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Abstract. The primary goal of this article is to establish and investigate the idea of interval-valued neutrosophic
soft subring. Again, we have introduced function under interval-valued neutrosophic soft environment and
investigated some of its homomorphic attributes. Additionally, we have established product of two interval-
valued neutrosophic soft subrings and analyzed some of its fundamental attributes. Furthermore, we have
presented the notion of interval-valued neutrosophic normal soft subring and investigated some of its algebraic

properties and homomorphic attributes.
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ABBREVIATIONS

TN indicates “T-norm”.

SN indicates “S-norm”.

IVTN indicates “Interval-valued T-norm”.
IVSN indicates “Interval-valued S-norm”.
CS indicates “Crisp set”.

US indicates “Universal set”.

F'S indicates “Fuzzy set”.

IF'S indicates “Intuitionistic fuzzy set”.
NS indicates “Neutrosophic set”.

PS indicates “Plithogenic set”.

SS indicates “Soft set”.
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IVEFES indicates “Interval-valued fuzzy set”.

IVIFS indicates “Interval-valued intuitionistic fuzzy set”.
IVNS indicates “Interval-valued neutrosophic set”.

NSSR indicates “Neutrosophic soft subring”.

NNSSR indicates “Neutrosophic normal soft subring”.
IVNSR indicates “Interval-valued neutrosophic subring”.
IVINSSR indicates “Interval-valued neutrosophic soft subring”.
IVNNSSR indicates “Interval-valued neutrosophic normal soft subring”.
DMP indicates “Decision making problem”.

¢(F) indicates “Power set of .

K indicates “The set [0, 1]”.

1. Introduction

Uncertainty plays a huge part in different economical, sociological, biological, as well as
other scientific fields. It is not always possible to tackle ambiguous data using CS theory.
To cope with its limitations Zadeh introduced the groundbreaking concept of FS [1] theory.
Which was further generalized by Atanassov as IFS [2] theory. Later on, Smarandache ex-
tended these notions by introducing NS [3] theory, which became more reasonable for managing
indeterminate situations. From the beginning, NS theory became very popular among various
researchers. Nowadays, it is heavily utilized in numerous research domains. PS [4] theory is
another innovative concept introduced by Smarandache, which is more general than all the
previously mentioned notions. In NS and PS theory some of Smarandache’s remarkable contri-
butions are the notions of neutrosophic robotics |5, neutrosophic psychology [6], neutrosophic
measure |7], neutrosophic calculus [8], neutrosophic statistics |9], neutrosophic probability [10],
neutrosophic triplet group [11], plithogenic logic, probability |12], plithogenic subgroup [13],
plithogenic aggregation operators |14], plithogenic hypersoft set [15], plithogenic fuzzy whole
hypersoft set [16], plithogenic hypersoft subgroup [17], etc. Moreover, NS and PS theory
has several contributions in various other scientific fields, for instance, in selection of suppli-
ers 18], professional selection [19], fog and mobile-edge computing [20], fractional program-
ming |21], linear programming [22], shortest path problem [23-30], supply chain problem [31],
DMP [32-37], healthcare [38,39], etc.

Interval-valued versions of FS [40], IFS [41], and NS [42] are further generalizations of their
previously discussed counterparts. Since the beginning, various researchers have carried out
this concepts and explored them in different research domains. For instance, nowadays in
logic [42], abstract algebra [43(46], graph theory [47,/48], DMPs [49-51], etc., these concepts

are widely used.
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Another set theory of utmost importance is SS [52] theory. It was introduced by Molodtsov
to deal with uncertainty more conveniently and easily. At present, it is extensively used in
different scientific areas, like in DMPs [53H57], abstract algebra [58H61], stock treading [62], etc.
Furthermore, to achieve higher uncertainty handling potentials researchers have implemented
SS theory in different interval-valued environments. The following Table [I] comprises some

momentous aspects of different interval-valued soft notions.

TABLE 1. Significance of different interval-valued soft notions in various fields.

Author & references Year Contributions in various fields

Yang et al. [63] 2009 Introduced soft IVFS and defined complement,
“and” and “or” operations on them.

Jiang et al. [64] 2010 Proposed soft IVIFS and defined complement,

“and”, “or”, union, intersection, necessity, and pos-
sibility operations on them.

Feng et al. [65] 2010 Introduced soft reduct fuzzy sets of soft IVFS and
utilizing soft versions of reduct fuzzy sets and level

sets, proposed flexible strategy for DMP.

Broumi et al. [66] 2014 Presented generalized soft IVNS, analyzed some set
operations and further, applied it in DMP.

Mukherje et al. [67] 2014 Proposed relation on soft IVIFSs and presented a
solution to a DMP.

Broumi et al. [68] 2014 Proposed relation on soft IVNSs and studied reflex-

ivity, symmetry, transitivity of it.
Mukherje and Sarkar |[69] 2015 Defined Euclidean and Hamming distances between
two soft IVNSs and presented similarity measures

according to distances within them.

Deli |70] 2017 Defined soft IVNS and introduced some operations.
Further, implemented this in DMP.
Garg and Arora [71] 2018 Solved DMP with soft IVIFS information.

Group theory and ring theory are essential parts of abstract algebra, which have various
applications in different research domains. But these were initially introduced under the crisp
environment, which has certain limitations. From the year 1971, various mathematicians
started implementing uncertainty theories to generalize these notions. Some noteworthy con-
tributions in the field of group theory under uncertainty can be found on [72H76|. In ring theory
under uncertainty, the following articles [77-80] are some important developments. Again, sev-
eral researchers introduced these notions under soft environments. For instance, researchers

have introduced the concepts of ring theory under soft fuzzy [81], soft intuitionistic fuzzy [82],
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and soft neutrosophic [83] environments. Also, some more articles which can be helpful to
different researchers are [84-91], etc. Now, by mixing interval-valued environment with soft
neutrosophic environment, we can introduce a more general version of NSSR, which will be
called IVNSSR. Also, their homomorphic attributes can be studied. Again, their product and
normal versions can be introduced and studied. Based on these perceptions, the followings are
our primary objectives for this article:

e Introducing the concept of IVNSSR and a analyzing its homomorphic attributes.

e Introducing the product of IVNSSRs.
Introducing subring of a IVNSSR.
e Introducing the concept of IVNNSSR and a analyzing its homomorphic properties.

The arrangement our article is: in Section |2, some desk researches of IVIN, IVSN, NS,
IVNS, IVNSS, NSR, NSSR, etc., are discussed. In Section [3] the concept of IVNSSR has
been introduced and some fundamental theories are provided. Also, their product and nor-
mal versions are defined and some theories are given to understand their different algebraic
characteristics. Lastly, in Section [} mentioning some future scopes, the concluding segment

is given.

2. Literature Review

Definition 2.1. [92] A function T': K — K is known as a TN iff Vg, n, z € K, the followings

can be concluded

(1) T(97 1) =49

Definition 2.2. [93] A function T : ¢(K) x ¢(K) — ¢(K) defined as T(g,n) =
[T(g~,n"),T(g",n")] (T is a TN) is known as an IVTN.

Definition 2.3. [92] A function S : K — K is known as SN iff Vg, n, z € K, the followings

can be concluded

Definition 2.4. [93] The function S : ¢(K) x ¢(K) — ¢(K) defined as S(g,n) =
[S(g7,n7),S(g",nT)] (S is a SN) is called an IVSN.
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Definition 2.5. [3] A NS o of a CS @ is denoted as 0 = {(g,to(g),ig(g),fg(g)) 1g € Q}.
Here Vg € Q, t,(9),is(g9), and f,(g) are known as degree of truth, indeterminacy, and falsity
which satisfy the inequality ~0 < t,(g) + i,(9) + fo(g) < 37.

The set of all NSs of @) will be expressed as NS(Q).

Definition 2.6. [52] Let @ be a US and A be a set of parameters. Also, let L C A. Then
the ordered pair (f, L) is called a SS over @, where f : L — ¢(Q) is a function.

Definition 2.7. [94] Let @ be a US and A be a set of parameters. Also, let M C A. Then a
NSS over @ is denoted as (f, M) where f: M — NS(Q) is a function.

The following Definition is a redefined version of NSS, which we have adopted in this

article.

Definition 2.8. [56] Let @ be a US and A be a set of parameters. Then a NSS § of @ is
denoted as 6 = {(r,ls5(r)) : r € A} where l5 : A — NS(Q) is a function which is also known
as an approximate function of NSS & and Is5(r) = {(g,ti,()(9), 1,()(9), fi;0)(9)) * 9 € @}
Here, Vg € Q, t154:7(9)s d15()(9), and fi5)(g ) [0,1] and they satisfy the inequality 3 >
tis(ry(9) + i15 () (9) + fisry (9) = 0.

The set of all NSSs of a set @ will be expressed as NSS(Q).

Definition 2.9. [42] An IVNS of @ is defined as the mapping ¢ : Q — ¢(K) x ¢(K)

where 5(9) = {(9,%5(9),45(9), f(9)) : g € Q}, where Vg € Q, t5(9), i5(g), and f5(g) C [

0, 1].
The set of all IVNSs of a set @ will be expressed as IVNS(Q).

Definition 2.10. [70] Let @ be a US and A be a set of parameters. Then a IVNSS ¥ of @ is
denoted as ¥ = {(r,ly(r)) : r € A}, wherely : A — IVNS(Q) is a function which is also known
as an approximate function of IVNSS ¥ and Iy (r) = {(g,flq}(r) (9), 71, ) (9); flq, y(9) ) 1g € Q}.

Here, Vg € Q, Elq,(r)(g)v glq,(r)(g)v and flq,(r)(g) - [Oa 1}
The set of all IVNSSs of a set @ will be expressed as IVNSS(Q).

Definition 2.11. [70] U3 = {(r,ly,(r)) : v € A} and Uy = {(r,lw,(r)) : 7 € A} be two
IVNSSs of Q. Then ¥ = ¥; U Uy = {(7“, lq;(’l“)) ‘e A} is defined as

ty(ry = [max {7, npmax{t b o]

Ly, (r)’ l\p
by (r) = [min{lz (r)’ Zlq, (r) } min {Zl ZzJ; (r )H
[min{leq,l(r)’flq,Q(r)}’mln{flq,l(r)’flq,z(r)}]

t1g (r)
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Definition 2.12. [70] @1 = {(r,ly,(r)) : 7 € A} and ¥y = {(r,ly,(r)) : 7 € A} be two
IVNSSs of Q. Then ¥ =¥, NV¥y = {(r, l\p(r)) S A} is defined as
tig(r) = [min {EZ—\pl( X } mln{t t;\;2( )}]

by (r) = [ max {El_q,l(r)’ Zlq,2(r)}’ max {%1(1»)’ ZZQ(T)}]

[ max {JEI(W ﬁ;z(r) }, max {fz:l(r)v fz:z(r) 1]

t1g (r)

2.1. Neutrosophic subring

Definition 2.13. [30] Let (Q, +, ) be a crisp ring. A NS o = {(g,t5(9),ix(9), f(9)) : g € Q}
is called a NSR of F', iff Vg,n € Q,
(i) ta(g+mn) > T(to(9) te(n)), io(g +n) > I(is(9),i0(n)), folg+n) < F(fo(9), fo(n))
(i) to(—g) = to(9), io(—g) Zic(9), fo(—9) < fo(g)
(iii) to(g-n) > T(ts(9),ts(n)), io(g-n) > I(is(g),is(n)), folg-n) < S(fol(9); fo(n)).
Here, T and I are two TNs and S is a SN.

The set of all NSR of a crisp ring (@, +, ) will be expressed as NSR(Q).

Proposition 2.1. [80/ A NS o = {(g,to(g),ia(g),fa(g)) 1g € Q} is called a NSR of Q, iff
Yg,n € Q,
(i) ta(g_n) Z T(ta(g)ata(n))a ia(g_n) > I(ZO'( ) 0’( )) fa( ) (fd( ) fU( ))
(ii) to(g-n) > T(ta(g),to-(n)), io(g-n) > I(zg(g) ir(n )) folg-n) < S( )
Here, T and I are two TNs and S is a SN.

Proposition 2.2. [80] Let 01,09 € NSR(Q). Then o1 Noy € NSR(Q).

Theorem 2.3. [80] Let (Q,+,-) and (Y,+,-) be two crisp rings. Also, let h: Q —Y be a
homomorphism. If o is a NSR of Q then h(c) is a NSR of Y.

Theorem 2.4. [80] Let (Q,+,-) and (Y,+,-) be two crisp rings. Also, let h: Q —Y be a
homomorphism. If o' is a NSR of Y then h™'(c") is a NSR of Q.

Definition 2.14. [80] Let o = {(g9,t+(9),i0(9), f+(9)) : 9 € Q} be a NSR of Q. Then
Vs € [0,1] the s-level sets of @ are defined as

(i) (td)s = {g €Q: ta(g) > 8}7
(1) (i0)s = {9 € Q tin(g) > £}, and
(iil) (fo)*={9€Q: fo(g) < s}.

Proposition 2.5. [80] A NS o = {(g,t+(9),is(9), f+(9)) : g € Q} of a crisp ring (Q,+,") is
a NSR of Q iff Vs € [0,1] the s-level sets of Q, i.e. (ty)s, (is)s, and (f5)® are crisp rings of
Q.
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2.2. Neutrosophic soft subring

Definition 2.15. [83] Let (@, +,-) be a crisp ring and A be a set of parameters. Then a NSS
§={(r,15(r)) : r € A} with ls: A — NS(Q) is called a NSSR if Vr € A, l5(r) € NSR(Q).

The set of all NSSR of a crisp ring (@, +, - ) will be expressed as NSSR(Q).
Proposition 2.6. [83] A NSS ¢ = {(r, {(9:t1i5 (@) 11507 (9): frs(9) 9 € Q}) S A}
over a crisp ring (Q,+,-) is called a NSSR iff the following conditions hold:

(1) t150) (g —1) = T (ti;09(9): tig () (7)), 1y (9 — 1) = I (i1 (9), T15 ) (1) 5 frsr) (g — 1) <
(f15 ( )s flé(r) n)) and

(i) iy (g - n) = T(tiy)(9) tiy () (1) sy (9 - 1) > I(ing()(9)s iy () ()5 fis(ry(g - 1) <
S(frs(9)s fis(r (”))

Proposition 2.7. [85] Let 61,02 € NSSR(Q). Then 61 Nd2 € NSSR(Q).

Theorem 2.8. [83] Let (Q,+,-) and (Y,+,-) be two crisp rings. Also, let h: Q —Y be an
isomorphism. If 6 is a NSSR of Q then h(d) is a NSSR of Y.

Theorem 2.9. [85] Let (Q,+,-) and (Y,+,-) be two crisp rings. Also, let h: Q — Y be a
homomorphism. If ' is a NSSR of Y then h=1(8") is a NSSR of Q.

Theorem 2.10. ; € NSSR(Q) and 02 € NSSR(Y'), then their cartesian product 61 X do €
NSSR(Q xY).

Definition 2.16. [83] A NSSR § = {(r,l5(r)) : v € A} of a crisp ring (Q, +,) is known as a
NNSSR of Q iff () (9-1) = ti5() (0 9), 15 (r) (9-1) = 15y (00 9), and fi)(g-n) = fiyr)(n-9).

The set of all NNSSR of @ will be expressed as NNSSR(Q).
Proposition 2.11. /85] Let 61,02 € NNSSR(Q). Then 61 Ndy € NNSSR(Q).

Theorem 2.12. (85 Let (Q,+,-) and (Y,+,-) be two crisp rings. Also, let h: Q =Y be an
isomorphism. If § is a NNSSR of Q then h(d) is a NNSSR of Y.

Theorem 2.13. [85/ Let (Q,+,) and (Y,+,-) be two crisp rings. Also, let h: Q —Y be a
ring homomorphism. If &' is a NNSSR of Y then h=1(d") is a NNSSR of Q.

3. Proposed notion of interval-valued neutrosophic soft subring

Definition 3.1. Let (Q,+, ) be a crisp ring and A be a set of parameters. An IVNSS

U = {(r, {(g,t_lq,(r)( ), zlq, y(9)s fl\p(r (g ) ig € Q}) = A} is called an IVNSSR of (Q, +, )
if Vg,n € Q, and Vr € A, the followings can be concluded:
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)
(111) Uy (r) qg- 7’L) < f(glw (r) (g)?gl\p(’!‘) (n))7
)

The set of all IVNSSR of a crisp ring (@, +, ) will be expressed as IVNSSR(Q).

Example 3.2. Let (Z,+,-) be the ring and N be a set of parameters. Also, let ¥ =

{(r, {(g,t_lq}(r)(g),flq,(r)(g),ﬁ\p(r)(g)) : g € Z}) e € N} be an IVNSS of Z, where
lg : N — IVNS(Q) and Vg € Z, Vr € N corresponding memberships are

- [1 l}ifQGZZ

tiy(r(9) = r+llr ,
[0, 0] if g €22 +1
) [0, 0] it g €22
iy (r)(9) = 11 , and
— — | if 27+ 1
{27“—0—2’27“]196 +
7 [0, 0] it g €27
flxp(r)(g): r—1 T :
{ " ,T+1]1fg€22+1

Here, considering minimum TN and maximum SNs Vr € N, U € IVNSSR(Z).

Example 3.3. Let (Z4,+,-) be the ring of integers modulo 4 and A = {ry,ry,73} be a set
of parameters. Also, let ¥ = {(7”7 {(r, by ()(9): iy (1) (9), flq,(r)(g)) tg € Z4}> ir € A} be an
IVNSS of Z4, where lg : A — IVNS(Q). Again, let the membership values of the elements
belonging to ¥ are specified in Table and

TABLE 2. Membership values of elements with respect to parameter rq

U(r1) | tig(e) Uy (1) Fia(ry)
0 | [0.64,0.66] | [0.33,0.35] | [0.13,0.14]
1 | [0.7,0.72] | [0.21,0.23] | [0.77,0.79]
5 | [0.74,0.76] | [0.24,0.26] | [0.51,0.53]
3 |0.66,0.68] | [0.31,0.33] | [0.28,0.3]
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TABLE 3. Membership values of elements with respect to parameter 9

U(ra) t_l\p(T’Q) gl\11(7‘2) fl\p(m)
0 [0.68,0.7] | [0.3,0.32] |[0.31,0.33]
1 [0.61,0.63] | [0.31,0.33] | [0.41,0.43]
2 [0.57,0.59] | [0.4,0.42] | [0.65,0.67]
3 [0.7,0.72] | [0.26,0.28] | [0.52,0.54]

TABLE 4. Membership values of elements with respect to parameter r3

\II(T3) El\p(rs) Yy (rs) JFZ\I/(TB)
0 [0.71,0.73] | [0.2,0.23] | [0.15,0.17]
1 [0.83,0.85] | [0.15,0.17] | [0.24, 0.26]
2 [0.68,0.7] | [0.3,0.32] | [0.38,0.4]
3 [0.78,0.8] | [0.18,0.2] | [0.4,0.43]

Here, considering the Lukasiewicz TN (T'(g,n) = max{0,g + n — 1}) and bounded sum SNs
(S(g,n) = min{g +n,1}), Vr € A, ¥ € IVNSSR(Z,).

Proposition 3.1. An I[VNSS ¥ = {(r, {(g,flq/(r)( )ity (r)(9), fl\p (9)) g€ Q}) ‘T € A}
of a crisp ring (Q,+,-) is an IVNSSR iff the following conditions hold (considering idempotent
IVTN and IVSNs):

(i) f1y () (9 — 1) = Tty (9):
n) < F(fiy)(9); frg () n))

(ii) Ly (g-n) > T(tlg(r)(g)vflw( )( n)), i@ (g-n)
F(fra)(9); figm ().

Proof. Let ¥ € IVNSSR(Q®). Then

( ) i) (9 = 1) < I(i1g()(9): 1y () ()5 frem) (9 —

< ity (1)(9): Ty (1)) Jrg(ry (9 1) <

n) > T (t,(9), tig () (—n)) [by Definition
T(t_l\p(’r‘) (g), El\p(r) (n)) [by Definition

tig () (9 —

Y

Similary, we will have
i1y (9 — 1) < I(ig)(9), i1y (), and
Jro@ (9 =) < F(fiy)(9) fry (1),

Again, (ii) follows immediately from condition (iii) of Definition
Conversely, let conditions (i) and (ii) of Proposition hold. Assuming 6 as the additive
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neutral member of (Q,+,-), we have
t1y () (0Q) = iy (9 — 9)
= t14(r)(9) (3.1)
Similaly,
i1 (r) (0Q) < i1y (1) (9) (3:2)
Jra()(00) < fiym(9) (3.3)
Now,
ty () (—9) =ty () (g — 9)
> Tty (1) (0Q): Ly (1) (9))
> T (f1y (1) (9): Ty () (9)) [by [B-1]
= 11, () (g) [since T'is idempotent] (3.4)
Similarly,
i14,()(—9) <1y (r)(g) [since I is idempotent] (3.5)
Jio(=9) < fiy()(g) [since F' is idempotent] (3.6)
Hence,
> T (t1y,(r)(9), (r)(_n))
> T (f14, (1) (9): Ty vy () [y B.4] (3.7)
Similarly,
i1 () (9 + 1) < Il (1)(9): ity (1) (n)) [by [B-5] (3.8)
fro)(9+ 1) < F(fiy)(9): iy ry(n)) [by B-6] (3.9)

Hence, Equations and prove part (i) of Proposition Again, part (ii) of

Proposition [3.1] is similar to condition (iii) of Definition So, ¥ € IVNSSR(Q). ¢

Theorem 3.2. Let (Q,+,-) be a crisp ring. If W1, Uy € IVNSSR(Q), then ¥1 N ¥y €

IVNSSR(Q) (considering idempotent IVTN and IVSNs).
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Proof. Let ¥ = ¥ N ¥y, Now, Vg,n € Q and Vr € A

ty () (9 + 1) =T (g, (9 + )iy, (g + 7))
> T(T(frg, () (9) Ty, ) () T gy ) (9): By ) ()
- T(T(}Wlm g, () (), T (fig, 1) (), g, 1) (9 ))) [as T is commutative]
= T<T(_x1/1 (9), 2?l%(r) (9))7T(51q,1(r) (n), t_l\p2(7’) (”))) [as T is associative]

= T(t14(r)(9): L1y (1) (1)) (3.10)

and

> T (t1g,()(9): tig, (r)(9)) [by Definition B.1]

= t14(r)(9) (3.11)

Similarly, we can show
i1y () (9 + 1) < T(i1y () (9): 1y (r) (1) (3.12)

and

Also, we can show that
by (9 - 1) = T (1) (9), tiy () (), (3.16)
i1y (9 1) < 1 (igy () (9)s i1y () (1)), and (3.17)
Jra) (9 1) < F(fiy)(9)s fry oy (1) (3.18)

So, from Equations ¥ € IVNSSR(Q).

Remark 3.3. In general, if U1, Vg € IVNSSR(Q), then ¥1U¥y may not always be an IVNSSR
Of (Q> +, )

The following Example [3.4] will prove Remark

Example 3.4. Let (Z,+,-) be the ring of integers and N be a set of parameters. Again,
let ¥ = {(r,{(g,flq,l(r)()zlwl ()flq;l(r( 9) + g € Z}) or € N} and ¥y =
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{(r, {(g,ﬁWQ(T)(g),ZlWZ(T)(g), ﬁTQ(T)(g)) 1g € Z}) :r € N\ {1}} be two IVNSSs of Z, where

ly, : N — IVNSS(Q) be defined as

[ L 1}ifgezz

ty, ()= " T Lr ,
[0,0] if g €27 + 1
[0, 0] if g € 27
i1y, () (9) = 11 , and
r r
0, 0] if g € 27
Fra (9) =4 rr — :
wy (1) [r 17 :_1} ifgc2z 41
ror
and ly, : N\ {1} — IVNSS(Q) be defined as
1 1
7 (9) [;’r 1} if g €32
tig, (m(9) = - )
i [0,0] if g €37 +1
[0, 0] if g € 32
iy, (@ =911 1 , and
[0,0] if g €32
le r (g): — — .
wqy () [7’ 277” 1} ifgesz+1
r—1

Here, considering minimum TN and maximum SNs Uy, Uy € IVNSSR(Z). Let ¥ = ¥ U U,.

Now considering » = 3 we will have

. Fgl}ﬁgGQZ

th,l(3)(g) =443 and
0,0] ifge2Z+1
11

) Pg§}ﬁg€3Z

by, (3) (g) =4 1'3

0,0 ifge3Z+1

Now, taking g = 10 and n = 15, we will have

tig(3)(g + 1) = t1,,3)(10 + 15)
= 11,,(3)(25)
= maX{t_lqjl (3) (25), fl%(s) (25)}
= max{][0, 0], [0, 0]}
=1[0,0]

S. Gayen; F. Smarandache; S. Jha; M. K. Singh; S. Broumi; and R. Kumar.
Interval-valued Neutrosophic Environment

Soft Subring Theory Under



Neutrosophic Sets and Systems, Vol. 36, 2020 205

Again, if ¥ € IVNSSR(Q) then Vg,n € Q, trg(3) (g + n) > mln{tl 1(9); tig(3y(n)}. But, here

f1,(3(10 + 15). So, W g IVNSSR(Q).

Corollary 3.4. If Uy, Vs € IVNSSR(Q), then W1 U Wy € IVNSSR(Q) iff one is a subset of

other.

Definition 3.5. let ¥ = {(r,{(g,t_l\y(?q)(g) i19(r)(9), [y r)( 1 g € Z4}) tr € A} be an
IVNSS of a crisp ring (Q,+,-). Also, let [g1,n1], [g2,n2], and [g3,n3] € ¢(K). Then the CS
\I'([gl’n1]7[g2’n2]7[g3’n3]) is called a level set of IVNSSR W, where for any g € \I'([gl’n1]7[g2:n2]7[g3’n3])
the following inequalities will hold: #;,((g9) > [g1,71], il\p( y(9) < lg2,m2], and fi,(9) <

g3, n3).

Theorem 3.5. Let (Q,+,:) be a crisp ring. Then W € IVNSSR(Q) iff
v[glvn1]7[92vn2]7[937n3] S ¢(K) with t_l\p(r)(HQ> > [91777’1]7 El\p(r‘)(eQ) < [927n2]7 and

f <
fl\Il(T)(HQ) — [93’n3]7 \IJ([gl,nl},[QQ,n2L[93,n3}
potent IVTN and IVSNs).

) is a crisp subring of (Q,+,-) (considering idem-

Proof. Since, Ty, (y(0q) > [g1,m], i1,0)(0Q) < [g2,m2], and fi,(m(0) < lgs,ns], g €
) is non-empty. Now, let ¥ € IVNSSR(Q) and

, L.e.,

v ([91 n1l.lg2,n2].lg3 ,ns]) ([91 ;n1l.[g2,m2],[g3,m3]

g,n € \If([glmﬂ’[g%nz}’[g&ng}). To show that, (g —n) and g-n € \I/([glm]’[g%n?]’[g?”ng]). Here,
tg (1) (9 = 1) 2 T(t14,()(9), 1y (r)(n)) [by Proposition B.1]
o7
= T([Qlu”l]? [glunl]) |:8,S g,n € \II([gl’n1]7[927n2]7[93’n3])j|
> [g1,m1] [as T is idempotent] (3.19)
Again,
by (9 1) > T(f1,(1(9): tiy () (n)) [by Proposition 1]
7
> T([ghm], [91,711]) [as g,n € ‘If([ghm}’[g%nﬂ’[g&n?)})]
> [g1,n1] [as T is idempotent] (3.20)
Similarly, as I and F are idempotent, we can prove that
i1y (ry (9 — 1) < [g2,n2], (3.21)
lep(r (g n) < [927n2]7 (3‘22)
fryry(g —n) < [g3,n3], and (3:23)
Jro (g - 1) < [g3,n3]. (3.24)
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So, from Equations|3.19H3.24{(¢g—n) and g-n € ¥

ie.,

(lg1.m1].[g2:m2).l93.m5])’ (lg1.m1).[g2.:m2]. g5 )

is a crisp subring of (@, +, -).
Conversely, let ¥ ( is a crisp subring of (Q,+,-). To show that, ¥ €
IVNSSR(Q).

Let g,n € @, then there exists [g1,n1] € ¢(K) such that T (¢, (9), Gy (n) = [g1,n4].

[91,m1],[g2,m2],[93 ,ns])

Wherefrom #;,(,1(9) > [g91,71] and 1,y (n) > [g1,11]. Also, let there exist [g2,n2], [g3,n3] €

¢(K) such that I (i, )(9), i1y (1) = [g2,n2) and F(fi,)(9): fiy (1)) = lg3,ns]. Then

g,n cw ([gl7n1}’[927n2}’[937n3}) .

Now, as \Il( is a crisp subring, g —n € ¥ and g -n €

lg1.n1].[g2.n2],[g3,n3]) (Ig1,m1),lg2,m2],[g3,m5] )

mmw¢WMWWM'
Hence,

tig(r)(g —n) > [k, 51]

= T(t14(r)(9): ligy () (n)) and (3.25)
tig(r)(g - n) = [k1, 51]
=T (t1y, (1) (9); tig (r) (1)) (3.26)

Similarly, we can prove that

i1y (g —n) < [k, 59

=1 (i) (9) 14 () (1), (3.27)

i1y (9 - 1) < [k, 52
= T (i1 (1) (9), g (1) (M), (3.28)

Frary(g —n) < [k3, 53]
= F(fiy()(9), frury(n)), and (3.29)

Jro ) (g - n) < [ks, s3]
= F(f1,)(9); fiym(n)) (3.30)

Hence, from Equations [3.25H3.30| ¥ € IVNSSR(Q).

Definition 3.6. Let ¥ and ¥’ be two IVNSSs of two CSs @ and Y, respectively. Also, let
h:Q — Y be a function. Then

(i) image of ¥ under h will be
h(\P) = {(’F, {(n7Eh(lqz(’l‘))(”)?gh(lq;(’r’))(”)? f_h(lq;(T’))(n)) ‘ne Y}) re A}7

where Ty, () (n) = A (n)flq,(r)(s)a iy () (1) = A (n)glq,(r)(s)v and fyy () (v) =
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seh
Zh(lq,(r))(n) = 1 () (R (1)), Fri(r)) () = frory (R ().
(i) preimage of ¥’ under h will be

flq, y(s).  Wherefrom, if h is injective then ti,))(n) = &0 (7' (n)),

(W) = {(7“7 {9 109,60 (9)s in-1(14, () (9)> 104,00 (9)) 2 9 € Q}) € A},

where -1, ) (9) = Ty o) (M9)), ih-10y,61)(9) = Ty (R(9)s Fa-1ayr
Sy (R(9)).-

nig) =

Theorem 3.6. Let (Q,+,-) and (Y,+,-) be two crisp rings. Also, let h : Q@ — Y be an

isomorphism. If U is an IVNSSR of Q then h(V) is an IVNSSR of Y.

Proof. Let n1 = h(g1) and na = h(g2), where g1, g2 € Q and ny,ny € Y. Now,

thiag () (n1 — n2) =ty (R (n1 — n2)) [as b is injective]

=11y (r) (h_l(nl) - h_l(ng)) [as ! is a homomorphism]
= Elq,(r) (91 — g2)

> T (1 (r)(91)> try (1) (92))

= T(%(r) (A= (1)) tug oy (B (n2))>

=T (tntg () (1) Erg () (72))

Again,

thity () (N1 - n2) =, (R (n1 - m2)) [as h is injective]
= t14(r) (' (n1) - h™*(n2)) [as h™! is a homomorphism]
= t14(r) (91 - 92)

T (14, ) (91): 1y () (92))

(1 ) (71 (01), Trg () (B (m2)) )

= T (En(1.(r)) (1) Ty (1)) (72))

v

Il
~

Similarly,

ih(ly(r) (M1 — N2)

IN
~|

(ih(ta () (70), in (1 () (72))
(in( i )

) ) 1o (1) (1) i1 () (P2)
(n1 —n2) < F(faay ) (11), friy () (n2
) )

)
Th(ly (r
)

IN
~i

)(nl N9
Fro ) (01 - 12) < F(fay o)) (11), Frgie () (n2

So, from Equations h(¥) is an IVNSSR of Y.

(3.31)

(3.32)

~ o~ o~
w w
(S} H~

S~— S~— SN— N—
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Theorem 3.7. Let (Q,+,-) and (Y,4+,-) be two crisp rings. Also, let h : @ — Y be a
homomorphism. If W' is an IVNSSR of Y then h='(¥') is an IVNSSR of Q. (Note that, h™*

may not be an inverse function but h=1(¥') is an inverse image of ¥').

Proof. Let n1 = h(g1) and ny = h(ga), where g1, g2 € @Q and nqy,n2 € Y. Now,

7?hfl(l\l,,(r))(gl —g2) = t_l\l,/(r) (h(gl - 92))
=1y, () (h(g1) — h(g2)) [as h is a homomorphism]

> T (t,(r) (71) By ) (72))
T (Elwl(r) (h(91)) t1y () (h(92)))

=T (th-1(13, () (91)s th101, (1)) (92)) (3.37)
Again,
Eh—l(lq,/(r))(gl " g2) = Elq,/(r)(h(gl '92))
= t_l‘l/,(,n) (h(gl) . h(gg)) [as h is a homomorphism]
= t1,,(r) (N1 - n2)
> T () (1), Ty, (1) (n2))
=T (%,(,«) (791)) trg ) (h(gz)))
= T (th-1(1y, () (91)> th-101, (1)) (92)) (3.38)
Similarly,
in-1(1g, () (91 = 92) < T(i-104,())(91), In-1(14, () (92)) (3.39)
in=1(14, () (91 - 92) < T (ip-104,01))(91), in-1(14, () (92)) (3.40)
Ty (91 = 92) < F (Fr-104, 0 (90, Tty () (92)) (3.41)
Fnrag,69)(91 - 92) < F(Fr0y,60)(91)s Fr-1ay,0)(92)) (3.42)

So, from Equations h~=1(¥’) is an IVNSSR of Q. g

Definition 3.7. Let (Q, +, ) be a crisp ring and ¥ € IVNSSR(Q). Again, let @ = [a1, ], 7 =
[v1,12], X = [x1, x2] € ¢(K). Then
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(i) W is called a (&, v, x)—identity IVNSSR over @, if Vg € @

B a it g=10g
tl r (g) = )
v [0,0] if g # 0g
B v it g=10¢
iy (r)(9) = , and
[1,1] if g # g
_ X ifg=10q
fl\p(r)(g) -

[1,1] if g # 6o

where ¢ is the additive zero element of Q.

(ii) W is called a (@, 7, x)—absolute IVNSSR over Q, if Vg € Q, {1, ()(9) = &, i1,y (9) = 7,

and fi, ) (9) = X.

Theorem 3.8. Let (Q,+,-) and (Y, +,-) be two crisp rings and ¥V €IVNSSR (Q). Again, let

h:Q —Y be a homomorphism. Then
(i) h(W) will be a (a, v, x)—identity IVNSSR overY, if Vg € Q

- a ifge Ker(h)
frutr)9) = {[0,0} otherwise 7

_ v ifge Ker(h)

() 9) = [1,1] otherwise ond
ﬁqj(ﬂ(g) _ X if g € Ker(h) |

[1,1] otherwise

(ii) (W) will be a (&, v, x)—absolute IVNSSR overY , if ¥ is a (&, v, x)—absolute IVNSSR

over Q.

Proof. (i) Clearly, by Theorem h(¥) € IVNSSR(Y). Let g € Ker(h), then h(g) = 0y.

So,
En(aa () (O¥) = Ty () (B (8Y))
=t1,()(9)
=a
Similarly,

in(ly () (fy) = 7, and

The () (By) = X

(3.43)

(3.44)
(3.45)
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Again, let g € @\ Ker(h) and h(g) = n. Then

En(ie () (1) = L1y () (R (n))

= t1,(m(9)
=10, 0] (3.46)
Similarly,
In(ig(r))(n) = [1,1] and (3.47)
fh(lw(r))(n) = [1,1] (3.48)
So, from the Equations [3.43] -—- 8 (U (a, v, x)—identity IVNSSR over Y.

(ii) Let h(g ):n,forgeQandneY. Then

En1y () (0) = L1 @y (R (1))

=11,()(9)
=a (3.49)
Similarly,
in(1y(r))(n) = 7 and (3.50)
Frery(n) = X (3.51)

So, from the Equations h(V) is a (&, 7, Y)—absolute IVNSSR over Y.

3.1. Product of interval-valued neutrosophic subrings

Definition 3.8. Let (Q,+,-) and (Y, +,-) be two crisp rings. Again, let ¥; € IVNSSR(Q)
and Wy € IVNSSR(Y), where W1 = { (11, {(9, i, ) (9): ity, ) (9): fi, 0)(9)) © 9 € Q}) -
ry € A} and Uy = {(7“2, {(v,fl%(m)(n)ﬁl%(m)(n),fl%(m)(n)) in € Y}) irg € A}. Then

cartesian product of ¥ and Wy will be
U = \Ifl X \Ifg
= {((r1,72),lw, xw,(r1,72)) : (r1,72) € A x A}

where the approximate function ly, xw, : A X A — IVNS(Q x Y') is defined as

’ﬂ |

=T (t1g, () (9): Ty, (r2) (M)

(i iy, (1) (9); qu, (rs)(n)), and

tl\pl x Wy (T1,72) (9,

Zqulquz (7"1,7"2)(

f_lq;lx\I/Q (7’1,7’2)(97 n) = F(f_lq;l (rl)(g)a flq,2(7‘2)(n)

~

,n) =

Similarly, product of 3 or more IVNSSRs can be defined.
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Theorem 3.9. Let (Q,+,-) and (Y,+,-) be two crisp rings with W1 € IVNSSR(Q) and Vs €
IVNSSR(Y ). Then W, x Wy € IVNSSR(Q x Y).

Proof. Let ¥ = W x Uy and (g1,n1), (g2,n2) € @ X R. Then

t_lq;(rl,r‘g) ((917 nl) - (927 nQ))

= ElW1XW2 (r1,r2) ((gl — 92,1 — n2))

T(El\pl (7’1)(91 - 92)? Equz (Tz)(nl - n2))
(T(Elml (r1) (gl)v Equl (r1) (92)) ) T(Elq,Q(rz) (n1)> Elq;Q (r2) (n2))>

(T(t_l‘lfl (r1) (91)7 flq,Q (r2) (nl)) ) T(t_lq,l (r1) (92)7 t_lq,Q (r2) (n2)))

[as T is associative]

Vv
N

Il
N~

T(El\p(hn) (g1, m1), 7“?l\lf(7’177’2)(92’ n2)) (3.52)

Again,

tig () (91, 701) - (92, 12))

=iy uy (r1.r0) (91 - 92,701 - 112))

=T (1, (1) (91 92)s Ly, (r) (01 - 112))
(T (01): Ty 000 (92) - T gy 1) (10). g 1 (12)))
(T (1, () (91)s Ty () (01)) s T (F1g (0 (92): B () (nz))>

[as T is associative]

IV
N

I
N

=T (t1g (ry,r9) (91, 11), Ty (4 2) (925 12)) (3.53)
Similary,

g (r1,r0) ((91,71) = (92,12)) < T (g (ryr) (915 1), Ty (gm0 (92, 722)) (3.54)
i (r1r2) (91, 11) + (92,12)) < T (i1 (r1,r0) (915 1) Ty (r1,r) (92, 122) )+ (3.55)
Sig (1) ((91,11) = (92,12)) < F(fig(r1,00) (91 11)5 fig (r1,r) (92, 12) ), and (3.56)
Jro i) ((g1:m1) - (92,12)) < F(fiy (r1,02) (915 11)5 frg (1,00 (92, 12)) (3.57)

So, by Proposition (3.1 and from Equations Uy x Uy € IVNSSR(Q x Y).
Corollary 3.10. Let Vi € {1,2,...,n}, (Qi,+, ) are crisp rings and V; € IVNSSR(Q;). Then

Uy X Wy X---x W, is a IVNSSR 0fQ1><Q2><'--XQn, where n € N.
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3.2. Subring of a interval-valued neutrosophic soft subgring

Definition 3.9. Let (Q,+,:) be a crisp ring and ¥, ¥y € IVNSSR(Q), where
U = {(T,{(97fzq,l(r)(g)ﬁz%(r)(g)vfz%(r)(g)) r g € Qf) :or € A} and Wy =
{(7‘,{(g,t_l%(r)(g),fl%(r)(g),flqlz(r)(g)) i g € Q}) ir € A}. Then ¥ is called a subring
of U if Vg € Q, ty (1)(9) < iy, (1)(9): 1y, (1) (9) = T1g,(r)(9), and fiy )(9) = fig, () (9)-

Theorem 3.11. Let (Q,+,) be a crisp ring and ¥ € IVNSSR(Q). Again, let V1 and Vo be
two subrings of W. Then W1 NWsy is also a subring of V, considering all the IVTN and IVSNs

as idempotent.

Proof. Here, Vg € Q

Al
S
-
]
S
N
—~
3
~
—~
S
~—
N
—~
<t
S
-
—~
3
~
—~
S
~—
Sl
-~
S
N
—~
3
~
—
S
~—
~—r

=11, () (9) [as T is idempotent] (3.58)

Similarly, since I and F are idempotent we have,

Uy (r) (9) = 1y () (9) and (3.59)
ooy )(9) = Fryry(9) (3.60)

So, from Equations [3.58 Vi N Wy is a subring of ¥.

Theorem 3.12. Let (Q,+,:) be a crisp ring and V1,V € IVNSSR(Q) such that ¥ is a
subring of Wa. Let (Y, +,-) is another crisp ring and h : Q — 'Y be an isomorphism. Then

(i) A(¥1) and h(V3) are two IVNSSRs over Y and
(i) h(¥q) is a subring of h(¥3).

Proof. (i) can be proved by using Theorem
(ii) Let n = h(g), where g € @ and n € Y. Then

t_l\pl(r) (9) < t_l%(r) (9) [as Wy is a subring of Wy

=1y, (1) (h1 (1) < iy, (R (0))

=th(y, (1)) (M) < th(ig, () () (3.61)

Similarly,
ity (1) (1) = ih(ly, () (n) and (3.62)
P, ) () 2 Fria, ) () (3.63)

So, from Equations h(¥1) is a subring of h(¥2).
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3.3. Interval-valued neutrosophic normal soft subrings

Definition 3.10. Let (Q,+,:) be a crisp ring and ¥ is an IVNSS of @, where ¥ =

{(r,{(g,t_lq,(T)(g),flq,(r)(g),fl\p(r)(g)) i g € Q}) r € A}. Then ¥ is called an IVNNSSR
over @ if

(i) ¥ is an IVNSSR of @ and
(ﬁ) Vg,n € Q, El\p(r)(g : n) = Z?lq;(r)<n : g): Elq;(r)(g : n) = Elq;(r)(n ’ 9)7 and fl\p(r)(g : n) =
Jig@y(n-g).
The set of all IVNNSSR of (Q,+,-) will be expressed as IVNNSSR(Q).

Example 3.11. Let (Z,+,-) be the ring and N be the set of parameters. Also, let ¥ =

{('r, {(g,ﬂq,(r)(g),glw(r)(g),fl\p(r)(g)) 1g € Z}) NS N} be an IVNSS of Z, where lg(r) : N —
IVNSS(Q) and Vg € Z, Vr € N corresponding membership values are

o [ LI }ﬁgEZZ

By (9) = r+1"r—1 :
[0,0] if g€ 2Z+1

) [0,0] if g € 2Z

ilq,(r)(g) = 1 1 , and

if 27, + 1

br+2?r—2}lge +

) [0,0] if g € 27

fum@=9mr—2 + 7. :
[r—l’r—l—l} ifge2z+1

Here, considering minimum TN and maximum SNs Vr € N, & € IVNNSSR(Z).

Theorem 3.13. Let (Q,+,) be a crisp ring. If U1,¥y € IVNNSSR(Q), then W1 NPy €
IVNNSSR(Q).

Proof. As Uy, Uy € IVNSSR(Q) by Theorem U NPy € IVNSSR(Q). Again,

by g (0 (9 1) =T (g, (9 1) Ty, (g 1))
=T (t1y, (0" 9)stig, () (- 9)) [as U1, Ty € IVNNSSR(Q)]

- t_\Iflﬂ‘l’Q (n : g) (364)

Similarly,
gl\plm\pQ (7’) (g : TL) = gl\plm\pQ (7’) (TL ' g) (365)
flqzlm\p2 (T’) (.g ' n) = le\I’ﬂ‘l‘IQ (7”) (n : g) (366)

Hence, ¥ N ¥y € IVNNSSR(Q).
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Remark 3.14. In general, if U1, ¥y € IVNNSSR(Q), then ¥ U ¥y may not always be an
IVNNSSR of (Q,+,-).

Remark can be shown by Example

Theorem 3.15. Let (Q,+,:) be a crisp ring. Then ¥ € IVNNSSR(Q) iff
Vigr,nil, (g2, nal, g3, ma] € O(K) with t,49(0Q) > [g1,m], iyr)(0Q) < lg2,m2], and

f_.l\ll(r)(eQ) S [g37n3]7 \II([917,”1],[927”2]7[937”3])
idempotent IVTN and IVSNs).

is a crisp normal subring of (Q,+,-) (considering

Proof. This can be proved using Theorem 0

Theorem 3.16. Let (Q,+,) and (Y,+,-) be two crisp rings. Also, let h: Q — 'Y be a ring
isomorphism. If ¥ is an IVNNSSR of Q then h(¥) is an IVNNSSR of Y.

Proof. As W is an IVNSSR of @, by Theorem h(¥) is an IVNSSR of Y. Let h(g1) = m1
and h(g2) = ng, where g1, g2 € @Q and nq,ne € Y. Then

th(tg(r)) (M1 - n2) = th, h=t(ny - ny )) [as h is injective]

)
o

hH( h~'(n2)) [as A" is a homomorphism]

=ty (K (n2) - ™1 (1))

= Ty (R (n2 - m1))

= Th(g () (n2 - 11) (3.67)
Similarly,

gh(lwm)(nl ‘ng) = fh(lq,(,n))(nQ -ny) and (3.68)

Tna @) (01 -12) = fray ey (n2 - n1) (3.69)

So, from Equations h(¥) is an IVNNSSR of Y.

4. Conclusions

Interval-valued neutrosophic field is a dynamic research domain. Under soft environment,
it becomes more general and productive. For this reason, we have adopted this mixed envi-
ronment and defined the notions of interval-valued neutrosophic soft subring along with its
normal version. Also, we have studied several homomorphic attributes of these newly intro-

duced notions. Again, we have introduced the product of two interval-valued neutrosophic
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soft subrings. Furthermore, we have given several fundamental theories to understand some

of

its algebraic characteristics. These newly introduced notions have the potentials to become

fruitful research domains. In future, for generalizing this concepts one can introduce them

under the hypersoft set environment.
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