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Abstract: The main objective of this paper is to propose a new type of set which we call

pentapartitioned neutrosophic set. We also prove some of its basic properties.
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1. Introduction:

Smarandache [1] defined Neutrosophic Set (NS) to deal with uncertainty, indeterminacy and
inconsistency involved in mathematical objects. It generalizes fuzzy set [2] and intuitionistic fuzzy
set [3] by incorporating degrees of indeterminacy and rejection (falsity or non-membership) as
independent components. Wang et al. [4] defined Single Valued Neutrosophic Set (SVNS) in 2010.
Chatterjee et al. [5] defined Quadripartitioned SVNS (QSVNS) that involves truth, falsity, unknown
and contradiction based on four valued logics [6, 7].

Smarandache [7] split indeterminacy into unknown, contradiction, ignorance and proposed
Five Symbol Valued Neutrosophic Logic (FSVNL). In this paper we utilize FSVNL and propose
pentapartitioned neutrosophic set. We also establish some basic properties of the proposed set. The
proposed structure is generalization of existing theories of SVNS and QSVNS.

The organization of the paper is as follows: Section 1 provides a brief introduction; Section 2 is
dedicated to recalling some preliminary results; Section 3 introduces the concept of a
pentapartitioned neutrosophic set. Section 4 deals with some basic set-theoretic operations over

pentapartitioned neutrosophic sets. Section 5 concludes the paper stating future scope of research.

1. Preliminary:

Definition 1: An NS [1] N on the universe of discourse Q is defined as:

N ={<q,Ty(@). 1, (q).F (a)>qgeQ}whereT,I,F:Q—>] 0,1[ and "0<T, (q)+1,(a)+F,(q)<3".

2. Single Valued Pentapartitioned Neutrosophic Sets:
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Based on Smarandache FSVNL [7], we define the concept of Pentapartitioned Neutrosophic Set
(PNS). The term “pentapartitioned” means something that divided into five characteristic features.
The indeterminacy is split into three parts signifying contradiction, ignorance and unknown
respectively. We now defined a PNS as follows:

Definition 3: Let P be a non-empty set. A PNS A over P characterizes each element p in P by a
truth-membership function T, , a contradiction membership function C, , an ignorance

membership function G,, unknown membership function U, and a falsity membership function
Fa such that for each peP, T,.C..G, U, F, €[0]] and

0<T,(P)+CA(P)+G(P)+U,(p)+F,(p)<5.

Example: Consider the statement: “Is Facebook good for society?”.

Suppose, this statement is posed in front of a group of five people, say, P={p,, p,, P;P,, Ps} (which
constitute the universe under consideration) and they are requested to express their opinion
regarding this statement. Now it may so happen that the opinion of the people may vary among the
following possible options: “a degree of agreement with the statement”, “a degree of both agreement
as well as disagreement regarding the statement “a degree of neither agreement nor disagreement
regarding the statement”, “a degree of ignore agreement and disagreement” and “a degree of
disagreement with respect to the statement”. According to the response of the people, the available

information can be represented in terms of a PNS as follows:
From the above PNS, it is seen that the person p, is to great extent, in agreement with the statement

whereas, p, mostly disagrees with the statement while p,opines that the statement is both true as
well as false, p,is mainly in ignorance regarding the truth of the statement and p, totally ignores
the truth and false of the statement.

It is to be noted that when Indeterminacy (1) is refined into I1, 12, 13, and together T, I1, 12, 13, F form a
pentapartitioned neutrosophic set. It is a special case of the n- valued refined neutrosophic set, introduced by
Smarandache [7] in 2013.

Definition 4: A PNS A is said to be absolute PNS if and only if its truth-membership, contradiction
membership, ignorance membership, unknown membership and falsity membership function

values are defined as follow,
To(P)=1Ca(P)=1G,(p)=0,U,(p)=0,F,(p)=0.

Definition 5: A PNS is said to be null & PNS if and only if its truth-membership, contradiction
membership, ignorance membership, unknown membership and falsity membership function

values are respectively defined as follows:

TA(p):O’CA(p):O’GA(p):lvUA(p):llFA(p):l'
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3. Basic properties:

Definition 6: Consider two PNS R, and R, over P, R, issaid to be contained in R,, denoted
by R cR iff T, (p)<T (p).Cy (p) <Cq, (0).Gy (P) 2 Gy, (P).Ug (P) 2Uy, (p)and Fy, (p) = F, ()

where peP.
Definition 7: The complement of PNS R, is denoted by Rf and is defined as:

RY ={(Fe (P).Ug (P).1-G (P).Cq (P). T (P) | P € P} ie.T (p) =Ry (p),Cq (P) =Up (p),

Gy () =1-G; (p).Ug (p) =C; (p)and F, (p) =T, (p). pP

Definition 8: The union and intersection of any two PNSs R, and R, is denoted by R UR, and
R, MR, is defined as:

R UR, ={(max(Tg, (p), T, (p)), max(Cy, (p), Cg, (p)), Min(Gy, (p), G, (P)), Min(Ug, (p),Ug, (p)), min(Fy (p), Fe, ()| p € P}
={(Tg, (P), Cy, (P), Gg, (P),Ug, (P), F, (P))V(T, (P), Cr, (P), Gg, (P).Ug, (P), Fe, (P)) | P € P}

R AR, ={(min(Ty, (p), T, (P)), Min(Ce, (), Cy, (P)), Max(Gg, (), Gg, (P)), Max(Ug (p),Ug, (p)), max(F;, (), Fe, ()| p € P}
={(Tx, (), Cy, (P), Gg, (P).Ug, (P), Fe, (PDA(Te, (P), Cg, (P). Gg, (P).Ug, (P). Fe, (P)) | p € P}

Example: Consider any two PNSs defined over P, presented as:

E =(06,04,03,0.2,0.3)/1,+(0.5,0.3,04,05,0.4) /1, +(0.3,0.7,0.5,0.2,04)/,
F =(0.7,02,04,0.3,05)/r,+(0.7,0.4,0.3,0.4,0.5) /1, +(0.6,05,0.6,0.4,0.3)/r,

Then we have,

E®=(0.3,0.2,0.7,0.4,0.6) /1, +(0.4,0.5,0.6,0.3,0.5) /1, +(0.4,0.2,0.5,0.7,0.3) /,
EUF =(0.7,04,0.4,0.3,05)/1,+(0.7,0.4,0.4,05,0.5)/ r, +(0.6,0.7,0.6,0.4,0.4) / ,
ENF=(06,020.30203)/r,+(0.50.3,0.3,04,0.4)/r,+(0.3,05,05,0.2,0.3) /1,

Proposition 1: PNSs satisfy the following properties under the aforementioned set theoretic
operations:

i. Commutative law

()R, UR, =R, UR,
(bR AR, =R, "R

ii.  Associative law
(R U (R, UR) =(R UR,)UR,
(AR N(R,NRy) =(RNR,)NR,

iii. Distributive law
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@R V(R "R) =(RUR)N(R UR;)
(DR AR, UR) =(RNR)VU(R NR;)

iv.  Absorption law

(R VR NR) =R
(h)le(Rl Y Rz) = R1

v. Involution law

vi. Law of contradiction

(j)leRlc =0

vii. De Morgan's law

(K)(R UR,)* =R"NR;°
(D(R.NR,)® =R UR,

Proof:
(@) RUR, =R, UR,
We know that,

R UR, ={(max(Tg, (p), T, (p)), max(C, (p), Cr, (p)), Min(Gy, (p), G, (P)), Min(Ug, (p),Ug, (p)), min(Fy (p), Fe, (p))| p € P}
={(Tg, (P), Cy, (P), Gg, (P).Ug, (P), F, (P))V(T, (P), Ce, (P), Gg, (P).Ug, (P), Fe, (P)) | P € P}

Let,x, e R, UR,
== % e{max(Tg , T ), max(Cy, , Cy ), min(Gg , Gy ), min(Ug ,Ug ), min(F, , F )}
== % e{max(Ty ,T; ),max(Cy ,Cg ), min(Gg , Gy ), min(Ug U ), min(F, , F; )}
==X R, UR

=R UR,cR,UR @
Let,y, eR, UR,
==y, e{max(T, , T ), max(Cy ,Cy ), min(Gg , Gy ), min(U U ), min(F, , F; )}
==Y, e{(max(Tg , T ), max(Cy ,Cp ), min(Gg , G ), min(U U ), min(F, , B )}
=>Y¥, eR UR,
=R, UR c R UR, 2
Therefore, from (1) and (2) we obtain,
RUR, =R, UR,
(b) Similarly, we can prove that
RNR,=R,NR,
© RURUR)=(RUR)UR,
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Assumthat,x, e R, U(R, UR;)

==X €R u<max(TRz T, )y max(Cy ,Cp ), min(Gg ,Gg ), min(Ug U ), min(F, , FR3)>

==X € <max(TR1,TRz,TRs),max(CRi,C&,CRS),min(GRl,GRZ,GRS),min(URl,URZ,URg),min(FR2,FRZ,FR3)>
=>X € <max(TRl ,TRZ), max(CRl,CRz), min(GRl,GRZ), min(URl,URZ), min(FRl, FR2)>u R,

==X (R UR,)UR,
R U(R, UR) c (R UR,)UR, ®))
Assumthat, y, € (R, UR,)UR,
=y, € <max(TR1,TR2),max(CRl,CRZ),min(GRl,GRZ),min(URl,URZ),min(FRl,FR2)>u R
==Y, € <max(TR1,TRz Tg, )y max(Ce , Cp ,Cp ), min(Gg , Gy, Gy ), min(Ug, ,Ug ,Ug ), min(F, , F; FR3)>
==V, eR u<max(TRz Tg, )y max(Ce ,Cg ), min(Gg , Gy ), min(Uy ,Ug ), min(F, , FR3)>
=Yy, e R U(R,UR,)
(RVR)UR <R U(R, UR;) (4)
From (3) and (4) we conclude that,
RURUR)=(RUR)UR,
(d) Similarly, we can prove that
RNRNR)=(RNR)NR,
@ RUR,NR)=(RUR)N(R UR)
Assumethat, x, € R, U(R, " R;)
==X, € R u(min(T, T, ),min(Cy,,Cy, ), max(Gy, , Gy, ), max(Uy, .Uy, ) max (R, Fy,))
e <max(TR1,min(TR2,TRS)),max(CRl,min(CRz,CRg )),min(GRl,max(GRz,GR3)),>

LoA\min(Ug ,max(Ug U )), min(F, ,max(F, , F, ))
=> X € <max(TR1 Tx ):max(Cy ,Cy ), min(G, , Gy, ), min(U,, , U, ), min(F , FR2)>
m<max(rRz ,TRs), matx(CR2 ,CRs), min(GRZ ,GRS), min(URZ ,URS), min(FRz, FR3)>
=X €(RRUR))N(R, UR;) (5)
Assumethat, y; € (R, UR,) " (R, UR;)
=y, e (max(T,, . T, ),max(Cy, ,Cy, ), Min(Gy, , Gy, ), min(Uy, Uy ), min(F, , Fy, )
A (max(T,, Ty, ), max(Cy, ,C, ), Min(Gg, , Gy ), min(U, Uy, ), min(F, , Fy,))

max (T, , min(T, , Ty )), max(Cg ,min(Cy ,Cy )), min(Gg , max(Gg, , Gy )),

R e<min(URl,max(URz,URS)),min(FRl,max(FRZ,FR3)) >
= ¥; €< T, ,Cy .Gy Uy Fyy > (min(T, T, ), min(Cy ,Cy, ), max(Gy, , Gy, ), max(Uy, Uy ) max (R, Fy.))
==Yy eR u<min(TRZ ,TRs),min(CRz ,CRB),max(GRZ ,GRs), max(URz ,URg)max(FRz , FR3)>
==Yy, eR U(R,NR,) (6)
From (5) and (6), we conclude that
R U(R,"R)=(R VUR,)N (R, UR,)
8 RVURNR)=R
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Assumethat,x, e R, U(R, N R,)

==X €R u<min(Tle Tg, )y min(Cy ,Cp ), max(Gg , Gy ), max(Ug ,Ug ) max(F , FRZ)>
<max(TFel ,min(T, , T, ), max(Cy , min(Cg, , Cy, ), min(G, , max(Gy, , Gy, )),>

"=\ minU,,,max(U,, ,U,, )), min(F, , max(F , ;)

=% €<Tp,Cqp Gy Ug , Fp >
==X R
=R UR NR)cR (7

Assumethat, x; € R,
=X e<TR1,CR1,GR1,URl,FRl >

=% & (max(T, ,min(T, T, ), max(C,, ,min(C,, , C,, )), min(G, , max(Gy, , Gy, )), min(U,, ,max(U,, .Uy, ), min(F, , max(F, , . )))
=% € R u(min(T, T, ), min(C,, ,C,, ), max(Gy, , Gy, ), max(Uy, U, Y max(F, , Fy )

=~ % eR U(R NR,)
=~R cRU(R NR,) ®)

From (6) and (8), we conclude that
RURNR)=R

(h) Similarly, we can prove that
RNRUR)=R

@ (R =R

Assum that, x, € (R°)°

== Xi € (FR1 'UR1 ’1_GR1 'CRl ’TRl )C
=-% € (T.Cq .Gy Up , F2)

==X €R

=-(R°)° R, ©)

Assum that,y, € R,
=Y € (TR17CR17GR1 ’URl’FRl)

C
=> yi € (FRl’URl'l_GR1 'CR1'TR1)

=Y € (R1C )C
==R < (R)* (10)

From (9) and (10), we obtain
(R°)° =R,

() RAR =0
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Assum that,x, e R, "R°

== % €Ty, Cr ,Gg U, Fy )N (R Ug  1-G ,Cp, \ T )

=% e<min(T, , F; ), min(Cg ,Uy ), max(Gg ,1- Gy ), max (U 7 Cr, ) max(F; , Ty ) >
==X €0

=R NR <@ a1

Assum that, y, € 6
==y, e<min(T, , Fy, ), min(Cy , U, ), max(G,, ,1- G, ), max(Uy, ,C,, ), max(F, T, ) >

=Y € (TR1 1Cr1Gr, U FRl)m(FRl’URlll_GRl’CRllTRl)
=Y, eR N Ric

==60cR NR" 12)

From (11) and (12), we obtain

R ARC =0

(k) (R1 Y Rz)c = R1C N ch

Assumthat, x, € (R, UR,)°

=> % € (max(Tg , T ), max(Cg ,Cg ), min(Gg , Gy ), min(Ug ,Ug ), min(F, , Fy, N°©
= %, e (min(F, , F, ), minU .Uy, ),1-min(G, , G, ), max(Cy , Cy, ). max(Ty, Ty )
==X, € (FRl,URl,l—GRl,CRl,TRl )ﬁ(FRZ Ug, 1 1=Gg,, Cg, ’TRz)

==X € RlC N ch

= (R,UR,)° € RC AR/ @3)

Again, Assumthat,y, e R° NR,°

=~ Y, €(Fq Ug 1-Gg .Cq To ) (Fe, Up, 1-Gy . Cy Ty )

=Y, € <min(FR1 VP, ), min(UR1 e, ),1- min(GRl,GRz), max(CRl,CRZ ), max(TRl T, )>
=Y, € (Max(Tg , Tg, ), max(Cg ,Cg ), min(Gg , Gy ), min(U ,Up ), min(F, , Fy )N°©
=Yy, € (RRUR,)®

==R°NRS c (R UR,)® 14)

From (13) and (14), we conclude that

(RUR) =R NRS
) (R1 N Rz)c = R1C Y ch

Assumthat, x, € (R, "R,)°
=~ X & (min(T, , T, ),min(Cy ,C, ),max(Gy Gy ), max(Uy U, ), max(F, , Fy, ))°
= X € <maX(FR1 ' FRZ )! maX(U Ry ’URz )’l_ maX(GRl ! GRZ )’ min(CRl ' CRZ )’ min(TRl ,TRZ )>

- %, € (Fy Uy 11-Gq . Cy Ty JU(Fy Uy 1-Gy ,Co Ty )

=-x €R®UR,
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= (R,NR,)° RS URS° (15)

Again, Assumthat,y, e R° UR,®

==y, €(Fy . Ug 1-G, ,Co T, YU(F, Ug ).1-G, ,Co (T, )

=Y, € <max(FRl JFg, ) max(Ug ,Ug ), 1-max(Gg ,Gg ), min(Cg ,Cy ), min(Ty, ,TR2)>
==Y, e (Min(T, , T ), min(Cg ,Cy ), max(Gg , Gy ), max(Ug Uy ), max(Fg , Fy, ))°©
=~Y, e(RNR,)°

==R°URS c (R NR,)° (16)

From (15) and (16) we conclude that,
(RN Rz)c = Ric Y RZC
4. Conclusion:

In this article we have develop pentapartitioned neutrosophic set. The pentapartitioned
neutrosophic set is extension of SVNS and QSVNS. The concept of complement law, inclusion law,
union law, intersection law, commutative law, etc. have been defined on pentapartitioned
neutrosophic sets. Future works may comprise of the study of different types of operators on
pentapartitioned neutrosophic sets dealing with actual problems and implementing them in

decision-making problems [8-13].
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