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1. Introduction

In 1965, Zadeh [37] introduced the fuzzy set (FS) as a set that is defined by a membership function, serving
as the first mathematical formalization of the concept. Although fundamental, the single membership grade
of an FS may not be adequate to capture the complete complexity of real-world uncertainty. Kramosil and
Michalek [18] introduced fuzzy metric spaces (FMS) that were subsequently refined by George and
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Veeramani [9] using continuous TC, building upon this concept. The concept on FMS is explored by Grabiec
[8] in 1988.

Atanassov [1, 2] introduced the intuitionistic fuzzy set (IFS) in 1986 to expand the expressive capability of
FS theory. Independent degrees of both belongingness and non-belongingness for each element are
incorporated into this framework to more effectively model uncertainty. The application of IFS theory
rapidly penetrated all domains that were impacted by FS, including metric spaces. By employing the TN
and TC structure of George and Veeramani, Park [24] extended the concept of FMS to intuitionistic fuzzy
metric spaces (IFMS) and subsequently investigated its fundamental topological properties. For more
results on IFS (see [23], [25]).

Heilpern [11] was the first to investigate fuzzy contraction mappings in FPT. Bose and Sahani [5] expanded
upon this work, while Alaca et al. [3] demonstrated FPTs in the context of IFMS. Mohamad [21] and a
multitude of other researchers [10, 12, 14, 19] have since made substantial contributions to the field of fixed
point results for both FMS and IFMS.

Smarandache [29] was the first to introduce the neutrosophic set (NS) in 1998, after recognizing that neither
FS nor IFS could entirely resolve issues involving contradictory or indeterminate information. NSs are
defined by three independent membership functions: truth (T), indeterminacy (I), and falsity (F) as a
generalization of crisp, fuzzy, and intuitionistic sets. Smarandache [30] observed that an NS is reduced to
an IFS when its indeterminacy membership grade I(x) is equivalent to the hesitancy degree h(x) of the IFS.
Kirisci et al. [15] contributed to the development of the fixed point theory in NMS by defining neutrosophic
contractive mappings and establishing corresponding FPTs.

Branciari's [4] integral version of the Banach contraction principle was a significant parallel development
in metric FPT. The results of Rhoades [26], Vijayaraju [32], and Djoudi, Aliouche [7] and Saini [28]
demonstrate that this seminal work inspired extensive research, resulting in the development of a variety
of CFPTs and FPTs for integral-type contractive conditions in diverse spaces.

Our contribution to this ongoing research is the definition of an integral-type contractive condition within
the framework of e-chainable NMS in this paper. We establish a CFPT for four weakly compatible
mappings [13]. Our findings are a significant extension and generalization of several well-known theorems
in NMS, such as those of Mohamad [22], Kirisci M. [17], Kirisci et al. [15], and Kirisci and Simsek [16].

2. Preliminaries

The following section presents fundamental definitions concerning fuzziness, intuitionistic fuzziness and
neutrosophic concepts.

Definition 2.1: A FS F is defined as a mapping F : X —[0,1], where X is a universe of discourse.

Definition 2.2. ([37]): For a non-empty set X, a FS Lis expressed as F={(a, 4 (a)) :a e X} where p.(a) is
the membership function that assigns to each element a € X a degree of membership in [0,1]. If the FS F is
both convex and normalized, then it is referred to as a fuzzy number (FN) on real linel .

Definition 2.3. ([1]): AnIFSF'in a non-empty set X is represented as F' = {<a, M (), vy (u)> ‘ae X} , where
# : X —[0,1] denotes the membership function and v, : X —[0,1] denotes the non-membership function
with condition p, +v, <1,VaeX. The hesitation or indeterminacy degree is given by

h(a)=1- 7 (a) —Va (a). AnIFS F!becomes intuitionistic fuzzy number (IFN), if

> AnIFN is a special type of subset of the U ,
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> AnIFN is said to be normal if 4 (4)=1 and v, (2)=0 foreach aeR,

» The membership function M (a) is considered convex, if for any a,,a, €R,y [0,1], we have

,Uﬁ, (7”1 + (1-7)&2 ) 2 min{,uﬁ, (%)I:u;-l (le )}

» The membership function My (a) is considered concave, if for any 4,,a, € R,y €[0,1], we have
,Uﬁ, (7/&1 + (1 - 7)az ) < max {,uﬁl (al )r /UISI (az )} .
> p(a) gy, is assumed to be upper semi continuous while v, is assumed as lower semi continuous,
> suppuy, (a) = cl({a € Fl;uﬁ, < 1})
AnTFS F' = {<x, My (X),V (x)> 1xe X} sit. u (a)and 1-v, (a) are IFNs, where (1-v,)(a)=1-v,(a) and
M (a)+ . (a) £1 is called an IFN.

Definition 2.4. ([29]): Let X be non-empty set and aeX. A NS F, is expressed as
Z:"N = {(u,,uﬁN (”)'VEN (u),a)éw (a)):ae X}, for each number ¢ in X and M, (a), Vi, (a) and o (a) belongs
170,1"[ where M, (a): X —>]07,1°[ represents the truth membership (TM), Vi, (a): X =]07,17[ represents the
indeterminacy membership (IM) and @ (a): X >]07,1"[ represents the falsity membership (FM) in ﬁN
respectively with condition "0 < e, (a) Vi (a)+ o (a)<3".

In 2010, Wang et.al [34, 35] and Deli & S uba [6] introduce the single valued neutrosophic numbers (SVNN)
which provides a fundamental for applying neutrosophic theory in practical settings. Later Ye [36],

introduced the notion of simplified NSs, characterized by three real-valued components within [0,1].
However the improved NSs’ operations may be impractical at certain times.

Definition 2.5. Let X be non-empty set and ae€0. A NS in 0 is represented as
ﬁN = {(a, Mz (a), Ve, (a), @ (a))y:ael }, for each numberaell, and y; (a), v; (a), @; (a) belongsto ]70,1°[
where y; (a): X —]07,1°[ represents the TM, v; (a): X —]07,1"[ represents the IM and w; (a): X —]07,1°[

represents the FM in F, respectively with condition 0< u: (a)+v; (a)+w; (a)<3.For continuous SVNS,

F, = I <'U?N (a), Vi, (a), o (a)>/a cael If Xis discrete then SVNS F, = zn:<yﬁN (a),v; (a), (a)>/a,. ta el.

v i=1

If NS has only one element then in simplified form ﬁN express as < e (a),v; (a), @ (a)> for eachaell.
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Figure 1: Neutrosophic set

Thus it is evident that NS extends the concept of IFSs within [0,1]. For all a e IEN , a NS ﬁN(V) contains the
NSE,(U), UcV)

inf(,uﬁw(u)(a)) < inf(,uﬁN(V)(a)) and sup(yﬁw(u)(a)) < sup(,uﬁN(V)(a))

inf(vﬁ‘w(u)(a)) >inf (VFN(V)(Q)) and sup(vﬁww)(a)) > sup(vFNw)(a))

inf(a)ﬁ‘w(u)(u)) > inf(a)ﬁN(V)(a)) and sup(a)ﬁi\v(u)(a)) > sup(a)ﬁN(V)(a))

Hy @)+ My ) (0) = H ) (@)-H (),
E,U)+F (V)= Ve @ +Ve o (@)= (@) (@),

D (@) + O ) (A) =@y () (@)@ (,)(7)

o E,(U) = <1—(1—,uﬁw(u)(a))a ,1—(1—v§\,(u)(a))a ,1—(1— a)ﬁN(u)(a))a > for o >0,

(E.) = < 1 @VE (@), 0% (u)(a)>, for & > 0.

Definition 2.6. A binary operation *:[0,1]x[0,1] —[0,1] is continuous TN if*”is satisfying:
1) * is commutative and associative,

(i1) * is continuous,

(iii) axl=aqa forall ae[0,1],

(v) a*b=c*d whenever a<c and b<d, Va,b,c,d [0,1].

Definition 2.7. Abinary operation <>:[0,1]x[0,1] —[0,1] is continuous TC if > is satisfying:
(i) <> is commutative and associative,

(ii) <> is continuous,

(iii) al0=a forall ac[0,1]

(iv) alOb=cd whenever a<c=b<d Va,cb,de[0,1].

From above definitions, we note that if we choose 0<g¢,&, <1 for ¢ >¢,, thend 0O<g,,¢g, <1 sit.

g *g,2¢, and g 2¢,O¢,. Further if we choose &, €(0,1),thend 5,5, €(0,1) st ¢ *5 >&; and
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g,Os, 26,

Remark 2.1 [23]. For I,m,n,p €[0,1], take * and < are continuous TN and TC, respectively
(i) If I>m, thenthereare n,p s.t. I*n>m and > mp.

(ii) There are s,m ss.t. m*m 21 and [>ss.

Example 2.1 [7]: Assume X = N. Define x*y=max{0,x+y-1}, Vx,y<[0,1]. Again let F be FS on

~ b, if a<b -
XxXx(0,0) is defined as F(a,b,t) ={Z§ l,f a>b , Va,be X, t>0. Then (X, F,*) is a FMS described as
a, if a>
li(a,b,t):;, where d(a, b)isaMSin X, Va,be X.
t+d(a,b)

Remark 2.2: Every FMS (X,ﬁ,*) is an IFS of the form (X,F,l—ﬁ, *,O)st. “#” a TN and ‘<’ a TC are
associated, i.e. a*b=1-(1-a)O(1-b), V a,beX.
Definition 2.8 ([22]). Let ﬁN ={a, uz (a),v; (a),@; (a))/aeX}be a NS for an arbitrary set X st.

IEN =XxXxR" —[0,1]. Let * and <> are continuous TN and continuous TC, respectively. The four tuples

3J= (X,ﬁN, *,(>) is said to be a NMS, when the following conditions satisfied for all a,b,c € X,

Then the set l:"N =( My Vi @ )is called NM on X.

(i) 0< M, (a,b,1)<1,0< Vi, (a,b,2)<1,0< o (a,b,2)<1, VAeR',
(ii) 0< M, (a,b,2) Vi (a,b,1)+ o (a,b,4)<3, (forAeR"),

(iii) M, (a,b,1)=1 (forA>0),iff a=b,
(iv) Mz, (a,b,1) = Mz, (b,a, 1) (for 1 >0)

(v) # (a0, A+m) = g (a,b,2)* i (b,c,1) (for 2,7 >0),

(vi) M, (a,b,.):[0,00) —>[0,1] is continuous,

(vii) %15)1;} M, (a,b,2)=1 VA>0),

(viii) Vi, (a,b,2)=0 (for A >0),iff a=b,
(ix) Vi, (a,b,1)= Ve, (b,a, 1) (for 4 >0)

(x) v; (a0, /1)<>v1fN b,c,m)= Vi (@, A+1) (for 4,17 > 0),

(xi) vﬁ; (a,b,.):[0,00) —>[0,1] is continuous,

(xii) lgg Vi, (a,b,4)=0 (VA>0),

(xiii) o (a,b,2)=0 (forA>0),iff a=0b,
(xiv) o (a,b, )= o (b,a, A) (for 1 >0)

(xv) o, (a, b, /1)<>w%\' b,c,n) = o, (a,c,A+1) (for 1,17 >0),

(xvi) o (a,b,.):[0,0) —>[0,1] is (‘:ontinuous,

(xvii) 111_r>r; o (a,b,2)=0 VA>0),

(xviii)) If 2<0,then M, (a,b,1)=0, Ve, (a,b,4)=1, o (a,b,2)=1, VAeR",
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The function ;. (a,b, A) denotes the degree of nearness, v; (a,b, 1) denotes the degree of neutralness and

®; (a,b,A) denotes the degree of non-nearness between a,b with respectto A .
.

Definition 2.9 [22]. Let I beaNMS, 0<&<1, 1 >0and ae X. The set
D(a,e,A)={beX: u; (a,b,A)>1-¢, vﬁv(a,b,ﬂ,) <g, a)ﬁv(a,b,/l) < ¢} is said to be the open ball (center 7

and radius ¢ with respect to A ).

Lemma 2.1 [22]. Every open ball D(a,&,1) is open set.

Definition 2.10 [22]. Let {a } be a sequence in I=(X,F,,*<), then the sequence converges to a point
a € X iff for a given & €(0,1), 1 >0 there exists n, e N s.t. for all n>n,

M, (a,b,A)>1-¢, or lim,Hw,uﬁw (a,a,,A)=1
| 1)=0 as 1> o 1)
A)=0

(a,a

m’

Vi, (a,b,)< ¢ or 11mervfN

(ﬂ" 4

m’

o (a,b,1)< ¢ or limn_ma)ﬁw
Definition 2.11 [22]. Let 3=(X,F,,*<), be a NMS. A sequence {a,} in X is called a Cauchy sequence
(CS) if for each &£>0,1>0 there exists n,eN st . (a,b, ,A)>1-¢, v, (a,b

7Ymr

A1) <&, and

@ (a,,b ,A)<e, forall n,m=n,. ANMS 3T is called complete if every CS is a convergent sequence.

Lemma 2.2. Let {a,} be a sequence in 3=(X, ﬁN,*,<>), with (vii, xii, xviii). If there is a number g4 where

ful:“N (arﬁ-l ’an+2 ’ qﬂ’) 2 luﬁ\, (an ’ an+1 ’ ﬂ“)/
q<(0,1)s.t. v (a A), | forall A>0 and n=0,1,2......., 2)

n+l7 n+1’

a,.5,94) <V (a,,a

a)ﬁN (un+1’ ayr ’qﬂ’) = wﬁN (an Y /1)

then{a } isa CSin X.

Proof: Let p be any positive integer, then by repeated application of (v, x, xv) and in view of (2), we have
My (a8, 2) 2 1 (8,,8,.0,2/2)* 1t (@,.,4,,,,4/2)
>ty (00,0, 220"V % g (@08, 2°) % 1 (85,8, 2/2)
> 1y (8,8, 220"V % 1y (3,0, /24" ) 5 g (ay,85, 422" ) % i (a,,5,8,,,,2/2°)
Continuing this procedure, we obtain
H (@0, 2) > (8,0, 229" )% g (ay,8,, 222" ) % 41y (8,85, 2/2°0" %) % ok gy (a0, 220"
since * is the continuous TN and H;, (a,b,.):[0,50) >[0,1] is continuous, letting lim _ we have
m,  u; (a,,4,,,2)21x1x1% .. *1=1. (D
similarly v; (a,,4,,,,4) <v; (a,a,.,A 2)Ov; (an+1,a”+p,/1/ 2)
<v; (a,,4, ,/1/2q")<>vﬁN (a,,, ,El”+2,/1/22)<>1/fN (an+2,an+p,/1/22)
<v; (a4, ,/1/21]")<>vﬁN (a, ,az,ﬂ/qu"” )<>VfN (a,,a,, 2/23q"+2 )<>va (an+3,un+p,/1/23)

Continuing this procedure, we obtain
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Since <> is continuous TC and Ve, (a,b,.):[0,0) —[0,1] is continuous, letting lim  we have
lim, v, (a,,a,.,,2) <0050 ....00 =0, (In)
A) S (@,,4,,, A/ 2)Ow; (8,,,,8,,,, 2/2)
<, (a,,8,4/20)Ow; (@,,,,8,,,2/2)O0; (a,,,4,,,,4/2°)
<w; (4,0, A/2q" O, (a,,a,, 2/2%q" YO, (a,,a,, 2/2%q"? YO, (a5, 2/2%)
Continuing this procedure, we obtain
o (a,,a,,,2) <o (4,4, ,/1/2q")<>a)ﬁN (a, ,az,/1/22 q””)(}a)ﬁN (112,{13,1/2311”*2)<>....<>a)ﬁN @, ,an+p,/1/2”q”””1)

Since <> is CTC and w; (a,b,.):[0,00) =[0,1] is continuous, letting lim we have

and o (a,a

n+p

n—>0

limn%a)ﬁ\y (a,a,.,A)< 005008.......0 =0. (1)
From (I), (II) and (III) shows that {un} is a CS and thus the lemma is proved.

Lemma 2.3: If for all a,b e X, A >0and for anumber g<(0,1) in NMS (X, fN ,*,), then
,qu (El, b, ‘M) 2 /qu (a, b, /I)r

£, (a,b,g4) < Vi, (a,b, 1), = a=bh

o (a,b,g) < o (a,b, 1)

v

# (a,0,2) 2 p; (a,b,2/q)* ;. (a,b,2/47),
Proof: In view of conditions (v, x, xv), we have | v. (a,b,A)<v; (a,b,1/q)* Vi (a, b,ﬂ/qz),
o (a,b,2) < w; (a,b,4/q)* @, (a,b,A/7)
,uﬁN (ﬂ,b,i) > yﬁw (ﬂ,b,ﬁ/qn ),
Proceeding in the same way, we obtain, for n=1,2,3........ Vi (a,b,2)<v; (a,b, ﬂ/ q"),

@, (a,b,2) < w; (a,b, 219"

#y (@b, 2[q") >1, 1 (a,b,2)=1,
By noting | v; (a,b, l/q") —0, | as n— . It follows that Vi (a,b,1)=0, | for all 2>0. Therefore by
@, (a,b,2/q") >0 ; (a,b,2)=0

(iii), (viii) and (xiii), a ="b.
3. Neutrosophic Contractive Mapping (NCM)

The following definitions and results are given:

Definition 3.1. Let 3I=(X,F,,*<) be the NMS. The mapping f:X — X is called NC if there exists
0€(0,1)s.t.
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sy (f(a), f(0),2) 2 8 (1 (a,b,2))
ve, (f(a), /(). A) < 5(‘/15“, (a, b,ﬂ)) for each g,be X and 2>0.
o, (f(a), /(0),2) < (o (a,b,2)

Here & is said to be contractive constant of fand 0<¢6 <1.

Definition 3.2. Let 3=(X,F,,#<) be the NMS and let f:X — X is a NC mapping. There exists c e X
s.t. f(c)=c, then cis called neutrosophic fixed point (NFP) of f.

Proposition 3.1. Suppose f isa NC. Then f"is also a NC. Furthermore if k is constant for f, then k" is

constant for f".

Proposition3.2. Suppose f isaNCand ae X . Then f[D(a,¢,A)] < D(a,s,4) for large enough value of ¢.

Proposition 3.3. The inclusion f"[D(a,&,4)] < D(f"(a),&",A) is hold for all n, where &" =6" xe.

Lemma 3.1: Let (X, ﬁN,*,<>) be a NMS and {b, } be a sequence in X. There exists a number ge X s.t.

lul:"N (bn+2’ bn+1 ’ql) 2 lul:'N (bn+1 ’bm 4 ﬂ')’
Vi, (b

n+27

b,,..94) < u;: (b,.,,b,, ), forall A>0, andn=1,2,3......, then {b } is a Cauchy sequence in X.

a)l:"N (bn+2 4 an 4 qﬂ’) < a)ﬁN (b,H] /bn 7 l)

Definition 3.3. Let us choose two NMS (X, IENT ,*,) and (Y, ﬁNz ,#,).Let A, the uniformly generated by
3,(i=12). A mapping f:X —Y is uniformly continuous with respect to A, and A, iff for a given
&, €(0,1) and A, >0, there exists & €(0,1) and A, >0,s.t.
My, (a,b,A,)>1-¢, implies M (a,b,2,)>1-¢,,
IV?NI (a,b,4) <& implies Vfwz (a,b,4,)<¢,, for each a,b e X.

@ (a,b,4) <& implies o (a,b,4,)<¢,

Definition 3.4[39]: Let 3=(X, IEN, *<{>) be a complete NMS and &>0. A finite sequence
Uz (a,b,A)>1-¢,
a=a,,a,,a,...a, =b is called &—chainable from a to b if Vi (a,b,l)<e, |forall A>0andi=1,2,3..n

o (a,b, )< e,
ANMS3 = (X,IEN,*,O) is called ¢ —chainable if for a,b € X, there exists a & —chain fromatob.

4. Main Result

For the proof of main result, the following definitions for compatibility [13] and weak compatibility are
necessary.
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Definition 4.1: Two self-mappings A and S of a NMS (X, IEN ,%,) are called compatible if
(ASa ,SAa ,A)=1,

(ASa,,SAa, ,A)=0, | whenever {a }is a sequence in X s.t.

11mn~>ooﬂ}:“N n’

llm’l —>00 VFN

lim, ,,o; (ASa,,SAa,,2)=0,

n—o

lim  Aa =Sa, =a, for someain X.

>

Definition 4.2: Two self-mappings A and S of a NMS (X, I:“N ,#,$>) are called weak commuting if
Hy, (ASa,SAa, 1) > My (Aa,Sa, ),
vﬁ; (ASa,SAa, 1)< Vﬁ\: (Aa,Sa, 1), | forallain X and 4> 0.
a)FM (ASa,SAa, )< a)‘ﬁN (Aa,Sa,A),

Definition 4.3.[27]: Two self-mappings A and S of a NMS (X, F,,*<) are called point wise R-weakly
commuting if 3,R >0, s.t.

Hy (ASa,SAa,A) 2 My, (Aa,Sa, A/R),

vﬁ; (ASa,SAa, 1)< vﬁw‘ (Aa,Sa,2/R), | forallain X and 2 >0.

a)FN (ASa,SAa,A)< w}N (Aa,Sa,2/R),

Definition 4.4: Two self-mappings A and S of a NMS (X, F,,*<) are called reciprocal continuous on X if
lim ASa =Aa and lim SAa =Sa whenever {a }isasequencein Xs.t. lim _ _Aa =lim _  Sa =a

n—

for some a in X.

Lemma 4.1: Let w:R" > R'be a left continuous function s.t. w(1)>A for every A1>0, then

lim __w"(1)=1, where y" denotes the n-times repeated composition of y with itself.

n—w

Theorem 4.1: Let S and T be two self-continuous mappings of a complete & —chainable NMS (X, IEN,*,<>)
with t*t>+ and (1-t)O(1-)<(1-t), Vte[0,1]. Let A and B be two self-mappings of X satisfying the
following conditions:

(i) A(X)cS(X) and B(X)c A(X)

(ii) forall a,beX,A1>0 and ke (0,1) 3, :[0,1]1—1[0,1], w(0)=0, and w(s) >s (aleft continuous function)

J.HF” (Aa,Bb,kA

' 4(6)d6 > l//(J‘:f‘”(”'“)qﬁ(H)dﬁ)
J_o,,ﬁN (Aa,Bb,k2) H0)d0 < !//(J.OV’EN(”,I]’A)¢(0)d9)

J-a)ﬁN (Aa,Bb,kA) o,

s <y ([ godo)

0

V,s>0 s.t.

0

where ¢(6):R" —>R" is a Lebesgue integrable mapping which is summable, non-negative s.t.

0< j;qﬁ(e)da <1, forall £>0 and
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max{,uﬁ (Tb,Aa,/i),,uf (Sa,Bb, 1)}}
min{v; (Sa Aa,A),v; (Sa,Tb,A),v; (Tb,Bb, 1),

Vi, (.0, 4) [ max{vﬁN(Tb,Au,/l),vﬁw(Su,Bb,ﬁ)}}}

[min{a)ﬁN (Sa,Aa,2),@; (Sa,Tb,2), a)F (T b,Bb,/i),] 3)
max{a)ﬁN (Tb,Aa, ), o (Sa,Bb, 1)}}

min{y, (Sa,Aa, )1, (Sa,Th,A), 1. (Tb,Bb, 1),
@b =r| " N y

- (a,b,A)=r

>a,if a€l0,1)
1, if a=1.
mapping in compatible pair {A,S} or {B,T} implies their reciprocal continuity, and the unique CFP of
A,S,Band T.

where r:[0,1] —[0,1], is continuous function s.t. r(a) ={ , then the continuity of one of the

Proof: Let 1, € X be an arbitrary point of X. From (i) we can construct a sequence {b,} in X as follows:

b,, =Aa, =Sa b, . =Ba,  =Ta forall n=1,2,3......

(/uﬁN )Zn(qﬂ) = /uﬁN (bZn’b2n+] lqﬁ“)/
We define | (v; ),,(q94) =V; (b,,,b,,,,,94), | for b, #b, .. Letustake a=a,, b=a

(@ )20 (12) = @ (By,b3,.1,02)

IO, o Bnea ki) 4 010 ( Iﬂm Crtoar ) 4 o0 9)
#oxo <y ([ go)ao) )
#oxo <y [ godo)

mln{fuﬁw (S uZn’AaZn’/l) 'uF (S aZn’ 2n+1’ )’ lul:"N (T a2n+1’B 2n+1’ﬂ')
max{/ul:"N (T a2n+] 4 2;1’1)’ qu,\/ (S aZn’BabH—l ’ﬂ')}}

2n+17/ 2n+1 2n+1 2n+2/

e 1N (1),

J‘VﬁN (Aay, Bay,, k2)
0

I(”i‘.\, (Aay, Bay,. k2)
0

H, (ay,/8,,1,4) =71

where 2r [min{,uFN (b2n—l 4 b2n ’ﬂ')’ IUFN (bZn—l’ bZn 4 l)’ :U[:N (bZn ’b2n+1’ﬂ')’ max{,uFN (bZn 4 b2n ’ﬂ')’ lul:"‘,\, (bZn—l’ b2n+1 4 l)}}:|
2 r[min{ﬂﬁN (b2n—l’b2n ’ﬂ’)’ ﬂfN (bZn—l’b2n’ﬂ’)’ lufw (b2n’b2n+1’ 2’)’ max{lqu (b2n—l’b2n’l) * /uﬁN (bZn’b2n+1’l)}}:|
2r |:lqu (bZn—l ’bZn ’ ﬂ’)’ lqu (bZn ’ b2n+1 ’ ﬂ’)]

min{vf“,\, (Saz 211 ﬂ/) V (Sa ZnJrl’ﬂ')’V~ (Ta2n+1’ 2n+1’/1)
AV, Say,, Bay, ., Dl

<

Ey (ay,/85,,0,4) =T

maX{VﬁN (T a2n+l’ Zn’

IN

[ minv, (0, 1 by AVe (b by DV (B by, A maxtvy (b, by, 25 (B 4,0y O

2n-1 ’ 2n+17/

< r[min{vﬁw (bZn 17/ Zn’l) V ( 2n-17 Zn’ﬂ') V (b2n’ 2n+1’ﬂ')’max{vﬁN (bZn 17 Zn’ﬂ')*v (bZIl’ n+1’ﬂ’)}}i|
|:V13 (banl’bZn ’/1)’ VI:‘N (bZn’ 2n+17 /1)]

N
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( l) min{a)ﬁN (S ﬂ2n,A02n,/1), a)?N (Sa2n’ 2n+1/’1) w (T a2n+1’ 2n+1’l)

w: (4, ,a 7 =r

By N 2n? T2n+1 maX{COI:_ (Ta2n+l’ a,,, l) Wy (SaZn 2rz+1’ﬂ')}}
Sr[mm{a) (by, 1,05, A), @ (bZn by A), 0 (bZn, 2m,/l),max{a) (b, b, )a) (b2n 1 2n+1r/1)}}:|

< rl:min{w}:“,(bhi 17 Zn’/l) CO (b2n 17 Zn’/l) a) (bZn’ 211+1’2') max{a) (bZn 17 Zn’ﬂ’)*w (bZn’ 2n+1’/1)}}:|
= rl:a)fN (b2n 1’ ﬂ')’ CU (b2n 2n+1’/1):|

Thus from (3), we have

0

J-wg\, R0 Va0 > W(J-Or[wgw Yt (A, >2,,u>]¢(0)d9j,

[ poydo <y ( [ B }¢(9)d0j )

I[(rap\ o1 (W )20 (2] KOV 49)

7 oo <y

(v )Zn(/i) < (v )2n ,(4), | for some #n, then from (5)

(#5020 (A) > (1 )51 (A),
Now if
(w )Zn(l)<(w D2na(A)

J_;#FN (9)dt9 >y U [ J¢(9)d6] oy (J~O(ﬂfN >zn(ﬂ)¢(3)dt9) > J' Hry )2 ¢(9)d9

0

[ oo <o [ corto | < [ o) <[ oo,

J‘[:(UFV)Z (92 ¢(¢9)d9<l//(j [( Op )2n (A )]¢(0)d0j<V/(J'O(wf,\,)z”(/1)¢(0)d6)<J'[:wiN)zn(/1)¢(9)d0

15 (by b0 02) 2 15 (b, by, 2),
which implies Vi, (b,, bzm,q/i)ﬁu (b,, A), |. Thus b
o (bZn,b2n+1,ql)<a) (|
(#1207 [ (1 ) 1(D)],
- Thus we have | (v, ),,(g2) 27| (v; ),, (D),

(@ ), (00 2 [ (@; ), 1(2)]

by ow = 5,1, Dy lemma 2.3, which is

contradiction, since b, #b

(5, )2 (22) o (g Do 1 (4) (g, s (1)
U ooy [ ]¢(9)d9j>'//( o),

for which [ o Jan02)
0

[ oo | <y ([ sorao), ©

$(0)do < W(
.[; W 4 V10 < Uor[<%)mu>]¢(9)d6J y l//(J'O(”?N )2’”(”¢(6)d9)

(5 )20 (2) (i d2na (A)
U oo >y [ enao),

0

0

letting g—1, then we have J( a4 )¢(6’)d6’ < z//(j(vfN )2”’1(1)¢(9)d9), @)

[ ¢(9)da<,,/(j( e ¢(9)d9)
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(g a1 (2) (K, an 2 (1)
ooz ([ goras),

Similarly I(V o ()

0

HO)d0 < w([“‘"“ ””’““gﬁ(@)d@), and so on.

I()(wﬁv>z,,,l< )¢(9)d9<'//(j( i a2 ¢(¢9)d9)

In general we have forall n=1,2,3.......

I(l’ﬁ\,),,(l)¢(9)d9> (J‘A;\ i1 (2 )¢(9) )

0

[ oo <y [ )¢<9>d9) (®)

[ ¢(9)d9<1//(_[( e ¢(9)d9)
from (8), we have
[ g0 d9>l//( ) ¢(9)d9)2,,,2(j #iy o2t ’¢(9)d9) ....... >y (I(”‘N ¢(9)d9)
[ wodo (m a2 >¢(9)d9)5,,,2(j0 e )¢(9)d¢9) ........ Sw”(ﬁ ‘"'N)”w¢(9)d9), )

j‘ D g 0)do <y (I( i ¢(9)d9)<l,,(j‘ K ¢(9)d9) ....... s:,u”(j(f ot ¢(¢9)d6’)

and taking the limit as # — o0 and using lemma 2.3, we have

lim J.;ﬂf“')”w¢(0)d9>hm"% (j; ”’qﬁ(a)de):

tim, , [ ¢(e)d9<hm”%yﬂ(j D 50)do ):, (10)

tim, . [, gopdo <tim, .,y ([ 9(0)a0) =0

/‘1

lmn%w(ﬂf“\, )n(l) = 1imn~>wﬂﬁ‘ (b bn+l’ﬂ) = 1’

which from (1) implies that | lim,__(v; ), (4)=lim _ v £, (,,b,,,4)=0, |forall ne N and 1 >0. (11)
1imr1aoo(wl:'\] )n(ﬂ') = 1 mnﬁoo F (b n+1’/1) = 0
'LIIEV (bn’bnﬂ’/l) >1_g’
Now for each & >0 and each 4 >0, choose 1, €N s.t. ve (b,b,. ,A)<e, |forall n>n, (12)
o, (b,,b, . ,A)<e

Letting m > n(m,n € N), then
min{z; (b,,b,,,, A/ (m—n)), Hy (b,4.0,.5, A/ (m=n))........
max{z; (b, b, Af(m=n),.cccccpty (b0, Af(m— n))}}]
> r[min{(l—g),(l—g), ........ max{(1-¢),(1-¢€),,.ce.. (1—5)}}} >(1-¢)>1-¢,
min{v; (b,,b,,,, Af(m—n)), Vi (0,00, Af(m—n))........
| max{v; (b, b, A (m=n)),........ v (0,4, b, ,A/(m—n))} }}

My ®,,b,,2) 2{

ve (b ,b ,A)<r
FN( n’"m ) l: (13)

< r[min{g,g,g, ........ max{g,....... g}}] <g<eg,
min{e; (b, b, A (m—n)), o (.1, ., A/ (m=n))......
b Af(m=n)), ........ o (b, /b, A/ (m-m)}

< r[mm E,E,E) uunnn. max{g,....... e}}} <g<eg

max{a) (b

a)ﬁv(bn,bm,/l)ﬁr[
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Thus from definitions 2.10, 2.11 and conditions (11), (13) and lemma 3.1 {b, } isa CSin X . Since X is complete
so that {b,} - z € X and sub sequences {Aah}, {Bazm }, {Sazm} and {Ta2n+2}, of {b }also converges to z.

Thus Aa, —z,Ba,  —z Sa,, —zand Ta, , >z (14)
Again, since X is e-chainable, 3 ¢-chain froma, toa, , ie. 3 afinite sequencea, =b,,b,,........ b =a, _, st
g (0,0, 2) > 1=,
Vi, (b,,b,_,,A)<s, forall A>0 andi=1,2,....... 1.,
wp\ (b,b_,,A)<e
Thus, we have
u; (@,,8,,,92)2 r[mm 5 (b, by, A), 5 (by by, A), ey maxipty (b, b, Aty (B0, )}}J
>r[min{(1-¢),(1-¢&), ... max{(1- &), 1= &),c....(1- )} | 2 r[1-£] > 1-¢,
Vi (a (a,,a, ,qA)<r [mm V; (bl,bz,/l) V; (bz,b3,/1) ..... , max{VﬁN b, b, A) Ve (bl—l’bl’/l)}}] 1)
min{g, g, ........ max{g, Epeveennn g}}] < r[s] <eg,
o; (a,,4,.,,47) < r[mm 0y (0,0, 2, (By,by, Aoy max{ey (b, by, 2) ey (B, 2]
< r[min{g, Epevrennn max{&,&,........ g}}] < r[s] <e.
Form,ne N, m>n, we have
min{z; (a,,a,.,,4/(m=n)), 4; (a,,,8,.,,4/(m=n))....
Hy, (3,08, 4) 2 { | max{tt, (8, /8, A1) bty (@, 1,8, Af(m —n))}}]
r[min{(l—g),(l—g), ........ max{(1-¢&),(1-¢),........ (1—5)}}] > r[l—g] >1-g,
Ve {milﬂ{vﬁN (@,,8,.,, A/ (m=n)),v; (a,,,a,,,A/(m=n)... ]
iy s B max{vﬁN(apfl,ap,/l/(m—n)), ........ Vi (a, ,,a,,A/(m=-n)} (16)
< r[min{g, Epeeenn. max{g, &, ........ g}}] < r[g] <eg,
min{w, (a,,4,,,,4/(m-n)),e. (4,4, A/(m=-n).....
o (a,,a,,A)<r v v
N { max{e; (@, 1,8, /(m=n),..... o (aml,am,/l/(m—n))}}}
< r[min{e, Eprrernns max{&, &, ........ 5}}] < r[s} <eé.
e wondoz v [\ weyio)> [\ weyo,
ie. [ yoyo < w( [/ ¢(9)d9) <[ p(oyae, 17)

[ poyde < w( [f ¢(0)d0) <[ g0
and so from definitions 2.10; 2.11 and conditions (15) and (17), {a,}isa CSin X . Since X is complete so that
{a,} - a e X since {A,S} is reciprocally continuous, so that A and S are continuous. Thus
Aa, = Aa, Sa,, . =Sa, (18)

since {A, S} are compatible, so R -weakly commuting mapping. Then

Hy (ASa,,,SAa,,,q2) 2 1; (Aa,,,Sa,, ,A/R),

v; (ASa,,,SAa,,,q2)<v; (Aa,,,S a,,,A/R),

@, (ASa,,,SAa,,,q2) < w; (Aa,,,Sa,,, A/R)

2n+1
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My (Aa,Sa,1)=1,

=Sa. Also vﬁ; (Aa,Sa,A)<0, | which implies Aa=Sa. (19)
a)F\ (Aa,Sa,2)<0

From (14), (18) and (19), Az=5z. Since A(a) = S(a), 3,u € X s.t. Az=Su. then from (4)

J‘;,[_N (Az,Bu,ql)¢(9)d6 S (//(J‘(:lm(z,u,ql)¢(0)d9)/
Jva (Az,Bu,rM)¢(9)d9 <y (IVEN (Z,u,ql)¢(9)d9)’

¢(9)d9)

gives ASa, = Aa, SAa

2n+1

0

0

o, (2,,42)

soxo<y ([

J.MEN (Az,Bu,qh)
0

where

Mz, (z,u,A) = r[min{,uﬁM (Sz,Az,A), M, (Sz,Tu,A), Mz, (T u,Bu,/l),maX{,uﬁV (Tu,Az, ), e, (Sz, Bu,ﬁ)}}}
:r[min{/uﬁ (AZ,AZ,&),,U;. (AZ,BL[,A),,U;-'(Bu,Bu,j«),maX{ﬂlg (BurAZ/ﬂ')/;uﬁ (AZ,BM,&)}}:I
> r[min{l, t (AzBu, )1}, (A z,Bu,l)}J > r[ u; (A z,Bu,/l)] >y, (Az,Bu, )

Vi, (z,u,A)=r [min{vﬁN (5z,Az,2), Ve, (Sz,Tu,A), Ve, (Tu,Bu, ), max{vﬁN (Tu,Az, 1), Ve, (Sz,Bu, l)}}}

r[min{vﬁw (Az,Az, ), Vi, (Az,Bu,l), Vi, (Bu,Bu, 1), max{vﬁw (Bu,Az,A), Ve (Az, Bu,l)}}}
<r[min{1,v, (Az,Bu,/l),l,},vﬁ'(Az,Bu,l)}}Sr[va(Az,Bu,/l)}Zvﬁ'(Az,Bu,l)

o (z,u,A)=vr [min{a)ﬁv (Sz,AzA), Ve, (Sz,Tu, 1), o (Tu,Bu, ), max{a)FN (Tu,Az, 1), o (Sz,Bu, A)}}J

r min{a)fy(Az,Az,/l),a)ﬁv(Az,Bu,l),a)ﬁ (Bu,Bu, 1), max{w; (Bu,Az, 1), w; (Az,Bu,ﬁ)}}]

< r[min{l, @, (Az,Bu,A)1} e, (Az, Bu,i)}} < r[wﬁw (A z,Bu,A)J > o, (Az,Bu, 1)

N (Az,Bu,ql) N (Az,Bu,A) B (Az,Bu,A)
[ ooz ([ gonde ) > [ oy,
. Vﬁ‘v (Az,Bu,ql) Vﬁ.\' (Az,Bu,l) VﬁN (Az,Bu,A)
ie. jo ' “9(0)do < y/(jo ¢(9)d9) < jo #(6)do, (20)
a)ﬁ\} (Az,Bu,qi) wﬁN (Az,Bu,A) wa (Az,Bu,A)
jo ‘ “9(0)do < y/( jo ¢(9)d9) < jo #(0)do
u: (Az,Bu,qA)= . (Az,Bu,l),
which implies 173 (Az,Bu,ql) < Ve, (Az,Bu,A), (21)

@ (Az,Bu,gi)< 23 (Az,Bu, )
from lemma 2.3, Az =Buie. Az=S5Su="Tz. Againlet Az=S5u=Bu=Tu.
Since the pair {A,S} is point-wise R-weakly commuting mappings, so there exists R >0 s.t.
M, (ASz,SAz,1)> My, (Az,Sz,A/R)=1,
v; (ASz,SAzA)<v; (A2,S52,4/R)=0, |ie. ASz=SAz and AAz=ASz=SAz=55z.
o (ASz,5Az,2)< céﬁw (Az,Sz,A/R) =0,
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Similarly it can be for the pair {B,T} which implies BBu = BTu = TBu = TTu. For this in (4), we put a = Az,
J'OA?N (AAz,Bu,gl) ¢(9)d9 >y (JWFh z/u,l)¢(0)da),
son0<y ([ goo),

g0y ([ woyo)

minf{y; (SAz, AAz,A), p; (SAz,Tu,A), p; (Tu,Bu,2),
max{,uﬁM (Tu,AAz, 1), i (SAz,Bu, A)}}

b=u, we have J'”fw (AAz,Bu,q4)
- 7
0

J‘o)ﬁN (AAz,Bu,qi)
0

where uy (Az,u,d)= {

> r[min{l, #; (AAz,Bu,2),1,max{u; (AAzBu,2) u; (AAzBu, z)}}J
> r[yﬁN (AA z,Bu,/i)] > pt; (AAZ,Bu, 1)
1n{vﬁv (SAz,AAz, 1), Ve, (SAz,Tu,A), Ve, (Tu,Bu, A),
Ve, (Azu,A) = r[ | max{v; (Tu, AAz, 1), v (SA z,Bu,/l)}}}
<r min{O,vﬁ (AAz,Bu,/l),O,max{vﬁN (AAz,Bu,/i),vﬁN (AAz,Bu,/i)}}]
v. (AAz,Bu, /1)] v, (AAzBu, )

By

min{o; (SAZ,AAZ,/%),a)p(SAz,Tu,ﬂu),a)lE (Tu,Bu, ),
max{a)ﬁ' (Tu,AAz,A), 0. (SAz,Bu,A)}}

<r| min{0, w; (AAz,Bu,1),0, max{o; (AAz,Bu,l),a)ﬁy(AAz,Bu,/i)}}]

< r[wﬁ (AAz,Bu,A)J <w, (AAz,Bu,2)

J-#ﬁN (AAz,Bu,qA) ¢(9)d9 > V/(J-/zp\ (AAz,Bu,2) ¢(9)d¢9) J.IIF\ (AA:,Bu,/l)¢(0)d0

0
(AAz,Bu,l)

/ ¢(9)d9)<j WO 4 9)de, (22)

. vf\y (AAz,Bu,qi)
[

son0<y ([

[ (AAz,Bu,gi) . (AAz,Bu,l) Oy, (AAz,Bu,i)
[ " p(6)do < ( ) ¢(9)d9) [ #(0)do

0

0
Hy, (AAz,Bu,gl)= M, (AAz,Bu,l),

which implies v, (AAZ,Bu,g2)<v, (AAZ,Bu, ) 23)
@ (AAz,Bu,ql)< a)F\ (AAz,Bu,A)

from lemma 2.3, we have AAz=Bu=Az. Thus Az=AAz and Az=AAz=SAz, which shows that

Az is common fixed point of A and S. Also Az=Bu=Su=Tz Hence Az is common fixed point of A,

B,Sand T.
Now again suppose that Az =z is a common fixed point of A, B, S and T. For this from (4), we have

J.,JfN (AAz,Bu,qA) H0)d0 > !//(J‘ o] g, A2,z M]¢(¢9)d9] >J' [ 5, (2B ]¢(¢9)d¢9 >J‘ )¢(9)d9

/1;,\

0

J.Ovéw(AAz,By,qz)ﬂe)de<W[J- [ (Az,Bz, A)]¢(9)d0j <.[0’[ L (Az, z;>]¢(9)d9<J‘ X ,Z,A)¢(‘9)dgl

(uﬁ\y (AAz,Bu,qgi) 7 o)fN (Az,Bz,2) i a)ﬁN (Az,Bz,A) (qu (Az,z,A)
[ " p0)do < 1//[ jo[ ]¢(9)d9j < jﬂ[ ]¢(9)d9 < jo #(0)do

0
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min{yﬁ (SAz,AAz,/I),yﬁ (SAz,Tz,/I),yﬁ (Tz,Bz,4),
My, (Az,z,A)=r ¥ v N

max{,uFN (Tz,AAz 1), My, (SAz,Bz, )}

where
> ¢[minf1,1, 4, (Az,2, )0 |> 4, (Az,2,2),

min{vﬁ (SAz,AAz,ﬂ),vﬁ (SAZ,TZ,Z,),VI5 (Tz,Bz, 1),
v (Az,z,A)=r N N N

max{v; (Tz,AAz, A),v; (SAz,Bz )}
< r[min{o, 0,v; (Azz, /1)},0)}} <1 (Az,z,2),

min{vﬁ (SAz,AAz,ﬂ),vﬁ (SAZ,TZ,Z,),VI5 (Tz,Bz, 1),
v (Az,z,A)=r1 i N "

max{v; (Tz,AAz,A),v; (SAz,Bz )}
<y [min{O, 0,0; (Azz, /1)},0)}] <w; (Az,z,2),
u: (Az,z,qA)> p; (Az,z,A),
which implies that | v; (Az,z,q1)<v; (Az,z4), | for all1>0, ie. from lemma 2.3, Az=z. Thuszisa
o (Az,z,q4)< o (Az,z,A)

common fixed point of A, B, S and T. For uniqueness of z let w # z be another common fixed point of A,
B, S and T, then from (4), we have

J'ﬂm(z w, ql)¢(9)d9>l//(

>w[ ¢<e>d9] e oo |
E

r min( Hpy (Sz,Az,2), Hiy Sz, Tw,A), Hpy (Tw,Bw, 1), max(,ul (Tw,Az,1), My, (Sz,Bw,A ]]]

¢(9)d9j

J-r[mm{l,/,zf\' (z,zu/i)/l,yﬁw (z,w,A)} } 'UFN( w,
i 3
0

" p(0)as,

V[mm[v (Sz,Az,2), (Sz Tw,), (Tw Bw, A1), max[v (Tw,Az,2), Vi Sz, Bw,ﬂ.)]}]
ay
0

¢(9)d9j

jr[min{O,V - (z,w,4),0, VR, (z w /1)]] Hpy, (z,w,A)

<y $O)o,

0

¢(0)d¢9j< jo[ " J¢(9)d9 <[

J-r[mir\(wf\, (Sz,Az,A),wfw (Sz,Tw,/i),wf\y (Tw,Bw,A),max(wfV (Tw,Az,A),wf\y (Sz,Bw,i)))]
0

¢(9)d0j

J-r[minlo,fuﬁw(z,w,l),O,faﬁ\r(z,w,l))} Opy, (z,w,4)
0

#(0)do

J,:fw(z,w,qi)¢(€)d€ < !//[
of

¢(9)d6’] < jo[ ]¢ (O)do < ||

My, (z,w,qA) 2 M, (z,w, ),
which from lemma 2.3, implies | v; (z,w,q4) <v; (z,w,4), | i.e. z=w, for all A>0. Thus z is a unique
o; (z,w,q) < w; (z,w,A)

common fixed point of A, B, Sand T.

Corollary 4.1: Let {A,S} and {A,T} be point wise R-weakly commuting pairs of self mappings of a
complete &—chainable NMS (X,IEN,*,Q) with t#t>¢ and (1-£)O(1-) <(1-¢) for all £ e[0,1] satisfying
the following conditions:

()  A(X)=S(X) and A(X)c=T(X)
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(ii) foralla,beX,A1>0 and g€ (0,1) there exists a left continuous function y :[0,1] —[0,1], w(0) =0, and
Hiy (@b, 2)
#o0=y ([ gorao),

H(0)d6 < y/( [ o ¢(9)d9), where ¢(0):R" — R’ is a Lebesgue

J-/,zﬁw (Aa,Ab,ql)
0

w(s)>s for all s>0 s.t. J‘OV?N(M'M'M)

I(UF\' (Aa,Ab,qA) [()F\](db

#oxo <y ([ y0)a)

0

integrable mapping which is summable, non-negative s.t. 0 < J; #(0)do <1, forall £>0.

(a,b,ﬂ)zr[min{,uﬁv(Sa,Aa,ﬂ,),,uﬁ (Sﬂ,Tb,ﬂ,),,Uﬁ (Tb,Ab,l),maX{,Uﬁv(Tb,Aﬂ,l),,U}: (Sa/Ab/ﬂ')}}]

M,

v, (a,b,4)=r [min{vﬁw (Sa,Aa,A),v; (Sa,Tb,A)v; (Th,Ab,A),max{v, (Tb,Aa,2),v; (S a,Ab,/l)}}]

Fy
o; (u,b,/l):r[min{a)ﬁy(Sa,Aa,l),a);_'(Sa,Tb,/i),a)ﬁ (Tb,Ab, 1), max{w; (Tb,Au,ﬁ),a)ﬁy(Su,Ab,ﬁ)}}J

where r:[0,1]—[0,1], is continuous function s.t. r(@)>a and r(a)=1 for a=1, ae[0,1). Then the
continuity of one of the mapping in compatible pair {A,S} or {A,T} on &-chainable NMS implies the

unique common fixed point of A,Sand T.
Proof: If we put S=T,in theorem 4.1, then we get proof of corollary 4.1, easily.

Corollary 4.2: Let {A,T} be point wise R-weakly commuting pairs of self-mappings of a complete
& —chainable NMS (X, F,,*,) satisfying the following conditions:

i) A(X)e=T(X)

(i1)” for alla,be X,A >0 there exists a left continuous function y :[0,1] —[0,1], w(0) =0, and w(s)>s
w00z ([ woyo),

#(0)do < w(j ¢(0)d6’) where ¢(0):R" > R" isa

J‘yﬁ'\’ (Aa,Ab,2)
0

Viy (Aa,Ab,A
forall s>0 s.t. j N )

J.mﬁ\' (Aa,Ab,2)

souo <y ([ woo)

0

Lebesgue integrable mapping which is summable, non-negative s.t. 0< _[(: #(0)dd <1, for all &>0.
luﬁ (ﬂ,b, l) =r |:m1n{/uﬁ : (A a/Ta/ﬂ“)//uﬁ . (Tﬂ,T a, ﬂ')/ /u}? . (Ab/T b/ ﬂ')/ max{,uﬁ . (A b/ Tb/ j’)Huﬁ ; (Ab,T[l, ﬂ')}}:|

v. (a,b, A)—r[mm{ (Aa,Ta,A)v, (Ta,Ta,A)v, (AbTb,2)max{v, (Ab,Tb,A)v, (Ab,Tu,ﬂ)}}J

By
w; (a,b,/l):r[min{a)ﬁ (Aa,Ta,ﬂ,),a)P(Ta,Ta,/%),a)i(Ab,Tb,/l),max{a)[;'(Ab,Tb,ﬂ,),a)lE (Ab,Ta,l)}}]
where r:[0,1]—[0,1], is continuous function s.t. r(@)>a and r(a)=1 for a=1, ae[0,1). Then the

continuity of one of the mapping in compatible pair {A,T} on &—chainable NMS implies the unique

common fixed point of A and T.

Proof: If weput B=A and S=T in theorem 4.1, we get the proof of corollary 4.2.

Theorem 4.2: Let S and T be two self-continuous mappings of a complete & —chainable NMS (X, F,,, <)
with t#f>¢ and (1-£)O(1-1) < (1-t) for all £ €[0,1]. Let A and B be two self-mappings of X satisfying

the following conditions:
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i)  A(X)c=S(X) and A(X)c=T(X)
(i1)” forall ,beX,2>0 and g€ (0,1) there exists a left continuous function y :[0,1] —[0,1], w(0) =0,

'[,U;EN (Aa,Ab,q2)

wowo=y ([ oo ),

0

ve, (Aa,Ab,qA
and y(s)>s forall s>0 s.t. jo N

' 4(0)do < y/( jov'ﬁ”(“’b/“qﬁ(e)dej, where

o (ab,2)

)ﬂewesW(L“

J-w[N (Aa,Ab,qA

¢(¢9)d9)

0

#(0):R" - R" is a Lebesgue integrable mapping which is summable, non-negative s.t. 0 < J.Og #(0)do <1,
foralle > 0.
,u'ﬁN (a,b,4) = Z’UFN (Sa,Aa, 1)+ mut; (Sa,Th,A)+ ni; (Tb,Ab, A1)+ max{,uFN (Tb,Aa, ), Mz, (Sa,Ab, 1)}
v £, (a,b,1) = IV?N (Sa,Aa, 1)+ mvg (Sa,Tb,A)+ g (Tb,Ab, A1)+ max{vﬁN (Tb,Aa, ), Vi (Sa,Ab, 1)}
a)'ﬁN (a,b,1) = la)l;_N (Sa,Aa, 1)+ may, (Sa,Tb,A)+ na (Tb,Ab, 1)+ rnax{aoﬁN (Tb,Aa, ), @ (Sa,Ab, 1)}

forall 0<g<l+m+n+1. Then A, B, S and T have a unique common fixed point.

Proof: Similar to theorem 4.1.

Conclusion

The newly defined infinite products establish the Banach contraction theorem for NMS. In this context, we
introduce an integral-type contractive condition in a e-chainable neutrosophic metric space and prove a
common fixed point theorem for four weakly compatible mappings. Our findings extend and unify well-
known results in neutrosophic metric spaces, such as those presented by Kirisci and Simsek [28].
Furthermore, Kirisci et al. [21] discussed fixed point results within the framework of NMS.
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