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Abstract. In this paper, we introduce the notion of Pythagorean neutrosophic ideals, Pythagorean neutro-

sophic bi-ideal, Pythagorean neutrosophic interior ideal, Pythagorean neutrosophic (1,2) ideal of semigroups

and some of them interesting properties.
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1. Introduction

After the introduction of the fuzzy set by Zadeh [11], several researchers conducted exper-

iments on the generalizations of the notion of a fuzzy set. The concept of the intuitionistic

fuzzy set was introduced by Atanassov [1,2] as a generalization of the fuzzy set. Jun et al. [4,5]

considered the fuzzification of interior ideals in semigroups and the notion of an intuitionistic

fuzzy interior ideal of a semigroup S, and its properties were investigated. Kuroki [8] discussed

some properties of fuzzy ideals and fuzzy bi-ideals in the semigroup. Jun et al. [6] considered

the fuzzification of (1,2)-ideals in semigroups and investigated its properties. Yager [9, 10]

introduced the Pythagorean fuzzy set as a generalization of the fuzzy set. After its existence,

several researchers also studied the properties of fuzzy ideals of the semigroup. Yager and

Abbasov [37] initiated the notion of Pythagorean fuzzy set and this concept could be consid-

ered as a successful generalization of intuitionistic fuzzy sets. The main difference between

intuitionistic fuzzy sets and Pythagorean fuzzy sets is that, in the latter case, the sum of

membership and non-membership grades is greater than 1, however, the sum of their squares

belongs to the unit interval [0,1]. Analogously, in this novel pattern, the associated uncertainty

of membership grade and non-membership grade can be explained in a valuable method that

than of intuitionistic fuzzy set. Gun et al. [7] introduced the new concept of spherical fuzzy
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set and discuss the new operations. Smarandache [13] introduced the new concept of neutro-

sophic set. Khan et.al [12] introduced the Neutrosophic N-Structures and their application

in semigroups. The neutrosophic theories have received greater attention in recent years [14]-

[32]. Abdel-Basset et al. [33] proposed a new hybrid multi-criteria decision-making (MCDM)

using Analytical Hierarchy Process(AHP) and Preference Ranking Organization Method for

Enrichment Evaluations (PROMETHEE)-II approach for optimal offshore wind power station

location selection. Abdel-Basset et al. [34] Provided a neutrosophic PROMETHEE technique

for MCDM problems to describe fuzzy information efficiently. Abdel-Basset et al. [35] discussed

how smart internet of things technology can assist medical staff in monitoring the spread of

COVID-19. Abdel-Basset et al. [36] studied a comprehensive evaluation of the sustainability

of hydrogen production options through the use of a MCDM model.

In this paper, we discuss the properties of Pythagorean neutrosophic ideals in semigroups.

2. Preliminaries

Definition 2.1. [3] Let S be a semigroup. M and N be subsets of S, the product of M and 
N is defined as MN = {mn ∈ S | m ∈ M and n ∈ N} A non- empty subset M of S is called 

a sub-semigroup of S if MM ⊆ M . A non-empty subset M of S is called a left (resp. right) 

ideal of S if SM ⊆ M (resp.MS ⊆ M). A is called a two sided ideal of S if it is both a left 

ideal and right ideal of S. A sub- semigroup M of S is called a bi-ideal of S if MSM ⊆ M . A 

sub-semigroup M of S is called a (1,2) ideal of S if MSM2 ⊆ M . A semigroup S is said to be 

(2,2)- regular if m ∈ m2Sm2 for any m ∈ S. A semigroup S is called regular if for each element 

m ∈ S there exists x ∈ S such that m = mxm. A semigroup S is said to be completely regular 

if, for any m ∈ S, there exists x ∈ S such that m = mxm and mx = xm. For a semigroup 

S, is completely regular if and only if(iff) S is a union of groups iff S is (2,2)-regular. By a 
fuzzy set µ in a non-empty set S we mean a function µ : S → [0, 1], and the complement of µ, 

denoted by µ, is the fuzzy set in S given by µ(x) = 1 − µ(x) for all x ∈ S.

Definition 2.2. [9] Let X be a universe of discourse, A Pythagorean fuzzy set (PFS) 
P = {z, ϑp(x), ωp(x)/z ∈ X} where ϑ : X → [0, 1] and ω : X → [0, 1] represent the degree of 

membership and non-membership of the object z ∈ X to the set P subset to the condition 

0 ≤ (ϑp(z))2 + (ωp(z))
2 ≤ 1 for all z ∈ X. For the sake of simplicity a PFS is denoted as 

P = (ϑp(z), ωp(z)).

Definition 2.3. [13] Let X be a universe of discourse, A Neutrosophic set (NS) N = 
{z, ϑN (z), ωN (z), ψN (z)/z ∈ X} where ϑ : X → [0, 1], ω : X → [0, 1] and ψ : X → [0, 1] 

represent the degree of truth membership, indeterminacy-membership and false-membership of 
the object z ∈ X to the set N subset to the condition 0 ≤ (ϑN (z))+(ωN (z))+(ψN (z))≤ 3 for all z 

∈ X. For the sake of simplicity a NS is denoted as N = (ϑN (z), ωN (z), ψN (z)).
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3. Pythagorean neutrosophic set

Definition 3.1. Let X be a universe of discourse, A Pythagorean neutrosophic set (PNS)

PN = {z, µp(z), ζp(z), ψp(z)/z ∈ X} where µ : X → [0, 1], ζ : X → [0, 1] and ψ : X → [0, 1]

represent the degree of membership, non-membership and inderminancy of the object z ∈ X

to the set PN subset to the condition 0 ≤ (µp(z))
2+(ζp(z))

2+(ψp(z))
2 ≤ 2 for all z ∈ X. For

the sake of simplicity a PNS is denoted as PN = (µp(z), ζp(z), ψp(z)).

Definition 3.2. Let X be a nonempty set and I the unit interval [0, 1]. A Pythagorean

neutrosophic set with neutrosophic components [PNS] PN1 and PN2 of the form PN1 =

(z, µp1(z), ζp1(z), ψp1(z)/z ∈ X) and PN2 = (z, µp2(z), ζp2(z), ψp2(z)/z ∈ X). Then

1)P c
N = (z, ψp1(z), ζp1(z), µp1(z)/z ∈ X)

2)PN1 ∪ PN2 = {z,max(µP1(z), µP2(z)),max(ζP1(z), ζP2(z)),min(ψP1(z), ψP2(z))/z ∈ X}
3)PN1 ∩ PN2 = {z,min(µP1(z), µP2(z)),min(ζP1(z), ζP2(z)),max(ψP1(z), ψP2(z))/z ∈ X}

4. Pythagorean neutrosophic ideals in semigroups

In this section, let S denote a semigroup unless otherwise specified. We discuss the details

of Pythagorean neutrosophic ideals in semigroups.

Definition 4.1. A Pythagorean neutrosophic (PNS) PN = (µp, ζp, ψp) in S is called an

Pythagorean neutrosophic sub-semigroup of S, if

(i) µp(x1x2) ≤ max {µp(x1), µp(x2)}
(ii) ζp(x1x2) ≥ max {ζp(x1), ζp(x2)}
(iii) ψp(x1x2) ≤ max {ψp(x1), ψp(x2)} for all x1, x2 ∈ S.

Definition 4.2. A PNS P = (µp, ζp, ψp) in S is called an Pythagorean neutrosophic left ideal

of S, if

(i) µp(x1x2) ≤ µp(x2)

(ii) ζp(x1x2) ≥ ζp(x2)

(iii) ψp(x1x2) ≤ ψp(x2) for all x1, x2 ∈ S.

A Pythagorean neutrosophic right ideal of S is defined in an analogous way.An PNS

PN = (µp, ζp, ψp) in S is called an Pythagorean neutrosophic ideal of S, if it is both a

Pythagorean neutrosophic left and Pythagorean neutrosophic right ideal of S.It is clear that

any Pythagorean neutrosophic left(resp. right) ideal of S is a Pythagorean neutrosophic sub-

semigroup of S.

Definition 4.3. A Pythagorean neutrosophic sub-semigroup PN = (µp, ζp, ψp) of S is called

an Pythagorean neutrosophic bi-ideal(PNBI) of S.

(i) µp(x1ux2) ≤ max {µp(x1), µp(x2)}
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(ii) ζp(x1ux2) ≥ max {ζp(x1), ζp(x2)}
(ii) ψp(x1ux2) ≤ max {ψp(x1), ψp(x2)} for all u, x1, x2 ∈ S.

Theorem 4.4. If {Pi}i∈I is a family of PNBI of S, then ∩Pi is an PNBI of S. Where

∩Pi = (∨µpi ,∨ζpi ,∨ψpi) and ∨µpi = sup {µpi(x1)|i ∈ I, x1 ∈ S},
∨ζpi = sup {ζpi(x1)|i ∈ I, x1 ∈ S}, ∨ψpi = sup {ψpi(x1)|i ∈ I, x1 ∈ S}.

Proof. Let x1, x2 ∈ S. Then we have

∨µpi(x1x2) ≤ ∨{max {µpi(x1), µpi(x2)}}
= max {max {µpi(x1), µpi(x2)}}
= max {max {µpi(x1)} ,max {µpi(x2)}}
= max {∨µpi(x1),∨µpi(x2)}

∨ζpi(x1x2) ≥ ∨{max {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1)} ,max {ζpi(x2)}}
= max {∧ζpi(x1),∧ζpi(x2)}

∨ψpi(x1x2) ≤ ∨{max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1)} ,max {ψpi(x2)}}
= max {∨ψpi(x1),∨ψpi(x2)}.

Hence ∩Pi is an Pythagorean neutrosophic sub-semigroup of S.

Next for u, x1, x2 ∈ S, we obtain

∨µpi(x1ux2) ≤ ∨{min {µpi(x1), µpi(x2)}}
= max {max {µpi(x1), µpi(x2)}}
= max {max {µpi(x1)} ,max {µpi(x2)}}
= max {∨µpi(x1),∨µpi(x2)}

∨ζpi(x1ux2) ≥ ∨{min {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1), ζpi(x2)}}
= max {max {ζpi(x1)} ,max {ζpi(x2)}}
= max {∨ζpi(x1),∨ζpi(x2)}

∨ψpi(x1ux2) ≤ ∨{max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1), ψpi(x2)}}
= max {max {ψpi(x1)} ,max {ψpi(x2)}}
= max {∨ψpi(x1),∨ψpi(x2)}.

Hence ∩Pi is an PNBI of S.

This completes the proof.
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Theorem 4.5. Every Pythagorean neutrosophic left(right) ideal of S is an Pythagorean neu-

trosophic bi-ideal of S.

Proof. Let PN = (µp, ζp, ψp) is a Pythagorean neutrosophic left ideal of S and u, x1, x2 ∈ S.

Then

µp(x1ux2) = µp(x1ux2)

≤ µp(x2)

µp(x1ux2) ≤ max{µp(x1, µp(x2))}
ζp(x1ux2) = ζp(x1ux2)

≥ ζp(x2)

ζp(x1ux2) ≥ max{ζp(x1, ζp(x2))}
ψp(x1ux2) = ψp(x1ux2)

≤ ψp(x2)

ψp(x1ux2) ≤ max{ψp(x1, ψp(x2))}
Thus PN = (µp, ζp, ψp) is PNBI of S.

The right case is provided in an analogous way.

Theorem 4.6. Every Pythagorean neutrosophic bi-ideal of a group S is constant.

Proof. Let PN = (µp, ζp, ψp) be an PNBI of a group S and let x1 be any element of S.

Then

µp(x1) = µp(ex1e)

≤ max{µp(e), µp(e)}
= µp(e)

= µp(ee)

= µp(x1x
−1
1 )(x−1

1 x1)

= µp(x1(x
−1
1 x−1

1 )x1)

≤ max{µp(x1, µp(x1))}
= µp(x1)

ζp(x1) = ζp(ex1e)

≥ max{ζp(e), ζp(e)}
= ζp(e)

= ζp(ee)

= ζp(x1x
−1
1 )(x−1

1 x1)

= ζp(x1(x
−1
1 x−1

1 )x1)

≥ max{ζp(x1, ζp(x1))}
= ζp(x1)

and
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ψp(x1) = ψp(ex1e)

≤ max{ψp(e), ψp(e)}
= ψp(e)

= ψp(ee)

= ψp(x1x
−1
1 )(x−1

1 x1)

= ψp(x1(x
−1
1 x−1

1 )x1)

≤ max{ψp(x1, ψp(x1))}
= ψp(x1).

Where e is the identity of S. It follows that µp(x1) = µp(e), ζp(x1) = ζp(e) and ψp(x1) = ψp(e)

which means that PN = (µp, ζp, ψp) is constant.

Theorem 4.7. If an PNS PN = (µp, ζp, ψp) in S is an PNBI of S, then so is �PN =(
µp, ζp, ψp

)
.

Proof. It is sufficient to show that ψp satisfies the conditions in Definition 3.1 and Definition

3.4. For any u, x1, x2 ∈ S, we have

ψp(x1x2) = 1− ψp(x1x2)

≤ 1−min {ψp(x1), ψp(x2)}
= max {1− ψp(x1), 1− ψp(x2)}
= max

{
ψp(x1), ψp(x2)

}
and

ψp(x1ux2) = 1− ψp(x1ux2)

≤ 1−min {ψp(x1), ψp(x2)}
= max {1− ψp(x1), 1− ψp(x2)}
= max

{
ψp(x1), ψp(x2)

}
.

Therefore �PN is an PNBI of S.

Definition 4.8. A Pythagorean neutrosophic sub-semigroup PN = (µp, ζp, ψp) of S is called

a Pythagorean neutrosophic (1,2) ideal of S. If

(i) µp(x1u(x2x3)) ≤ max {µp(x1), µp(x2), µp(x3)}
(ii) ζp(x1u(x2x3)) ≥ max {ζp(x1), ζp(x2), ζp(x3)}
(iii) ψp(x1u(x2x3)) ≤ max {ψp(x1), ψp(x2), ψp(x3)} u, x1, x2, x3 ∈ S.

Theorem 4.9. Every PNBI is a Pythagorean neutrosophic (1,2) ideal of S.

Proof. Let PNS PN = (µp, ζp, ψp) be an PNBI of S and let u, x1, x2, x3 ∈ S.

Then

µp(x1u(x2x3)) = µp((x1ux2)x3)
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≤ max {µp(x1ux2), µp(x3)}
≤ max {max {µp(x1), µp(x2)} , µp(x3)}
= max {µp(x1), µp(x2), µp(x3)}

ζp(x1u(x2x3)) = ζp((x1ux2)x3)

≥ max {ζp(x1ux2), ζp(x3)}
≥ max {max {ζp(x1), ζp(x2)} , ζp(x3)}
= max {ζp(x1), ζp(x2), ζp(x3)}

and

ψp(x1u(x2x3)) = ψp((x1ux2)x3)

≤ max {ψp(x1ux2), ψp(x3)}
≤ max {max {ψp(x1), ψp(x2)} , ψp(x3)}
= max {ψp(x1), ψp(x2), ψp(x3)}.

Hence PN = (µp, ζp, ψp) is a Pythagorean neutrosophic (1,2) ideal of S.

To consider the converse of theorem next theorem, we need to strengthen the condition of

a semigroup S.

Theorem 4.10. If S is a regular semigroup, then every Pythagorean neutrosophic (1,2) ideal

of S is an PNBI of S.

Proof. Assume that a semigroup S is regular and let PN = (µp, ζp, ψp) be an Pythagorean

neutrosophic (1,2) ideal of S. Let u, x1, x2, x3 ∈ S. Since S is regular, we have x1u ∈
(x1Sx1)S ⊆ x1Sx1, which implies that x1u = x1Sx1 for some s ∈ S.

Thus

µp(x1ux2) = µp((x1sx1)x2)

= µp(x1s(x1x2))

≤ max {µp(x1), µp(x1), µp(x2)}
= max {µp(x1), µp(x2)}

ζp(x1ux2) = ζp((x1sx1)x2)

= ζp(x1s(x1x2))

≥ max {ζp(x1), ζp(x1), ζp(x2)}
= max {ζp(x1), ζp(x2)}

and

ψp(x1ux2) = ψp((x1sx1)x2)

= ψp(x1s(x1x2))

≤ max {ψp(x1), ψp(x1), ψp(x2)}
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= max {ψp(x1), ψp(x2)}.
Therefore PN = (ζp, ψp) is PNBI of S.

Theorem 4.11. A PNS PN = (µp, ζp, ψp) is an PNBI of S if and only if µp, ζp and ψp are

FBI of S.

Proof. Let PN = (µp, ζp, ψp) be an PNBI of S. Then clearly µp is a FBI of S. Let u, x1, x2 ∈ S.

Then

ψp(x1x2) = 1− ψp(x1x2)

≥ 1−max {ψp(x1), ψp(x2)}
= min {(1− ψp(x1)), (1− ψp(x2))}
= min

{
ψp(x1), ψp(x2)

}
ψp(x1ux2) = 1− ψp(x1ux2)

≥ 1−max {ψp(x1), ψp(x2)}
= min {(1− ψp(x1)), (1− ψp(x2))}
= min

{
ψp(x1), ψp(x2)

}
.

Hence ψp is a fuzzy bi-ideal of S.

Conversely, suppose that ζp and ψp are FBI of S. Let u, x1, x2 ∈ S.

Then

1− ψp(x1x2) = ψp(x1x2)

≤ min
{
ψp(x1), ψp(x2)

}
= min {(1− ψp(x1)), (1− ψp(x2))}
= max {ψp(x1), ψp(x2)}

1− ψp(x1ux2) = ψp(x1ux2)

≥ min
{
ψp(x1), ψp(x2)

}
= 1−max {ψp(x1), ψp(x2)}.

Which implies that ψp(x1x2) ≤ max {ψp(x1), ψp(x2)} and ψp(x1ux2) ≤ max {ψp(x1), ψp(x2)}
This completes the proof.

Definition 4.12. A PNS PN = (µp, ζp, ψp) in S is called an Pythagorean neutrosophic interior

ideal(PNII) of S if it satisfies

(i) µp(x1ux2) ≤ µp(u)

(ii) ζp(x1ux2) ≥ ζp(u)

(iii) ψp(x1ux2) ≤ ψp(u) u, x1, x2 ∈ S.

Theorem 4.13. If {Pi}i∈I is a family of PNII of S, then ∩Pi is a PNII of S. Where ∩Pi =

(∨µpi ,∨ζpi ,∨ψpi) and ∨µpi(x1) = sup {µpi(x1)|i ∈ I, x1 ∈ S},
∨ζpi(x1) = sup {ζpi(x1)|i ∈ I, x1 ∈ S}, ∨ψpi(x1) = sup {ψpi(x1)|i ∈ I, x1 ∈ S}.
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Proof. Let u, x1, x2 ∈ S.

Then

∨µpi(x1x2) ≤ max {max {µpi(x1), µpi(x2)}}
= (∨µpi(x1)) ∨ (∨µpi(x2))

∨ζpi(x1x2) ≥ max {max {ζpi(x1), ζpi(x2)}}
= (∨ζpi(x1)) ∨ (∨ζpi(x2))

and

∨ψpi(x1x2) ≤ max {max {ψpi(x1), ψpi(x2)}}
= (∨ψpi(x1)) ∨ (∨ψpi(x2))

∨µpi(x1ux2) ≤ ∨µpi(u)
∨ζpi(x1ux2) ≥ ∨ζpi(u)
and

∨ψpi(x1ux2) ≤ ∨ψpi(u).

Hence ∩Pi is an PNII of S.

Definition 4.14. Let PN = (µp, ζp, ψp) is a PNS of S and let α ∈ [0, 1] then the sets.

µp,α = {x1 ∈ S : µp(x1)α}, ζp,α = {x1 ∈ S : ζp(x1)α} and ψp,α = {x1 ∈ S : ψp(x1)α} are called

a µp-level α-cut, ζp-level α-cut and ψp-level α-cut of K respectively.

Theorem 4.15. If an PNS PN = (µp, ζp, ψp) in S is an PNII of S, then the µ-level α-

cut µp,α, ζ-level α-cut ζp,αand ψ-level α-cut ψp,α of PN are interior ideal of S, for every

α ∈ Im(µp) ∩ Im(ζp) ∩ Im(ψp) ⊆ [0, 1].

Proof. Let α ∈ Im(µp) ∩ Im(ζp) ∩ Im(ψp) ⊆ [0, 1].

let x1, x2 ∈ µp,α then µp(x1) ≤ α and µp(x2) ≤ α. It follows from that

µp(x1x2) ≤ µp(x1) ∨ µp(x2) ≤ α. So that x1, x2 ∈ µp,α.

If x1, x2 ∈ ζp,α then ζp(x1) ≥ α and ζp(x2) ≥ α. It follows from that.

ζp(x1x2) ≥ ζp(x1) ∨ ζp(x2) ≥ α. So that x1, x2 ∈ ζp,α.

If x1, x2 ∈ ψp,α, then ψp(x1) ≤ α and ψp(x2) ≤ α and so ψp(x1x2) ≤ ψp(x1) ∨ ψp(x2) ≤ α,

that is x1, x2 ∈ ψp,α.

Hence µp,α, ζp,α and ψp,α are sub-semigroup of S. Now let x1x2 ∈ S and u ∈ µp,α. Then

µp(x1ux2) ≤ µp(u) ≤ α and so x1ux2 ∈ µp,α.

If u ∈ ζp,α. Then ζp(x1ux2) ≥ ζp(u) ≥ α and so x1ux2 ∈ ζp,α.

If u ∈ ψp,α. Then ψp(x1ux2) ≤ ψp(u) ≤ α thus x1ux2 ∈ ψp,α.

Therefore µp,α,ζp,α and ψp,α are interior ideal of S.

Theorem 4.16. A PNS PN = (µp, ζp, ψp) is and PNII of S if and only if µp, ζp, ψp are fuzzy

interior ideal (FII) of S.
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Proof. Let PN = (µp, ζp, ψp) be an PNII of S. Then clearly µp is FII of S. Let u, x1, x2 ∈ S.

Then

ψp(x1x2) = 1− ψp(x1x2)

≥ 1− (ψp(x1)) ∨ ψp(x2)

= (1− ψp(x1)) ∧ (1− ψp(x2))

= ψk(x1) ∧ ψp(x2)

ψp(x1ux2) = 1− ψp(x1ux2)

≥ 1− (ψp(u))

= ψp(u)

ψk is a FII of S.

Conversely.

Suppose that ζp and ψp are FII of S. Let u, x1, x2 ∈ S.

1− ψp(x1x2) = ψp(x1x2)

≥ ψp(x1) ∧ ψp(x2)

= (1− ψp(x1)) ∧ (1− ψp(x2))

= 1− ψp(x1) ∨ ψp(x2)

= 1− ψp(x1ux2) = ψp(x1ux2)

≥ ψp(u) = 1− ψp(u)

which implies ψp(x1x2) ≤ ψp(x1) ∨ ψp(x2)

and

ψp(x1ux2) ≤ ψp(u)

This completes the proof.

5. Conclusions

In this paper Pythagorean neutrosophic sub-semigroup, Pythagorean neutrosophic

left(resp.right) ideal, Pythagorean neutrosophic ideal, Pythagorean neutrosophic bi-ideal,

Pythagorean neutrosophic interior ideal and investigated some properties.
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