



# Neutrosophic & –interior ideals in semigroups

K. Porselvi<sup>1</sup>, B. Elavarasan<sup>2</sup>\*, F. Smarandache<sup>3</sup>

 <sup>1,2</sup> Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India. E-mail: porselvi94@yahoo.co.in; porselvi@karunya.edu. E-mail: belavarasan@gmail.com; elavarasan@karunya.edu.
 <sup>3</sup> Mathematics Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA. E-mail:fsmarandache@gmail.com; smarand@unm.edu.

\* Correspondence: belavarasan@gmail.com

**Abstract:** We define the concepts of neutrosophic  $\aleph$ -interior ideal and neutrosophic  $\aleph$ -characteristic interior ideal structures of a semigroup. We infer different types of semigroups using neutrosophic  $\aleph$ -interior ideal structures. We also show that the intersection of neutrosophic  $\aleph$ -interior ideals and the union of neutrosophic  $\aleph$ -interior ideals is also a neutrosophic  $\aleph$ -interior ideal.

**Keywords:** Semi group, neutrosophic  $\aleph$ -ideals, neutrosophic  $\aleph$ -interior ideals, neutrosophic  $\aleph$ -product.

## 1. Introduction

Nowadays, the theory of uncertainty plays a vital role to manage different issues relating to modelling engineering problems, networking, real-life problem relating to decision making and so on. In 1965, Zadeh[24] introduced the idea of fuzzy sets for modelling vague concepts in the globe. In 1986, Atanassov [1] generalized fuzzy set and named as Intuitionistic fuzzy set. Also, from his viewpoint, there are two degrees of freedom in the real world, one a degree of membership to a vague subset and the other is a degree of non-membership to that given subset.

Smarandache generalized fuzzy set and intuitionistic fuzzy set, and named as neutrosophic set (see [4, 7, 8, 14, 19, 22-23]). These sets are characterized by a truth membership function, an indeterminacy membership function and a falsity membership function. These sets are applied to many branches of mathematics to overcome the complexities arising from uncertain data. A Neutrosophic set can distinguish between absolute membership and relative membership. Smarandache used this in non-standard analysis such as the result of sports games (winning/defeating/tie), decision making and control theory, etc. This area has been studied by several authors (see [3, 11, 12, 16-18]).

For more details on neutrosophic set theory, the readers visit the website http://fs.gallup.unm.edu/FlorentinSmarandache.htm

In [2], Abdel Basset et al. designed a framework to manage scheduling problems using neutrosophic theory. As the concept of time-cost tradeoffs and deterministic project scheduling disagree with the real situation, some data were changed during the implementation process. Here fuzzy scheduling and time-cost tradeoffs models assumed only truth-membership functions dealing

with uncertainties of the project and their activities duration which were unable to treat indeterminacy and inconsistency.

In [6], Abdel Basset et al. evaluated the performance of smart disaster response systems under uncertainty. In [5], Abdel Basset et al. introduced different hybrid neutrosophic multi-criteria decision-making framework for professional selection that employed a collection of neutrosophic analytical network process and order preference by similarity to the ideal solution under bipolar neutrosophic numbers.

In [21], Prakasam Muralikrishna1 et al. presented the characterization of MBJ – Neutrosophic  $\beta$  – Ideal of  $\beta$  – algebra. They analyzed homomorphic image, pre–image, cartesian product and related results, and these concepts were explored to other substructures of a  $\beta$  – algebra. In [9], Chalapathi et al. constructed certain Neutrosophic Boolean rings, introduced Neutrosophic complement elements and mainly obtained some properties satisfied by the Neutrosophic complement elements of Neutrosophic Boolean rings.

In [14], M. Khan et al. presented the notion of neutrosophic &-subsemigroup in semigroup and explored several properties. In [11], Gulistan et al. have studied the idea of complex neutrosophic subsemigroups and introduced the concept of the characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets.

In [10], B. Elavarasan et al. introduced the notion of neutrosophic N-ideal in semigroup and explored its properties. Also, the conditions for neutrosophic N-structure to be neutrosophic N-ideal are given, and discussed the idea of characteristic neutrosophic N-structure in semigroups and obtained several properties. In [20], we have introduced and discussed several properties of neutrosophic N-bi-ideal in the semigroup. We have proved that neutrosophic N-product and the intersection of neutrosophic N-ideals were identical for regular semigroups. In this paper, we define and discuss the concepts of neutrosophic N-interior ideal and neutrosophic N-characteristic interior ideal structures of a semigroup.

Throughout this paper, *X* denotes a semigroup. Now, we present the important definitions of semigroup that we need in sequel.

Recall that for any  $X_1, X_2 \subseteq X$ ,  $X_1X_2 = \{ab | a \in X_1 \text{ and } b \in X_2\}$ , multiplication of  $X_1$  and  $X_2$ . Let *X* be a semigroup and  $\emptyset \neq X_1 \subseteq X$ . Then

- (i)  $X_1$  is known as subsemigroup if  $X_1^2 \subseteq X_1$ .
- (ii) A subsemigroup  $X_1$  is known as left (resp., right) ideal if  $X_1X \subseteq X_1$ (resp.,  $XX_1 \subseteq X_1$ ).
- (iii)  $X_1$  is known as ideal if  $X_1$  is both a left and a right ideal.
- (iv) *X* is known as left (resp., right) regular if for each  $r \in X$ , there exists  $i \in X$  such that  $r = ir^2$ (resp.,  $r = r^2i$ ) [13].
- (v) *X* is known as regular if for each  $b_1 \in X$ , there exists  $i \in X$  such that  $b_1 = b_1 i b_1$
- (vi) *X* is known as intra-regular if for each  $x_1 \in X$ , there exist  $i, j \in X$  such that  $x_1 = ix_1^2 j$  [15].

#### 2. Definitions of neutrosophic **X** - structures

We present definitions of neutrosophic  $\aleph$  –structures namely neutrosophic  $\aleph$  –subsemigroup, neutrosophic  $\aleph$  –ideal, neutrosophic  $\aleph$  –interior ideal of a semigroup *X* 

The set of all the functions from X to [-1,0] is denoted by  $\Im(X, [-1,0])$ . We call that an element of  $\Im(X, [-1,0])$  is  $\aleph$ -function on X. A  $\aleph$ -structure means an ordered pair (X,g) of X and an  $\aleph$ -function g on X.

**Definition 2.1.[14]** A neutrosophic  $\aleph$  – structure of *X* is defined to be the structure:

$$X_M := \frac{X}{(T_M, I_M, F_M)} = \Big\{ \frac{r}{T_M(r), I_M(r), F_M(r)} \mid r \in X \Big\},$$

where  $T_M$ ,  $I_M$  and  $F_M$  are the negative truth, negative indeterminacy and negative falsity membership function on X ( $\aleph$  – functions).

It is evident that  $-3 \leq T_M(r) + I_M(r) + F_M(r) \leq 0$  for all  $r \in X$ .

**Definition 2.2.[14]** A neutrosophic  $\aleph$  – structure  $X_M$  of X is called a neutrosophic  $\aleph$  –subsemigroup of X if the following assertion is valid:

$$(\forall g_i, h_j \in X) \begin{pmatrix} T_M(g_ih_j) \leq T_M(g_i) \lor T_M(h_j) \\ I_M(g_ih_j) \geq I_M(g_i) \land I_M(h_j) \\ F_M(g_ih_j) \leq F_M(g_i) \lor F_M(h_j) \end{pmatrix}.$$

.Let  $X_M$  be a neutrosophic  $\aleph$ -structure and  $\gamma, \delta, \varepsilon \in [-1, 0]$  with  $-3 \leq \gamma + \delta + \varepsilon \leq 0$ . Consider the sets:

$$T_M^{\boldsymbol{Y}} = \{\boldsymbol{r}_i \in \boldsymbol{X} | \boldsymbol{T}_M(\boldsymbol{r}_i) \leq \boldsymbol{\gamma} \}$$
$$I_M^{\delta} = \{\boldsymbol{r}_i \in \boldsymbol{X} | \boldsymbol{I}_M(\boldsymbol{r}_i) \geq \boldsymbol{\delta} \}$$
$$F_M^{\varepsilon} = \{\boldsymbol{r}_i \in \boldsymbol{X} | \boldsymbol{F}_M(\boldsymbol{r}_i) \leq \boldsymbol{\varepsilon} \}.$$

The set  $X_M(\gamma, \delta, \varepsilon) := \{ r_i \in X | T_M(r_i) \le \gamma, I_M(r_i) \ge \delta, F_M(r_i) \le \epsilon \}$  is known as  $(\gamma, \delta, \varepsilon)$ -level set of  $X_M$ . It is easy to observe that  $X_M(\gamma, \delta, \varepsilon) = T_M^{\gamma} \cap I_M^{\delta} \cap F_M^{\varepsilon}$ .

**Definition 2.3.[10]** A neutrosophic  $\aleph$  –structure  $X_M$  of X is called a neutrosophic  $\aleph$  –left (resp., right) ideal of X if

$$\left( \forall g_i, h_j \in X \right) \begin{pmatrix} T_M(g_ih_j) \leq T_M(h_j) (resp., T_M(g_ih_j) \leq T_M(g_i)) \\ I_M(g_ih_j) \geq I_M(h_j) (resp., I_M(g_ih_j) \geq I_M(g_i)) \\ F_M(g_ih_j) \leq F_M(h_j) (resp., F_M(g_ih_j) \leq F_M(g_i)) \end{pmatrix}$$

 $X_M$  is neutrosophic  $\aleph$  –ideal of **X** if  $X_M$  is neutrosophic  $\aleph$  –left and  $\aleph$  –right ideal of **X**.

**Definition 2.4.** A neutrosophic  $\aleph$  –subsemigroup  $X_M$  of X is known as neutrosophic  $\aleph$  –interior ideal if

$$(\forall x, a, y \in X) \begin{pmatrix} T_M(xay) \leq T_M(a) \\ I_M(xay) \geq I_M(a) \\ F_M(xay) \leq F_M(a) \end{pmatrix}.$$

It is easy to observe that every neutrosophic  $\aleph$  –ideal is neutrosophic  $\aleph$  –interior ideal, but neutrosophic  $\aleph$  –interior ideal need not be a neutrosophic  $\aleph$  – ideal, as shown by an example.

**Example 2.5.** Let X be the set of all non-negative integers except 1. Then X is a semigroup with usual multiplication.

Let 
$$X_M = \left\{ \frac{0}{(-0.9, -0.1, -0.7)}, \frac{2}{(-0.4, -0.6, -0.5)}, \frac{5}{(-0.3, -0.8, -0.3)}, \frac{10}{(-0.3, -0.8, -0.1)}, \frac{otherwise}{(-0.7, -0.4, -0.6)} \right\}.$$
 Then  $X_M$  is

neutrosophic  $\aleph$  – interior ideal, but not neutrosophic  $\aleph$  – ideal with  $T_N(2.5) = -0.3 \leq T_N(2)$ .

**Definition 2.6.[14]** For any  $E \subseteq X$ , the characteristic neutrosophic  $\aleph$  –structure is defined as

$$\chi_E(X_M) = \frac{X}{(\chi_E(T)_M, \chi_E(I)_M, \chi_E(F)_M)}$$

where

$$\chi_{E}(T)_{M} \colon X \to [-1,0], \ r \to \begin{cases} -1 \ if \ r \in E \\ 0 \ otherwise, \end{cases}$$
$$\chi_{E}(I)_{M} \colon X \to [-1,0], \ r \to \begin{cases} 0 \ if \ r \in E \\ -1 \ otherwise, \end{cases}$$
$$\chi_{E}(F)_{M} \colon X \to [-1,0], \ r \to \begin{cases} -1 \ if \ r \in E \\ 0 \ otherwise. \end{cases}$$

**Definition 2.7.[14]** Let  $X_N := \frac{X}{(T_N, I_N, F_N)}$  and  $X_M := \frac{X}{(T_M, I_M, F_M)}$  be neutrosophic  $\aleph$ -structures of X. Then

- (i)  $X_N$  is called a neutrosophic  $\aleph$  substructure of  $X_M$ , denote by  $X_M \subseteq X_N$ , if  $T_M(r) \ge$  $T_N(r)$ ,  $I_M(r) \leq I_N(r)$ ,  $F_M(r) \geq F_N(r)$  for all  $r \in X$ .
- (ii) If  $X_N \subseteq X_M$  and  $X_M \subseteq X_N$ , then we say that  $X_N = X_M$ .
- (iii) The neutrosophic  $\aleph$  product of  $X_N$  and  $X_M$  is defined to be a neutrosophic  $\aleph$  –structure of X,

$$X_N \odot X_M := \frac{X}{(T_{N \circ M}, I_{N \circ M}, F_{N \circ M})} = \left\{ \frac{h}{T_{N \circ M}(h), I_{N \circ M}(h), F_{N \circ M}(h)} \mid h \in X \right\},$$

where

$$(T_N \circ T_M)(h) = T_{N \circ M}(h) = \begin{cases} \bigwedge_{h=rs} \{T_N(r) \lor T_M(s)\} & \text{if } \exists r, s \in X \text{ such that } h = rs \\ 0 & \text{otherwise,} \end{cases}$$
$$(I_N \circ I_M)(h) = I_{N \circ M}(h) = \begin{cases} \bigvee_{h=rs} \{I_N(r) \land I_M(s)\} & \text{if } \exists u, v \in X \text{ such that } h = rs \\ -1 & \text{otherwise,} \end{cases}$$

$$(F_N \circ F_M)(h) = F_{N \circ M}(h) = \begin{cases} \bigwedge_{h=rs} \{F_N(r) \lor F_M(s)\} & if \exists u, v \in X \text{ such that } h=rs \\ 0 & otherwise. \end{cases}$$

For  $i \in X$ , the element  $\frac{i}{(T_{N \circ M}(i), I_{N \circ M}(i), F_{N \circ M}(i))}$ is simply denoted by  $(X_N \odot X_M)(i) =$  $(T_{N\circ M}(i),\ I_{N\circ M}(i),\ F_{N\circ M}(i)).$ 

(iii) The union of  $X_N$  and  $X_{M_i}$  a neutrosophic  $\aleph$  –structure over X is defined as  $X_N \cup X_M = X_{N \cup M} = (X; T_{N \cup M}, I_{N \cup M}, F_{N \cup M}),$ 

where

$$(T_N \cup T_M)(h_i) = T_{N \cup M}(h_i) = T_N(h_i) \wedge T_M(h_i),$$
  

$$(I_N \cup I_M)(h_i) = I_{N \cup M}(h_i) = I_N(h_i) \vee I_M(h_i),$$
  

$$(F_N \cup F_M)(h_i) = F_{N \cup M}(h_i) = F_N(h_i) \wedge F_M(h_i) \quad \forall h_i \in X.$$
  
tersection of  $X_N$  and  $X_M$ , a neutrosophic  $\&$ -structure over  $X$  is defined as  

$$X_N \cap X_M = X_{N \cap M} = (X; T_{N \cap M} \mid I_{N \cap M} \mid F_{N \cap M}).$$

where

(iv) The in

$$(T_N \cap T_M)(h_i) = T_{N \cap M}(h_i) = T_N(h_i) \vee T_M(h_i),$$
  

$$(I_N \cap I_M)(h_i) = I_{N \cap M}(h_i) = I_N(h_i) \wedge I_M(h_i),$$
  

$$(F_N \cap F_M)(h_i) = F_{N \cap M}(h_i) = F_N(h_i) \vee F_M(h_i) \forall h_i \in X.$$

#### 3. Neutrosophic & –interior ideals

We study different properties of neutrosophic  $\aleph$ -interior ideals of X. It is evident that neutrosophic  $\aleph$  – ideal is a neutrosophic  $\aleph$  –interior ideal of *X*, but not the converse. Further, for a regular and for an intra-regular semigroup, every neutrosophic & –interior ideal is neutrosophic ∦ –ideal.

All throughout this part, we consider  $X_M$  and  $X_N$  are neutrosophic  $\aleph$  –structures of X. **Theorem 3.1.** For any  $L \subseteq X$ , the equivalent assertions are:

(i) *L* is an interior ideal,

(ii) The characteristic neutrosophic  $\aleph$  –structure  $\chi_L(X_N)$  is a neutrosophic  $\aleph$  –interior ideal. **Proof:** Suppose *L* is an interior ideal and let  $x, a, y \in X$ .

If  $a \in L$ , then  $xay \in L$ , so  $\chi_L(T)_N(xay) = -1 = \chi_L(T)_N(a)$ ,  $\chi_L(I)_N(xay) = 0 = \chi_L(I)_N(a)$  and  $\chi_L(F)_N(xay) = -1 = \chi_L(F)_N(a)$ .

If  $a \notin L$ , then  $\chi_L(T)_N(xay) \le 0 = \chi_L(T)_N(a)$ ,  $\chi_L(I)_N(xay) \ge -1 = \chi_L(I)_N(a)$  and  $\chi_L(F)_N(xay) \le 0 = \chi_L(F)_N(a)$ .

Therefore  $\chi_L(X_N)$  is a neutrosophic  $\aleph$  –interior ideal.

Conversely, assume that  $\chi_L(X_N)$  is a neutrosophic  $\aleph$  – interior ideal. Let  $u \in L$  and  $x, y \in X$ . Then

$$\chi_L(T)_N(xuy) \le \chi_L(T)_N(u) = -1,$$
  

$$\chi_L(I)_N(xuy) \ge \chi_L(I)_N(u) = 0,$$
  

$$\chi_L(F)_N(xuy) \le \chi_L(F)_N(u) = -1.$$

So  $xuy \in L$ .

**Theorem 3.2.** If  $X_M$  and  $X_N$  are neutrosophic  $\aleph$  – interior ideals, then  $X_{M \cap N}$  is neutrosophic  $\aleph$  – interior ideal.

**Proof:** Let  $X_M$  and  $X_N$  be neutrosophic  $\aleph$  – interior ideals. For any  $r, s, t \in X$ , we have

$$T_{M \cap N}(rst) = T_M(rst) \lor T_N(rst) \le T_M(s) \lor T_N(s) = T_{M \cap N}(s),$$
  

$$I_{M \cap N}(rst) = I_M(rst) \land I_N(rst) \ge I_M(s) \land I_N(s) = I_{M \cap N}(s),$$
  

$$F_{M \cap N}(rst) = F_M(rst) \lor F_N(rst) \le F_M(s) \lor F_N(s) = F_{M \cap N}(s).$$

Therefore  $X_{M \cap N}$  is neutrosophic  $\aleph$  – interior ideal.

**Corollary 3.3.** The arbitrary intersection of neutrosophic  $\aleph$  – interior ideals is a neutrosophic  $\aleph$  – interior ideal.

**Theorem 3.4.** If  $X_M$  and  $X_N$  are neutrosophic  $\aleph$  – interior ideals, then  $X_{M \cup N}$  is neutrosophic  $\aleph$  – interior ideal.

**Proof:** Let  $X_M$  and  $X_N$  be neutrosophic  $\aleph$  – interior ideals. For any  $r, s, t \in X$ , we have

$$\begin{split} T_{M\cup N}(rst) &= T_M(rst) \wedge T_N(rst) \leq T_M(s) \wedge T_N(s) = T_{M\cup N}(s), \\ I_{M\cup N}(rst) &= I_M(rst) \vee I_N(rst) \geq I_M(s) \vee I_N(s) = I_{M\cup N}(s), \\ F_{M\cup N}(rst) &= F_M(rst) \wedge F_N(rst) \leq F_M(s) \wedge F_N(s) = F_{M\cup N}(s). \end{split}$$

Therefore  $X_{M\cup N}$  is neutrosophic  $\aleph$  – interior ideal.

**Corollary 3.5.** The arbitrary union of neutrosophic  $\aleph$  – interior ideals is neutrosophic  $\aleph$  – interior ideal.

**Theorem 3.6.** Let *X* be a regular semigroup. If  $X_M$  is neutrosophic  $\aleph$  – interior ideal, then  $X_M$  is neutrosophic  $\aleph$  – ideal.

П

**Proof:** Assume that  $X_M$  is an interior ideal, and let  $u, v \in X$ . As X is regular and  $u \in X$ , there exists  $r \in X$  such that u = uru. Now,  $T_M(uv) = T_M(uruv) \le T_M(u)$ ,  $I_M(uv) = I_M(uruv) \ge I_M(u)$  and  $F_M(uv) = F_M(uruv) \le F_M(u)$ . Therefore  $X_M$  is neutrosophic  $\aleph$  – right ideal.

Similarly, we can show that  $X_M$  is neutrosophic  $\aleph$  – left ideal and hence  $X_M$  is neutrosophic  $\aleph$  – ideal.

**Theorem 3.7.** Let *X* be an intra-regular semigroup. If  $X_M$  is neutrosophic  $\aleph$  – interior ideal, then  $X_M$  is neutrosophic  $\aleph$  – ideal.

**Proof:** Suppose that  $X_M$  is neutrosophic  $\aleph$  – interior ideal, and let  $u, v \in X$ . As X is intra regular and  $u \in X$ , there exist  $s, t \in S$  such that  $u = su^2 t$ . Now,

$$\begin{split} T_M(uv) &= T_M(su^2tv) \leq T_M(u), \\ I_M(uv) &= I_M(su^2tv) \geq I_M(u) \\ F_M(uv) &= F_M(su^2tv) \leq F_M(u). \end{split}$$

Therefore  $X_M$  is neutrosophic  $\aleph$  – right ideal. similarly, we can show that  $X_M$  is neutrosophic  $\aleph$  – left ideal and hence  $X_M$  is neutrosophic  $\aleph$  – ideal.

**Definition 3.8.** A semigroup *X* is left simple (resp., right simple) if it does not contain any proper left ideal (resp., right ideal) of *X*. A semigroup *X* is simple if it does not contain any proper ideal of *X*.

**Definition 3.9.** A semigroup *X* is said to be neutrosophic  $\aleph$  –simple if every neutrosophic  $\aleph$  – ideal is a constant function

i.e., for every neutrosophic  $\aleph$  – ideal  $X_M$  of X, we have  $T_M(i) = T_M(j)$ ,  $I_M(i) = I_M(j)$  and  $F_M(i) = F_M(j)$  for all  $i, j \in X$ .

**Notation 3.10.** If *X* is a semigroup and  $s \in X$ , we define a subset, denoted by  $I_s$  as follows:  $I_s := \{i \in X \mid T_N(i) \le T_N(s), I_N(i) \ge I_N(s) \text{ and } F_N(i) \le F_N(s)\}.$ 

**Proposition 3.11.** If  $X_N$  is neutrosophic  $\aleph$  – right (resp.,  $\aleph$  – left,  $\aleph$  – ideal) ideal, then  $I_s$  is right (resp., left, ideal) ideal for every  $s \in X$ .

**Proof:** Let  $s \in X$ . Then it is clear that  $\varphi \neq I_s \subseteq X$ . Let  $u \in I_s$  and  $x \in X$ . Then  $ux \in I_s$ . Indeed; Since  $X_N$  is neutrosophic  $\aleph$  – right ideal and  $u, x \in X$ , we get  $T_N(ux) \leq T_N(u)$ ,  $I_N(ux) \geq I_N(u)$ and  $F_N(ux) \leq F_N(t)$ . Since  $u \in I_s$ , we get  $T_N(u) \leq T_N(s)$ ,  $I_N(u) \geq I_N(s)$  and  $F_N(u) \leq F_N(s)$  which imply  $ux \in I_s$ . Therefore  $I_s$  is a right ideal for every  $s \in X$ .

**Theorem 3.12.[4]** For any  $L \subseteq X$ , the equivalent assertions are:

- (i) L is left (resp., right) ideal,
- (ii) Characteristic neutrosophic  $\aleph$  structure  $\chi_L(X_N)$  is neutrosophic  $\aleph$  left (resp., right) ideal.

**Theorem 3.13.** Let *X* be a semigroup. Then *X* is simple if and only if *X* is neutrosophic  $\aleph$  –simple.

**Proof:** Suppose *X* is simple. Let  $X_M$  be a neutrosophic  $\aleph$  – ideal and  $u, v \in X$ . Then by Proposition 3.11,  $I_u$  is an ideal of *X*.As*X* is simple, we have  $I_u = X$ . Since  $v \in I_u$ , we have  $T_M(v) \leq T_M(u)$ ,  $I_M(v) \geq I_M(u)$  and  $F_M(v) \leq F_M(u)$ .

Similarly, we can prove that  $T_M(u) \leq T_M(v)$ ,  $I_M(u) \geq I_M(v)$  and  $F_M(u) \leq F_M(v)$ . So  $T_M(u) = T_M(v)$ ,  $I_M(u) = I_M(v)$  and  $F_M(u) = F_M(v)$ . Hence X is neutrosophic  $\aleph$  – simple.

Conversely, assume that *X* is neutrosophic  $\aleph$  – simple and *I* is an ideal of *X*. Then by Theorem 3.12,  $\chi_I(X_N)$  is a neutrosophic  $\aleph$  – ideal. We now claim that X = I. Let  $w \in X$ . Since *X* is neutrosophic  $\aleph$  – simple, we have  $\chi_I(X_N)$  is a constant function and  $\chi_I(X_N)(w) = \chi_I(X_N)(y)$  for every  $y \in X$ . In particular, we have  $\chi_I(T_N)(w) = \chi_I(T_N)(d) = -1$ ,  $\chi_I(I_N)(w) = \chi_I(I_N)(d) = 0$  and  $\chi_I(F_N)(w) = \chi_I(F_N)(d) = -1$  for any  $d \in I$  which implies  $w \in I$ . Thus  $X \subseteq I$  and hence X = I.  $\Box$ 

**Lemma 3.14.** Let *X* be a semigroup. Then *X* is simple if and only for every  $t \in X$ , we have X = XtX.

**Proof:** Suppose *X* is simple and let  $t \in X$ . Then  $X(XtX) \subseteq XtX$  and  $(XtX)X \subseteq XtX$  imply that *XtX* is an ideal. Since *X* is simple, we have XtX = X.

Conversely, let *P* be an ideal and let  $a \in P$ . Then X = XaX,  $XaX \subseteq XPX \subseteq P$  which implies P = X. Therefore *X* is simple.

**Theorem 3.15.** Suppose *X* is a semigroup. Then *X* is simple if and only every neutrosophic  $\aleph$  – interior ideal of *X* is a constant function.

**Proof:** Suppose *X* is simple and  $s, t \in X$ . Let  $X_N$  be neutrosophic  $\aleph$  – interior ideal. Then by Lemma 3.14, we get X = XsX = XtX. As  $s \in XsX$ , we have s = atb for  $a, b \in X$ . Since  $X_N$  is neutrosophic  $\aleph$  – interior ideal, we have  $T_N(s) = T_N(atb) \leq T_N(t)$ ,  $I_N(s) = I_N(atb) \geq I_N(t)$  and  $F_N(s) = F_N(atb) \leq F_N(t)$ . Similarly, we can prove that  $T_N(t) \leq T_N(s)$ ,  $I_N(t) \geq I_N(s)$  and  $F_N(t) \leq F_N(s)$ . So  $X_N$  is a constant function.

Conversely, suppose  $X_N$  is neutrosophic  $\aleph$  – ideal. Then  $X_N$  is neutrosophic  $\aleph$  – interior ideal. By hypothesis,  $X_N$  is a constant function and so  $X_N$  is neutrosophic  $\aleph$  –simple. By Theorem 3.13, X is simple.

**Theorem 3.16.** Let  $X_M$  be neutrosophic  $\aleph$  – structure and let  $\gamma, \delta, \varepsilon \in [-1, 0]$  with  $-3 \le \gamma + \delta + \varepsilon \le 0$ . If  $X_M$  is neutrosophic  $\aleph$  –interior ideal, then  $(\gamma, \delta, \varepsilon)$ -level set of  $X_M$  is neutrosophic  $\aleph$  –interior ideal whenever  $X_M(\gamma, \delta, \varepsilon) \ne \emptyset$ .

**Proof:** Suppose  $X_M(\gamma, \delta, \varepsilon) \neq \emptyset$  for  $\gamma, \delta, \varepsilon \in [-1, 0]$  with  $-3 \leq \gamma + \delta + \varepsilon \leq 0$ .

Let  $X_M$  be a neutrosophic  $\aleph$ -interior ideal and let  $u, v, w \in X_M(\gamma, \delta, \varepsilon)$ . Then  $T_M(uvw) \leq T_M(v) \leq \alpha$ ;  $I_M(uvw) \geq I_M(v) \geq \beta$  and  $F_M(uvw) \leq F_M(v) \leq \gamma$  which imply  $uvw \in X_M(\alpha, \beta, \gamma)$ . Therefore  $X_M(\gamma, \delta, \varepsilon)$  is a neutrosophic  $\aleph$ -interior ideal of X.

**Theorem 3.17.** Let  $X_N$  be neutrosophic  $\aleph$  – structure with  $\alpha, \beta, \gamma \in [-1, 0]$  such that  $-3 \le \alpha + \beta + \gamma \le 0$ . If  $T_N^{\alpha}$ ,  $I_N^{\beta}$  and  $F_N^{\gamma}$  are interior ideals, then  $X_N$  is neutrosophic  $\aleph$  – interior ideal of X whenever it is non-empty.

**Proof:** Suppose that for  $a, b, c \in X$  with  $T_N(abc) > T_N(b)$ . Then  $T_N(abc) > t_\alpha \ge T_N(b)$  for some  $t_\alpha \in [-1, 0)$ . So  $b \in T_N^{t_\alpha}(b)$  but  $abc \notin T_N^{t_\alpha}(b)$ , a contradiction. Thus  $T_N(abc) \le T_N(b)$ .

Suppose that for  $a, b, c \in X$  with  $I_N(abc) < I_N(b)$ . Then  $I_N(abc) < t_{\alpha} \le I_N(b)$  for some  $t_{\alpha} \in [-1, 0]$ . So  $b \in I_N^{t_{\alpha}}(b)$  but  $abc \notin I_N^{t_{\alpha}}(b)$ , a contradiction. Thus  $I_N(abc) \ge I_N(b)$ .

Suppose that for  $a, b, c \in X$  with  $F_N(abc) > F_N(b)$ . Then  $F_N(abc) > t_\alpha \ge F_N(b)$  for some  $t_\alpha \in [-1, 0)$ . So  $b \in F_N^{t_\alpha}(b)$  but  $abc \notin F_N^{t_\alpha}(b)$ , a contradiction. Thus  $F_N(abc) \le F_N(b)$ .

Thus  $X_N$  is neutrosophic  $\aleph$  – interior ideal.

**Theorem 3.18.** Let  $X_M$  be neutrosophic  $\aleph$  – structure over X. Then the equivalent assertions are:

(i)  $X_M$  is neutrosophic  $\aleph$  –interior ideal,

(ii)  $X_N \odot X_M \odot X_N \subseteq X_M$  for any neutrosophic  $\aleph$  – structure  $X_N$ .

**Proof:** Suppose  $X_M$  is neutrosophic  $\aleph$  – interior ideal. Let  $x \in X$ . For any  $u, v, w \in X$  such that x = uvw. Then  $T_M(x) = T_M(uvw) \leq T_M(v) \leq T_N(u) \vee T_M(v) \vee T_N(w)$  which implies  $T_M(x) \leq T_{N \circ M \circ N}(x)$ . Otherwise  $x \neq uvw$ . Then  $T_M(x) \leq 0 = T_{N \circ M \circ N}(x)$ . Similarly, we can prove that  $I_M(x) \geq I_{N \circ M \circ N}(x)$  and  $F_M(x) \leq F_{N \circ M \circ N}(x)$ . Thus  $X_N \odot X_M \odot X_N \subseteq X_M$ .

Conversely, assume that  $X_N \odot X_M \odot X_N \subseteq X_M$  for any neutrosophic  $\aleph$  –structure  $X_N$ .

Let  $u, v, w \in X$ . If x = uvw, then

$$T_M(uvw) = T_M(x) \le (\chi_X(T)_N \circ T_M \circ \chi_X(T)_N)(x) = \bigwedge_{x=rw} \{\chi_X(T)_N \circ T_M)(r) \lor \chi_X(T)_N(w)\}$$

$$= \bigwedge_{x=rc} \{\bigwedge_{r=uv} \{\chi_X(T)_N(u) \lor (T)_M(v)\} \lor \chi_X(T)_N(w)\}$$

$$\leq \chi_X(T)_N(u) \lor (T)_M(v) \lor \chi_X(T)_N(w) = T_M(v),$$

$$I_{M}(uvw) = I_{M}(x) \leq (\chi_{X}(I)_{N} \circ I_{M} \circ \chi_{X}(I)_{N})(x) = \bigvee_{\substack{x=rw \\ x=rc \ r=uv}} \{\chi_{X}(I)_{N} \circ I_{M})(r) \wedge \chi_{X}(I)_{N}(w)\}$$
$$= \bigvee_{\substack{x=rc \ r=uv}} \{\chi_{X}(I)_{N}(u) \wedge (I)_{M}(v)\} \wedge \chi_{X}(I)_{N}(w)\}$$
$$\geq \chi_{X}(I)_{N}(u) \wedge (I)_{M}(v) \wedge \chi_{X}(I)_{N}(w) = (I)_{M}(v),$$

and

$$F_{M}(uvw) = F_{M}(x) \leq (\chi_{X}(F)_{N} \circ F_{M} \circ \chi_{X}(F)_{N})(x) = \bigwedge_{x=rw} \{\chi_{X}(F)_{N} \circ F_{M})(r) \vee \chi_{X}(F)_{N}(w)\}$$
$$= \bigwedge_{x=rc} \{\bigwedge_{x=rw} \{\chi_{X}(F)_{N}(u) \vee (F)_{M}(v)\} \vee \chi_{X}(F)_{N}(w)\}$$

$$\leq \chi_X(F)_N(u) \lor (F)_M(v) \lor \chi_X(F)_N(w) = F_M(v).$$
  
Therefore  $X_M$  is neutrosophic  $\aleph$ -interior ideal.

Notation 3.19. Let X and Z be semigroups. A mapping  $g: X \to Z$  is said to be a homomorphism if g(uv) = g(u)g(v) for all  $u, v \in X$ . Throughout this remaining section, we denote Aut(X), the set of all automorphisms of X.

**Definition 3.20.** An interior ideal J of a semigroup X is called a characteristic interior ideal if h(J) = J for all  $h \in Aut(X)$ .

**Definition 3.21.** Let X be a semigroup. A neutrosophic  $\aleph$  – interior ideal  $X_N$  is called neutrosophic  $\aleph$  – characteristic interior ideal if  $T_N(h(u)) = T_N(u)$ ,  $I_N(h(u)) = I_N(u)$  and  $F_N(h(u)) = F_N(u)$  for all  $u \in X$  and all  $h \in Aut(X)$ .

**Theorem 3.22.** For any  $L \subseteq X$ , the equivalent assertions are:

- (i) L is characteristic interior ideal,
- (ii) The characteristic neutrosophic  $\aleph$  structure  $\chi_L(X_M)$  is neutrosophic  $\aleph$  characteristic interior ideal.

**Proof:** Suppose *L* is characteristic interior ideal and let  $x \in X$ . Then by Theorem 3.1,  $\chi_L(X_M)$  is neutrosophic  $\aleph$  –interior ideal. If  $x \in L$ , then  $\chi_L(T)_M(x) = -1$ ,  $\chi_L(I)_M(x) = 0$ , and  $\chi_L(F)_M(x) = -1$ . Now, for any  $h \in Aut(X)$ ,  $h(x) \in h(L) = L$  which implies  $\chi_L(T)_M(h(x)) = -1$ ,  $\chi_L(I)_M(h(x)) = 0$ , and  $\chi_L(F)_M(h(x)) = -1$ . If  $x \notin L$ , then  $\chi_L(T)_M(x) = 0$ ,  $\chi_L(I)_M(x) = -1$ , and  $\chi_L(F)_M(x) = 0$ . Now, for any  $h \in Aut(X)$ ,  $h(x) \notin h(L)$  which implies  $\chi_L(T)_M(h(x)) = 0$ ,  $\chi_L(I)_M(h(x)) = -1$ , and  $\chi_L(F)_M(h(x)) = 0$ . Thus  $\chi_L(T)_M(h(x)) = \chi_L(T)_M(x)$ ,  $\chi_L(I)_M(h(x)) = \chi_L(I)_M(x)$ , and  $\chi_L(F)_M(h(x)) = \chi_L(F)_M(x)$  for all  $x \in X$  and hence  $\chi_L(X_M)$  is neutrosophic  $\aleph$  – characteristic interior ideal.

Conversely, assume that  $\chi_L(X_M)$  is neutrosophic  $\aleph$  – characteristic interior ideal. Then by Theorem 3.1, *L* is an interior ideal. Now, let  $h \in Aut(X)$  and  $x \in L$ . Then  $\chi_L(T)_M(x) = -1$ ,  $\chi_L(I)_M(x) = 0$  and  $\chi_L(F)_M(x) = -1$ . Since  $\chi_L(X_M)$  is neutrosophic  $\aleph$  –characteristic interior ideal, we have  $\chi_L(T)_M(h(x)) = \chi_L(T)_M(x)$ ,  $\chi_L(I)_M(h(x)) = \chi_L(I)_M(x)$  and  $\chi_L(F)_M(h(x)) = \chi_L(T)_M(x)$  which imply  $h(x) \in L$ . So  $h(L) \subseteq L$  for all  $h \in Aut(X)$ . Again, since  $h \in Aut(X)$  and  $x \in L$ , there exists  $y \in L$  such that h(y) = x.

Suppose that  $y \notin L$ . Then  $\chi_L(T)_M(y) = 0$ ,  $\chi_L(I)_M(y) = -1$  and  $\chi_L(F)_M(y) = 0$ . Since  $\chi_L(T)_M(h(y)) = \chi_L(T)_M(y)$ ,  $\chi_L(I)_M(h(y)) = \chi_L(I)_M(y)$  and  $\chi_L(F)_M(h(y)) = \chi_L(T)_M(y)$ , we get  $\chi_L(T)_M(h(y)) = 0$ ,  $\chi_L(I)_M(h(y)) = -1$  and  $\chi_L(F)_M(h(y)) = 0$  which imply  $h(y) \notin L$ , a contradiction. So  $y \in L$  i.e.,  $h(y) \in L$ . Thus  $L \subseteq h(L)$  for all  $h \in Aut(X)$  and hence L is characteristic interior ideal.

**Theorem 3.23.** For a semigroup *X*, the equivalent statements are:

(i) X is intra-regular,

(ii) For any neutrosophic  $\aleph$  –interior ideal  $X_M$ , we have  $X_M(w) = X_M(w^2)$  for all  $w \in X$ .

**Proof:** (*i*)  $\Rightarrow$  (*ii*) Suppose *X* is intra-regular, and *X<sub>M</sub>* is neutrosophic  $\aleph$  – interior ideal and  $w \in X$ . Then there exist  $r, s \in X$  such that  $w = rw^2s$ . Now  $T_M(w) = T_M(rw^2s) \leq T_M(w^2) \leq T_M(w)$  and so  $T_M(w) = T_M(w^2)$ ,  $I_M(w) = I_M(rw^2s) \geq I_M(w^2) \geq I_M(w)$  and so  $I_M(w) = I_M(w^2)$ , and  $F_M(w) = F_M(rw^2s) \leq F_M(w^2) \leq F_M(w)$  and so  $F_M(w) = F_M(w^2)$ . Therefore  $X_M(w) = X_M(w^2)$  for all  $w \in X$ . (*ii*)  $\Rightarrow$  (*i*) Let (*ii*) holds and  $s \in X$ . Then  $I(s^2)$  is an ideal of *X*. By Theorem 3.5 of [4],  $\chi_{I(s^2)}(X_M)$  is neutrosophic  $\aleph$  – ideal. By assumption,  $\chi_{I(s^2)}(X_M)(s) = \chi_{I(s^2)}(X_M)(s^2)$ . Since  $\chi_{I(s^2)}(T)_M(s^2) = -1 = \chi_{I(s^2)}(F)_M(s^2)$  and  $\chi_{I(s^2)}(I)_M(s^2) = 0$ , we get  $\chi_{I(s^2)}(T)_M(s) = -1 = \chi_{I(s^2)}(F)_M(s)$  and  $\chi_{I(s^2)}(I)_M(s^2) = 0$  which imply  $s \in I(s^2)$ . Hence *X* is intra-regular.

**Theorem 3.24.** For a semigroup *X*, the equivalent statements are:

(i) *X* is left (resp., right) regular,

(ii) For any neutrosophic  $\aleph$  –interior ideal  $X_M$ , we have  $X_M(w) = X_M(w^2)$  for all  $w \in X$ .

**Proof:** (*i*)  $\Rightarrow$  (*ii*) Let *X* be left regular. Then there exists  $y \in X$  such that  $w = yw^2$ . Let  $X_M$  be a neutrosophic  $\aleph$ -interior ideal. Then  $T_M(w) = T_M(yw^2) \leq T_M(w)$  and so  $T_M(w) = T_M(w^2)$ ,  $I_M(w) = I_M(yw^2) \geq I_M(w)$  and so  $I_M(w) = I_M(w^2)$ , and  $F_M(w) = F_M(yw^2) \leq F_M(w)$  and so  $F_M(w) = F_M(w^2)$ . Therefore  $X_M(w) = X_M(w^2)$  for all  $w \in X$ .

 $(ii) \Rightarrow (i)$  Suppose (ii) holds and let  $X_M$  be neutrosophic  $\aleph$  –interior ideal. Then for any  $w \in X$ ,  $\chi_{L(w^2)}(T)_M(w) = \chi_{L(w^2)}(T)_M(w^2) = -1$ ,  $\chi_{L(w^2)}(I)_M(w) = \chi_{L(w^2)}(I)_M(w^2) = 0$  and  $\chi_{L(w^2)}(F)_M(w) = \chi_{L(w^2)}(F)_M(w^2) = -1$  which imply  $w \in L(w^2)$ . Thus X is left regular.

#### Conclusions

In this paper, we have introduced the concepts of neutrosophic  $\aleph$  – interior ideals and neutrosophic  $\aleph$  – characteristic interior ideals in semigroups and studied their properties, and characterized regular and intra-regular semigroups using neutrosophic  $\aleph$ -interior ideal structures. We have also shown that R is a characteristic interior ideal if and only if the characteristic neutrosophic  $\aleph$  –structure  $\chi_R(X_N)$  is neutrosophic  $\aleph$  –characteristic interior ideal. In future, we will define neutrosophic  $\aleph$  –prime ideals in semigroups and study their properties.

### Reference

- 1. Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87-96.
- 2. Abdel-Basset, M., Ali, M., & Atef, A. Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. *Computers & Industrial Engineering* **2020**, 141, 106286.
- Abdel-Basset, M., Ali, M., & Atef, A. Resource levelling problem in construction projects under neutrosophic environment. *The Journal of Supercomputing* 2020, 76(2), 964-988.
- Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. *Computers in Industry* 2019, 106, 94-110.
- 5. Abdel-Basset, M., Gamal, A., Son, L. H., & Smarandache, F. A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. *Applied Sciences* **2020**, 10(4), 1202.
- Abdel-Basset, M., Mohamed, R., Elhoseny, M., & Chang, V. Evaluation framework for smart disaster response systems in uncertainty environment. *Mechanical Systems and Signal Processing* 2020, 145, 106941.
- Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., & Smarandache, F. Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets, Academic Press 2020, 1-19.
- Abdel-Basset, M.; Saleh, M.; Gamal, A.; Smarandache, F. An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. *Applied Soft Computing* 2019, 77, 438-452.
- 9. Chalapathi, T; Madhavi, L. Neutrosophic Boolean rings. Neutrosophic Sets and Systems 2020, 33, 59-66.
- 10. Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic *ℵ* –ideals in semigroups. *Neutrosophic Sets and Systems* **2019**, 28, 273-280.
- 11. Gulistan, M.; Khan, A.; Abdullah, A.; Yaqoob, N. Complex Neutrosophic subsemigroups and ideals. *International J. Analysis and Applications* **2018**, 16, 97-116.

- Jun, Y. B.; Smarandache, F.; Ozturk, M. A. Commutative falling neutrosophic ideals in BCK-algebras. *Neutrosophic Sets and Systems* 2018, 20, 44-53.
- 13. Kehayopulu, N. A note on strongly regular ordered semigroups. Sci. Math. 1998, 1, 33-36.
- 14. Khan, M. S.; Anis; Smarandache, F.; Jun,Y. B. Neutrosophic ℵ –structures and their applications in semigroups. *Annals of Fuzzy Mathematics and Informatics* **2017**, 14(6), 583–598.
- 15. Mordeson, J.N.; Malik, D. S.; Kuroki. N. Regular semigroups. Fuzzy Smigroups 2003, 59-100.
- 16. Muhiuddin, G.; Ahmad, N.; Al-Kenani; Roh, E. H.; Jun, Y. B. Implicative neutrosophic quadruple BCK-algebras and ideals. *Symmetry* **2019**, 11, 277.
- 17. Muhiuddin, G.; Bordbar, H.; Smarandache, F.; Jun, Y. B. Further results on (2;2)-neutrosophic subalgebras and ideals in BCK/BCI- algebras. *Neutrosophic Sets and Systems* **2018**, Vol. 20, 36-43.
- Muhiuddin, G.; Kim, S. J.; Jun, Y. B. Implicative N-ideals of BCK-algebras based on neutrosophic N-structures. *Discrete Mathematics, Algorithms and Applications* 2019, Vol. 11, No. 01, 1950011.
- 19. Muhiuddin, G.; Smarandache, F.; Jun, Y. B. Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras. *Neutrosophic Sets and Systems* **2019**, 25, 161-173.
- Porselvi, K., Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic ℵ bi –ideals in semigroups. Neutrosophic Sets and Systems 2020, 35, 422-434.
- 21. Prakasam Muralikrishna.; Surya Manokaran. MBJ Neutrosophic  $\beta$  Ideal of  $\beta$  Algebra. *Neutrosophic Sets and Systems* **2020**, 35, 99-118.
- 22. Smarandache, F. A. Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. *American Research Press* **1999**, Rehoboth, NM.
- 23. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. *Int. J. Pure Appl. Math.* **2005**, 24(3), 287-297.
- 24. Zadeh, L. A. Fuzzy sets. Information and Control 1965, 8, 338 353.

Received: May 7, 2020. Accepted: September 23, 2020