: In view of conditions (v, x, xv), we have 

  

  

  

  

 

  

  
 
  
 
  
 

2

2

2

,( ) ( ) ( ),

( ) ( ) ( ),

( )

, , , , ,

, , , , , ,

, , ,( ) ( ), , ,

N N N

N N N

N N N

F F F

F F F

F F F

a b a b q a b q

a b a b q a b q

a b a b q a b q
 

Proceeding in the same way, we obtain, for = 1,2,3........n
  













 



 

 
 
 
 
 
 

( ) ( ),

( ) ( ), .

(

, , , ,

,

( ) )

, , ,

, , , ,

N N

N N

N N

n

F F

n

F F

n

F F

a b a b q

a b a b q

a b a b q

 
  
 

By noting   









 

 →
 
 →
 
 →
 

( ) 1,

( ) 0,

( ) 0

, ,

, ,

, ,

N

N

N

n

F

n

F

n

F

a b q

a b q

a b q

 as →.n  It follows that  









 

 =
 
 =
 
 =
 

( ) 1,

( ) 0

,

,,

( )

,

,

, , 0

N

N

N

F

F

F

a b

a b

a b

 
 
for all   0.  Therefore by 

(iii), (viii) and (xiii), = .a b  

3. Neutrosophic Contractive Mapping (NCM) 

The following definitions and results are given: 

Definition 3.1. Let  = ( ), , ,
N

X F ◇  be the NMS. The mapping →:f X X  is called NC if there exists 

 (0,1) s.t.  
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( )
( )
( )

f f

f f

f f

 

 

  

  

   

 
 
 
 
 
 







  ), ( ), ) , ,

), ( ), ) , ,

), ( ), ) ,

  ( ( ( )

( ( ( )

( ( ( , )

N N

N N

N N

F F

F F

F F

a b a b

a b a b

a b a b  

for each ,a b X   and   0.   

Here   is said to be contractive constant of f and  0 1.  

Definition 3.2. Let  = ( ), , ,
N

X F ◇  be the NMS and let →:f X X  is a NC mapping. There exists c X

s.t.  =( )f c c , then c is called neutrosophic fixed point (NFP) of  f.   

Proposition 3.1. Suppose  f  is a NC.  Then nf is also a NC. Furthermore if k  is constant for f , then nk  is 

constant for nf .  

Proposition3.2. Suppose  f  is a NC and a X  . Then    [ ( , , )] ( , , )f D a D a  for large enough value of  .  

Proposition 3.3. The inclusion     [ ( , , )] ( ( ), , )n nf D a D f a  is hold for all n, where    =  .n  

 

Lemma 3.1: Let ( ), , ,
N

FX ◇ be a NMS and { }
n

b be a sequence in X. There exists a number q X   s.t.  

         

 

 

 



 

 

+ + +

+ + +

+ + +

 
 
 
 
 
 

2 1 1

2 1 1

2 1 1

( ) ( )

( ) ( )

( )

, , , , ,

, , , , ,

, , , ,( )

N N

N N

N N

n n n nF F

n n n nF F

n n n nF F

b b q b b

b b q b b

b b q b b

for all and   =0, 1,2,3......    n , then { }
n

b is a Cauchy sequence in X. 

Definition 3.3. Let us choose two NMS 
1

( , ), ,
N

FX ◇  and 
2

( ., , , )
N

Y F ◇ Let 
1
 the uniformly generated by 

 =( 1,2).
i

i  A mapping →:f X Y  is uniformly continuous with respect to 
1
 and 

2
 iff for a given 

  
2 2

(0,1)       0,and  there exists   
1 1

(0,1)       0,and s.t.  

   implies   

   implies   

   implies   

   

   

 

 







  

  −  −
 
  
 
   
 

1 2

1 2

1 2

11 2

1 2

1

2

2

2

1

1 2

, , , ,( ) 1 ( ) 1 , 

  ( )  

,

,(, ) ,

(

, ,

, , ) ),(

N N

N N

N N

F F

F F

F F

a b a b

a b a b

a b a b
  

for each , .a b X   

Definition 3.4[39]:  Let  = ( ), , ,
N

X F ◇  be a complete NMS and   0 . A finite sequence 

= =
0 1 2
, , .....

n
a a a a a b  is called chainable −  from a to b if  

 









  −
 
 
 
 
 

, ,

, ,

,

( ) 1 , 

  ( ) ,

( ) ,,

N

N

N

F

F

F

a b

a b

a b
 
for all   0 and = 1,2,3... .i n  

A NMS = ( ), , ,
N

X F ◇  is called chainable − if for ,a b X , there exists a chain −  from a to b .  

4. Main Result 

For the proof of main result, the following definitions for compatibility [13] and weak compatibility are 

necessary. 
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Definition 4.1: Two self-mappings A and S of a NMS ( ), , ,
N

FX ◇  are called compatible if  

lim

lim

lim













→

→

→

 =
 
 =
 
 =
 

,SA , 1,

,SA , 0,

,SA ,

(AS )

(AS )

(AS ) 0,

N

N

N

n nF

n nF

n

n nF

n

n

a a

a a

a a

 whenever { }
n

a is a sequence in X s.t.  

lim
→

= =S ,A
n n n

a a a  for some a in X. 

Definition 4.2: Two self-mappings A and S of a NMS ( ), , ,
N

FX ◇  are called weak commuting if  







 





 

 

 
 
 
 
 










(AS ) (A )

(AS ) (A

,

)

(AS

,SA , ,S , ,

,SA , ,S , ,

),SA , ,S ,) (A

N N

N N

N N

F F

F F

F F

a a a a

a a a a

a a a a

  for all a in X and   0.  

Definition 4.3.[27]: Two self-mappings A and S of a NMS ( ), , ,
N

FX ◇  are called point wise R-weakly 

commuting if , R 0  , s.t.  

R

R

R

 

 

 



 

 

 
 
 
 
 








,SA , ,S , ,

,SA , ,S , ,

,SA , ,

(AS ) (A )

(AS ) (A )

( S(AS ) A ), ,

N N

N N

N N

F F

F F

F F

a a a a

a a a a

a a a a

  for all a in X and   0.  

Definition 4.4: Two self-mappings A and S of a NMS ( ), , ,
N

FX ◇  are called reciprocal continuous on  X if  

lim
→

=AS A
nn

a a  and  lim
→

=SA S
nn

a a  whenever { }
n

a is a sequence in X s.t.  lim lim
→ →

= =SA
n nn n

a a a  

for some a in X. 

Lemma 4.1:   Let  + +→: R R be a left continuous function s.t.   ( )  for every   0 , then

lim  
→

=( ) 1,
n

n  where  n  denotes the  n-times repeated composition of   with itself.  

Theorem 4.1:  Let S and T be two self-continuous mappings of a complete chainable −  NMS 
( ), , ,

N
FX ◇  

with  t t t  and −  −(1 ) 1 ) (1 )t t t◇( - , [0,1].t   Let A and B be two self-mappings of X satisfying the 

following conditions:  

(i) ( ) ( ) A X S X  and    ( ) ( )B X A X   

(ii) for all  , , 0a b X  and ( ) 0,1k  , : [0,1] [0,1], →  =(0) 0,  and  ( )s s  (a left continuous function) 

                                      , 0s   s.t. 

( )
( )
( )

k

k

k



 



 





 

 

      

      

      

  
 
 
 
 

 
 

 

 

 

,B , , ,

,B , , ,

(A ) ( )

0 0

(A ) ( )

0

( ,B , ,

0

A ) ( ),

0 0

( ) ( )

( ) ( )

( ) ( )

F FN N

F FN N

F FN N

a b a b

a b a b

a b a b

d d

d d

d d

                                                        
 

where   + +→( ) : R R  is a Lebesgue integrable mapping which is summable, non-negative s.t.                         


   00 ( ) 1d , for all   0  and   
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  


 

  


  


 

  


  

 
 =
  

 
 =
  

(S ), (S ), (T ),
( )

min{ ,A , ,T , ,B ,
, ,

max{ ,A , ,B ,

m )in{ ,A , ,T , ,B ,
,

T

,
max{ ,A ,

( ), (S )}}

(S ), (S ), (T ,
( )

( },B ,T ), (S ) }

N N N

N

N N

N N N

N

N N

F F F

F

F F

F F F

F

F F

a a a b b b
a b r

b a a b

a a a b b b
a b r

b a a b

  


 


  

 
 
 
 
 
 
 
 

  
 = 

    

(S ), (S ), (T ),
( )

(T ), ({

min{ ,A , ,T , ,B ,
, ,

max ,A ,S )}}, B ,
N N N

N

N N

F F F

F

F F

a a a b b b
a b r

b a a b

                            (3)

 

where  →: [0,1] [0,1],r  is continuous function s.t. 
     

    

, [0,1)
( )

1, 1.  

a if a
r a

if a

 
= 

=
,  then the continuity of one of the 

mapping in compatible pair }  o{ r A,S} {B,T  implies their reciprocal continuity, and the unique CFP of 

T aA n,S B d  , . 

Proof:   Let 
0

n X  be an arbitrary point of X. From (i) we can construct a sequence { }
n

b  in X as follows: 

A S
+

= =
2 2 2 1

,
n n n

b a a
  

B T
+ + +
= =

2 1 2 1 2 2
,

n n n
b a a

    for all = 1,2,3...... n  

We define 

 



 





 

 

+

+

+

 =
 
 =
 
 =
 

2 2 2 1

2 2 2 1

2 2 2 1

( ) , , ),

( ) ,( , ),

(

(

)

) (

) (

( ) ( , , )

N N

N N

N N

n n nF F

n n nF F

n n nF F

q b b q

q b b q

q b b q

 for 
+


2 2 1

.
n n

b b  Let us take  =
2

,
n

a a  
+

=
2 1n

b a   in (ii), 

           

( )
( )
( )

k

k

k

 

 

 

 

  

      

      

      

+ +

+ +

+ +

  
 
 
 
 

 
 

 

 

 

2 2 1 2 2 1

2 2 1 2 2 1

2 2 1 2 2 1

,B , , ,

,B , , ,

,B , , ,

)

(A ) ( )

0 0

(A ) (

0 0

(A ) ( )

0 0

( ) ( )

( ) ( )

( ) ( )

n n n nF FN N

n n n nF FN N

n n n nF FN N

a a a a

a a a a

a a a a

d d

d d

d d

                                                      (4) 

where    


  


  

 

  

 

  

+ + +

+

+ +

− − +

 
 =
  



2 2 2 2 1 2 1 2 1

2 2 1

2 1 2 2 2 1

2 1 2 2 1 2 2 2 1

min{ ,A , ,T , ,B ,
, ,

max{ ,A , ,B ,

min{ , , , , , , max{

(S ), (S ), (T ),
( )

(T ), (S )}}

( ), ( ), ( ),

N N N

N

N N

N N N
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from (8), we have    
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and taking the limit as → n  and using lemma 2.3, we have 

( )
( )
( )

lim lim

lim lim

lim lim

 

 



 

 

 



      

      

      

→ →

→ →

→ →

  = 
 
  =
 
 

 = 
 

 

 

 

0

0

0

( ) ( )

0 0

( ) ( )

0 0

( )

)

) ( )

0 0

( ) ( )

( ) (

( ( )

( ) ( ) 1,

( ) ( ) 0,

( ) ( ) 0

nF FN N

nF FN N

nF FN N

n

n n

n

n n

n

n n

d d

d d

d d

  
                                      (10)   

which from (1) implies that 
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Thus from definitions 2.10, 2.11 and conditions (11), (13) and lemma 3.1 { }
n

b is a CS in X . Since X is complete 

so that z X→ { }
n

b and sub sequences A
2

,
n

a  B
+2 1

,
n

a  S
+2 1n

a and  T
+2 2

  ,
n

a of { }
n

b also converges to z. 

Thus                A →
2

,
n

a z B
+
→

2 1
,

n
a z S

+
→

2 1n
a z and T

+
→

2 2
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n
a z                                                                      (14)                                                                 

Again, since X is -chainable,   -chain from to
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+
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for all   =0  and   1,2,....... .i l ,    

Thus, we have                   
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For ,m n N ,  ,m n  we have        
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i.e.                               
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                                                     (17)                 

and so from definitions 2.10; 2.11 and conditions (15) and (17), { }
n

a is a CS in X . Since X is complete so that 

a X.→ { }
n

a

 

since { , }A S is reciprocally continuous, so that A and S are continuous. Thus 

                                                       a a,=
2n

A A
 

a a,
+
=

2 1n
S S                                                                                    (18) 

since { , }A S are compatible, so R  -weakly commuting mapping. Then  
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gives a a,=
2n

AS A   a a.
+
=

2 1n
SA S   Also  


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
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 which implies =A S .a a                              (19) 

From (14) , (18) and (19), =A S .z z  Since ) S( ),A(a a  ,u X   s.t. =A S .z u  then from (4) 
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where      
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from lemma 2.3, Az = Bu i.e. Az = Su = Tz.  Again let Az = Su = Bu = Tu.             

Since the pair  SA,  is point-wise R–weakly commuting mappings, so there exists R > 0 s.t.  
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i.e.   =AS SAz z  and = = = .A SAS SA SA z z z z   
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Similarly it can be for the pair  B,T  which implies u u u u.= = =BB BT TB TT  For this in (4), we put A= ,a z   
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(23)          

from lemma  2.3, we have  = = .A BA Az u z  Thus =A AAz z  and  = = ,A AA SAz z z   which shows that 

A z  is common fixed point of A and S. Also  = = = .A TB Sz u u z  Hence A z  is common fixed point of A, 

B, S and T. 

Now again suppose that =A z z  is a common fixed point of A, B, S and T. For this from (4), we have 
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 for all   0,  i.e. from lemma 2.3, =A .z z  Thus z is a 

common fixed point of A, B, S and T. For uniqueness of z let w z  be another common fixed point of  A, 

B, S and T, then from (4), we have                      
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which from lemma 2.3, implies 
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 i.e. =z w , for all   0.  Thus z is a unique 

common fixed point of A, B, S and T. 

Corollary 4.1:  Let {A,S}  and  A,T{ }  be point wise R–weakly commuting pairs of self mappings of a 

complete chainable −  NMS 
( ), , ,

N
FX ◇  with  t t t  and −  −(1 ) 1 ) (1 )t t t◇( -  for all [0,1]t  satisfying 

the following conditions:  

(i)’         ( ) ( )A X S X    and    ( ) ( )A X T X   
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(ii)’    for all  , , 0a b X  and ( ) 0,1q  there exists a left continuous function  →: [0,1] [0,1], =(0) 0,  and 

 ( )s s  for all  0s  s.t.  
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where   + +→( ) : R R  is a Lebesgue 

integrable mapping which is summable, non-negative s.t. 


   00 ( ) 1d , for all    0.  
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where  →: [0,1] [0,1],r  is continuous function s.t. ( )r a a   and =( ) 1r a  for = 1,a  [0,1).a  Then the 

continuity of one of the mapping in compatible pair }  o{ r A,S} {A,T   on chainable −  NMS implies the 

unique common fixed point of T an,S d  A . 

Proof:   If we put S = T, in theorem 4.1, then we get proof of corollary 4.1, easily. 
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      Lebesgue integrable mapping which is summable, non-negative s.t.  
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where  →: [0,1] [0,1],r  is continuous function s.t. ( )r a a   and =( ) 1r a  for = 1,a  [0,1).a  Then the 

continuity of one of the mapping in compatible pair {A,T}   on chainable −  NMS implies the unique 

common fixed point of . and  A T  

Proof:   If we put B = A  and S = T  in theorem 4.1, we get the proof of corollary 4.2. 

Theorem 4.2: Let S and T be two self-continuous mappings of a complete chainable −  NMS  
( ), , ,

N
FX ◇  

with  t t t  and −  −(1 ) 1 ) (1 )t t t◇( -  for all [0,1].t  Let A and B be two self-mappings of X  satisfying 

the following conditions:  
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(i)’’’          ( ) ( )A X S X    and    ( ) ( )A X T X   

(ii)’’’ for all  , , 0a b X  and ( ) 0,1q  there exists a left continuous function  →: [0,1] [0,1], =(0) 0,  

and  ( )s s  for all  0s  s.t. 

q

q

q

 

 



 



  



      

      

      

  
   

  
  

   
 

 
  

   
  

 

 

 

'

'

'

(A ) ( )

0 0

(A )

,A , , ,

,A , ,

0

( ,

,A , , ,

)

0 0

(A ) ( )

0

( ) ( ) ,

( ) ( ) ,

( ) ( )

F FN N

F FN N

F FN N

a b a b

a b a b

a b a b

d d

d d

d d

 
where 

  + +→( ) : R R  is a Lebesgue integrable mapping which is summable, non-negative s.t. 


   00 ( ) 1d , 

for all   0.  
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for all    + + +0 1.q l m n  Then A, B, S and T have a unique common fixed point. 

Proof:  Similar to theorem 4.1.  

Conclusion 

 

The newly defined infinite products establish the Banach contraction theorem for NMS. In this context, we 

introduce an integral-type contractive condition in a -chainable neutrosophic metric space and prove a 

common fixed point theorem for four weakly compatible mappings. Our findings extend and unify well-

known results in neutrosophic metric spaces, such as those presented by Kirisci and Simsek [28]. 

Furthermore, Kirisci et al. [21] discussed fixed point results within the framework of NMS.  
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