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2Department of Mathematics, Ege University, 35100 İzmir, Turkey; tugcektcn@gmail.com
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Abstract. The aim of the study is to examine a neutrosophicN−subalgebra, a neutrosophicN−filter, level sets

of these neutrosophic N−structures and their properties on a strong Sheffer stroke non-associative MV-algebra.

We show that the level set of neutrosophic N−subalgebras on this algebra is its strong Sheffer stroke non-

associative MV-subalgebra and vice versa. Then it is proved that the family of all neutrosophic N−subalgebras

of a strong Sheffer stroke non-associative MV-algebra forms a complete distributive lattice. By defining a

neutrosophic N−filter of a strong Sheffer stroke non-associative MV-algebra, it is presented that every neutro-

sophic N−filter of a strong Sheffer stroke non-associative MV-algebra is its neutrosophic N−subalgebra but

the inverse is generally not true, and some properties

Keywords: strong Sheffer stroke non-associative MV- algebra, filter, neutrosophic N−subalgebra, neutro-

sophic N−filter.

—————————————————————————————————————————-

1. Introduction

The concept of fuzzy sets which has the truth (t) (membership) function was introduced by

L. Zadeh [29]. Since a positive meaning of information is explained by means of fuzzy theory,

researchers desire to deal with a negative meaning of information. Thus, Atanassov introduced

intuitionistic fuzzy sets [2] which are fuzzy sets with the falsehood (f) (nonmembership) func-

tion. Then, Smarandache introduced neutrosophic sets which are intuitionistic fuzzy sets with

the indeteminacy/neutrality (i) function [26,27]. Accordingly, neutrosophic sets are defined on

three components: (t, i, f) : (truth, indeteminacy, falsehood) [32]. Specially, many scientists

applied neutrosophic sets to the algebraic structures such as BCK/BCI-algebras, BE-algebras

and semigroups [3, 4, 11–16,24,28,30,31].
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Sheffer stroke, which is also called the NAND operator in computer science, was firstly

introduced by H. M. Sheffer [25]. Since any axioms and formulas in Boolean algebras can

be written only by using this operation [17], Sheffer stroke can be applied to many logical

algebras such as orthoimplication algebras [1], ortholattices [5], Hilbert algebras [18]- [19], BL-

algebras [23], UP-algebras [20] and BG-algebras [21]. Therefore, it is easier to control a logical

system consisting of Sheffer stroke itself. Moreover, C. C. Chang introduced MV-algebras

which are algebraic counterparts of Lukasiewicz many-valued logic [9, 10]. Then Chajda et

al. introduced and improved non-associative MV-algebras (briefly, NMV-algebras) which are

generalizations of MV-algebras [7,8]. Also, non-associative MV-algebras with Sheffer stroke [6]

and their filters [22] are presented.

Basic definitions and notions about strong Sheffer stroke non-associative MV-algebras,

N−functions and neutrosophic N−structures defined by the N−functions on a nonempty uni-

verse X are presented. Then the concepts of a neutrosophic N−subalgebra and a (a, b, c)−level

set defined by N−functions are given on strong Sheffer stroke non-associative MV-algebras. It

is shown that the (a, b, c)−level set of a neutrosophic N−subalgebra defined by N−functions

on strong Sheffer stroke non-associative MV-algebras is its strong Sheffer stroke non-associative

MV-subalgebra and the inverse is true. In fact, we state that the family of all neutrosophic

N−subalgebras of this algebraic structure forms a complete distributive lattice. Some prop-

erties of neutrosophic N−subalgebras of strong Sheffer stroke non-associative MV-algebras

are analyzed. Also, it is investigated the images of the sequence under N−functions on a

strong Sheffer stroke non-associative MV-algebra. Besides, we examine that the case which

N−functions defining a neutrosophic N−subalgebra of a strong Sheffer stroke non-associative

MV-algebra are constant. After defining a neutrosophic N−filter of a strong Sheffer stroke

non-associative MV-algebra by N−functions, some features of N−functions defining the neu-

trosophicN−filter are studied. We propound that (a, b, c)−level set of a neutrosophicN−filter

of a strong Sheffer stroke non-associative MV-algebra is its filter and that the subsets defined

by N−functions on a strong Sheffer stroke non-associative MV-algebra must be its filters so

that a neutrosophic N−structure on this algebra is a neutrosophic N−filter. It is stated that

every neutrosophic N−filter of a strong Sheffer stroke non-associative MV-algebra is its neu-

trosophic N−subalgebra while the inverse is usually not valid. In addition, new subsets of a

strong Sheffer stroke non-associative MV-algebra are described by the N−functions and cer-

tain elements in the algebra. We show that these subsets are filters of a strong Sheffer stroke

non-associative MV-algebra for its neutrosophic N−filter but the inverse does not mostly hold.
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2. Preliminaries

In this section, we give basic definitions and notions about strong Sheffer stroke non-

associative MV-algebras (briefly, strong Sheffer stroke NMV-algebras) and neutrosophic

N−structures.

Definition 2.1. [5] Let A = 〈A, |〉 be a groupoid. The operation | is said to be a Sheffer

stroke operation if it satisfies the following conditions:

(S1) x|y = y|x,
(S2) (x|x)|(x|y) = x,

(S3) x|((y|z)|(y|z)) = ((x|y)|(x|y))|z,
(S4) (x|((x|x)|(y|y)))|(x|((x|x)|(y|y))) = x.

Definition 2.2. [6] A strong Sheffer stroke NMV-algebra is an algebra (A, |, 1) of type (2, 0)

satisfying the identities for all x, y, z ∈ A:

(n1) x|y ≈ y|x,

(n2) x|0 ≈ 1,

(n3) (x|1)|1 ≈ x,

(n4) ((x|1)|y)|y ≈ ((y|1)|x)|x,

(n5) (x|1)|((x|y)|1) ≈ 1,

(n6) x|(((((x|y)|y)|z)|z)|1) ≈ 1,

where 0 denotes the algebraic constant 1|1.

Proposition 2.3. [22] Let (A, |, 1) be a strong Sheffer stroke NMV-algebra. Then the binary

relation ≤ defined by

x ≤ y if and only if x|(y|1) ≈ 1

is a partial order on A. Hence, (A,≤) is a poset with the least element 0 and the greatest

element 1.

Lemma 2.4. [22] In a strong Sheffer stroke NMV-algebra (A, |, 1), the following properties

hold for all x, y, z ∈ A:

(i) x|(x|1) ≈ 1,

(ii) x ≤ y ⇔ y|1 ≤ x|1,

(iii) y ≤ x|(y|1),

(iv) y|1 ≤ x|y,

(v) x ≤ (x|y)|y,

(vi) x ≤ (((x|y)|y)|z)|z,

(vii) ((x|y)|y)|y ≈ x|y,
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(viii) x|1 ≈ x|x,

(ix) x|(x|x) ≈ 1,

(x) 1|(x|x) ≈ x,

(xi) x ≤ y ⇒ y|z ≤ x|z,

(xii) x|(y|1) ≤ (y|(z|1))|((x|(z|1))|1),

(xiii) x|(y|1) ≤ (z|(x|1))|((z|(y|1))|1),

(xiv) x ≤ y and z ≤ t imply y|t ≤ x|z.

Definition 2.5. [22] A nonempty subset F ⊆ A is called a filter of A if it satisfies the following

properties:

(Sf − 1) 1 ∈ F ,

(Sf − 2) For all x, y ∈ A, x|(y|1) ∈ F and x ∈ F imply y ∈ F .

Lemma 2.6. [22] A nonempty subset F ⊆ A is a filter of A if and only if 1 ∈ F and x ≤ y

and x ∈ F imply y ∈ F .

Definition 2.7. [11] F(X, [−1, 0]) denotes the collection of functions from a set X to [−1, 0]

and a element of F(X, [−1, 0]) is called a negative-valued function from X to [−1, 0] (briefly,

N−function on X). An N−structure refers to an ordered pair (X, f) of a set X and an

N−function f on X.

Definition 2.8. [16] A neutrosophic N−structure over a nonempty universe X is defined by

XN :=
X

(TN , IN , FN )
= { x

(TN (x), IN (x), FN (x))
: x ∈ X},

where TN , IN and FN are N−function on X, called the negative truth membership function,

the negative indeterminacy membership function and the negative falsity membership function,

respectively.

Every neutrosophic N−structure XN over X satisfies the condition

(∀x ∈ X)(−3 ≤ TN (x) + IN (x) + FN (x) ≤ 0).

3. Neutrosophic N−structures

In this section, we give neutrosophic N−subalgebras and neutrosophic N−filters on strong

Sheffer stroke NMV-algebras. Unless indicated otherwise, A states a strong Sheffer stroke

NMV-algebra.

Definition 3.1. A neutrosophic N−subalgebra AN on a strong Sheffer stroke NMV-algebra

A is a neutrosophic N−structure of A satisfying the conditions

min{TN (x), TN (y)} ≤ TN (x|(y|1)),

max{IN (x), IN (y)} ≥ IN (x|(y|1))
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and

max{FN (x), FN (y)} ≥ FN (x|(y|1)),

for all x, y ∈ A.

Example 3.2. Consider a strong Sheffer stroke NMV-algebra A in which the set A = {0, u,
v, 1} and the Sheffer operation | on A has the following Cayley table:

Table 1

| 0 u v 1

0 1 1 1 1

u 1 v 1 v

v 1 1 u u

1 1 v u 0

A neutrosophic N−structure

AN = { 0

(−0.79,−0.001, 0)
,

u

(−0.68,−0.72,−0.4)
,

v

(−0.68,−0.72,−0.4)
,

1

(0,−0.88,−1)
}

on A is a neutrosophic N−subalgebra of A.

Definition 3.3. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-

algebra A and a, b, c be any elements of [−1, 0] such that −3 ≤ a + b + c ≤ 0. For

T a
N := {x ∈ A : TN (x) ≥ a},

IbN := {x ∈ A : IN (x) ≤ b}

and

F c
N := {x ∈ A : FN (x) ≤ c},

the set

AN (a, b, c) := {x ∈ H : TN (x) ≥ a, IN (x) ≤ b and FN (x) ≤ c}

is called the (a, b, c)−level set of AN . Moreover,

AN (a, b, c) = T a
N ∩ IbN ∩ F c

N .

Definition 3.4. [22] A subset B of a strong Sheffer stroke NMV-algebra A is called a strong

Sheffer stroke NMV-subalgebra of A if 1 of A is in B and (B, |, 1) forms a strong Sheffer stroke

NMV-algebra. Clearly, A itself and {1} are strong Sheffer stroke NMV-subalgebras of A.

Lemma 3.5. Let B be a nonempty subset of a strong Sheffer stroke NMV-algebra A. Then

B is a strong Sheffer stroke NMV-subalgebra of A if and only if x|(y|1) ∈ B, for all x, y ∈ B.
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Proof. Let B be a nonempty subset of a strong Sheffer stroke NMV-algebra A such that

x|(y|1) ∈ B, for all x, y ∈ B. Then 1 ≈ x|(x|1) ∈ B from Lemma 2.4 (i). Since B ⊆ A, (B, |, 1)

satisfies (n1)-(n6), for all x, y, z ∈ B. Thus, (B, |, 1) is a strong Sheffer stroke NMV-subalgebra

A.

Conversely, let B be a strong Sheffer stroke NMV-subalgebra of A. Since B states a strong

Sheffer stroke NMV-algebra, it must be closed under the Sheffer operation |, that is, x|y ∈ B,

for all x, y ∈ B. Hence, x|(y|1) ∈ B, for all x, y ∈ B.

Theorem 3.6. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A and a, b, c be any elements in [−1, 0] such that −3 ≤ a + b + c ≤ 0. If AN is a neutrosophic

N−subalgebra of A, then the nonempty level set AN (a, b, c) of AN is a subalgebra of A.

Proof. Let AN be a neutrosophic N−subalgebra of A and x, y be any elements in AN (a, b, c),

for a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0. Then TN (x) ≥ a, IN (x) ≤ b, FN (x) ≤ c,

TN (y) ≥ a, IN (y) ≤ b and FN (y) ≤ c. Since

TN (x|(y|1)) ≥ min{TN (x), TN (y)} ≥ a,

IN (x|(y|1))| ≤ max{IN (x), IN (y)} ≤ b

and

FN (x|(y|1)) ≤ max{FN (x), FN (y)} ≤ c,

for all x, y ∈ A, it follows that x|(y|1) ∈ T a
N , x|(y|1) ∈ IbN and x|(y|1) ∈ F c

N , which implies

that x|(y|1) ∈ T a
N ∩ IbN ∩ F c

N = AN (a, b, c). Thus, AN (a, b, c) is a subalgebra of A by Lemma

3.5.

Theorem 3.7. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A and T a
N , IbN and F c

N be subalgebras of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0.

Then AN is a neutrosophic N−subalgebra of A.

Proof. Let T a
N , IbN and F c

N be subalgebras of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a+ b+ c ≤ 0.

Assume that x and y are any elements in A such that u1 = TN (x|(y|1)) < min{TN (x), TN (y)} =

v1. If a0 =
1

2
(u1 + v1) ∈ [−1, 0), then u1 < a0 < v1. So, x, y ∈ T a0

N while x|(y|1) /∈ T a0
N , which

is a contradiction. Thus, min{TN (x), TN (y)} ≤ TN (x|(y|1)), for all x, y ∈ A.

Suppose that x and y are any elements in A such that u2 = max{IN (x), IN (y)} <

IN (x|(y|1)) = v2. If b0 =
1

2
(u2 + v2) ∈ [−1, 0), then u2 < b0 < v2, which implies that

x, y ∈ Ib0N but x|(y|1) /∈ Ib0N . This is a contradiction. Thus, IN (x|(y|1)) ≤ max{IN (x), IN (y)},
for all x, y ∈ A.
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Assume that x and y are any elements in A such that v3 = FN (x|(y|1)) > max{FN (x),

FN (y)} = u3. If c0 =
1

2
(u3 + v3) ∈ [−1, 0), then u3 < c0 < v3. Thus, x, y ∈ F c0

N but

x|(y|1) /∈ F c0
N , which is a contradiction. Thereby, max{FN (x), FN (y)} ≥ FN (x|(y|1)), for all

x, y ∈ A.

Therefore, AN is a neutrosophic N−subalgebra of A.

Theorem 3.8. Let {ANi : i ∈ N} be a family of all neutrosophic N−subalgebras of a strong

Sheffer stroke NMV-algebra A. Then {ANi : i ∈ N} forms a complete distributive lattice.

Proof. Let B be a nonempty subset of {ANi : i ∈ N}. Since ANi is a neutrosophic

N−subalgebra of A, for all ANi ∈ B, it satisfies

min{TN (x), TN (y)} ≤ TN (x|(y|1)),

IN (x|(y|1)) ≤ max{IN (x), IN (y)}

and

FN (x|(y|1)) ≤ max{FN (x), FN (y)},

for all x, y ∈ A. Then
⋂
B satisfies these inequalities. Thus,

⋂
B is a neutrosophic

N−subalgebra of A.

Let C be a family of all neutrosophic N−subalgebras of A containing
⋃
{ANi : i ∈ N}. Then⋂

C is also a neutrosophic N−subalgebra of A.

If
∧

i∈NANi =
⋂

i∈NANi and
∨

i∈NANi =
⋂
C, then ({ANi : i ∈ N},

∨
,
∧

) forms a complete

lattice. Moreover, it is distibutive by the definitions of
∨

and
∧

.

Lemma 3.9. If a neutrosophic N−structure AN on a strong Sheffer stroke NMV-algebra A is

a neutrosophic N−subalgebra of A, then TN (x) ≤ TN (1), IN (x) ≥ IN (1) and FN (x) ≥ FN (1),

for all x ∈ A.

Proof. Let a neutrosophic N−structure AN on a strong Sheffer stroke NMV-algebra A be a

neutrosophic N−subalgebra of A. By substituting [y := x] in the inequalities in Definition

3.1, it is obtained from Lemma 2.4 (i) that

TN (x) = min{TN (x), TN (x)} ≤ TN (x|(x|1)) = TN (1),

IN (1) = IN (x|(x|1)) ≤ max{IN (x), IN (x)} = IN (x)

and

FN (1) = FN (x|(x|1)) ≤ max{FN (x), FN (x)} = FN (x),

for all x ∈ H.
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The inverse of Lemma 3.9 does not hold in general.

Example 3.10. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Then a

neutrosophic N−structure

AN = { 0

(−0.8,−0.7,−0.02)
,

u

(−0.5,−0.4,−0.3)
,

v

(−0.2,−0.1,−0.11)
,

1

(0,−1,−0.6)
}

on A is not a neutrosophic N−subalgebra of A since

max{IN (u), IN (0)} = max{−0.4,−0.7} = −0.4 < −0.1 = IN (v) = IN (u|(0|1)).

Lemma 3.11. Let AN be a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra

A. If there exists a sequence {an} on A such that

limn−→∞ TN (an) = 0, limn−→∞ IN (an) = −1 and limn−→∞ FN (an) = −1,

then

TN (1) = 0, IN (1) = −1 and FN (1) = −1.

Proof. Let AN be a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra

A. Suppose that there exists a sequence {an} on A such that limn−→∞ TN (an) = 0 and

limn−→∞ IN (an) = −1 = limn−→∞ FN (an). Since TN (an) ≤ TN (1), IN (an) ≥ IN (1) and

FN (an) ≥ FN (1), for every n ∈ N from Lemma 3.9, it is obtained that

0 = lim
n−→∞

TN (an) ≤ lim
n−→∞

TN (1) = TN (1) ≤ 0,

−1 ≤ IN (1) = lim
n−→∞

IN (1) ≤ lim
n−→∞

IN (an) = −1

and

−1 ≤ FN (1) = lim
n−→∞

FN (1) ≤ lim
n−→∞

FN (an) = −1.

Thus, TN (1) = 0 and IN (1) = FN (1) = −1.

Lemma 3.12. A neutrosophic N−subalgebra AN of a strong Sheffer stroke NMV-algebra A

satisfies TN (x) ≤ TN (x|(y|1)), IN (x) ≥ IN (x|(y|1)) and FN (x) ≥ FN (x|(y|1)), for all x, y ∈ A

if and only if TN , IN and FN are constant.

Proof. Let AN be a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra A

satisfying TN (x) ≤ TN (x|(y|1)), IN (x) ≥ IN (x|(y|1)) and FN (x) ≥ FN (x|(y|1)), for all x, y ∈
A. Since TN (1) ≤ TN (1|(x|1)) = TN ((x|1)|1) = TN (x), IN (1) ≥ IN (1|(x|1)) = IN ((x|1)|1) =

IN (x) and FN (1) ≥ FN (1|(x|1)) = FN ((x|1)|1) = FN (x) from (n1) and (n3), it follows from

Lemma 3.9 that TN (x) = TN (1), IN (x) = IN (1) and FN (x) = FN (1), for all x ∈ A.

Conversely, every neutrosophicN−subalgebra AN of a strong Sheffer stroke NMV-algebra A

satisfies TN (x) ≤ TN (x|(y|1)), IN (x) ≥ IN (x|(y|1)) and FN (x) ≥ FN (x|(y|1)), for all x, y ∈ A

because TN , IN and FN are constant.

Tahsin Oner, Tugce Katican and Akbar Rezaei, Neutrosophic N−structures on strong
Sheffer stroke non-associative MV-algebras

Neutrosophic Sets and Systems, Vol. 40, 2021                                                                               242



Definition 3.13. A neutrosophic N−structure AN on a strong Sheffer stroke NMV-algebra

A is called a neutrosophic N−filter of A if

min{TN (x|(y|1)), TN (x)} ≤ TN (y) ≤ TN (1),

IN (1) ≤ IN (y) ≤ max{IN (x|(y|1)), IN (x)}

and

FN (1) ≤ FN (y) ≤ max{FN (x|(y|1)), FN (x)},

for all x, y ∈ A.

Example 3.14. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Then a

neutrosophic N−structure

AN = { 0

(−0.23,−0.3,−0.01)
,

u

(−0.02,−0.98,−0.11)
,

v

(−0.23,−0.3,−0.01)
,

1

(−0.02,−0.98,−0.11)
}

on A is a neutrosophic N−filter of A.

Lemma 3.15. Every a neutrosophic N−filter AN of a strong Sheffer stroke NMV-algebra

A satisfies that x ≤ y implies TN (x) ≤ TN (y), IN (x) ≥ IN (y) and FN (x) ≥ FN (y), for all

x, y ∈ A.

Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A and

x ≤ y. Then x|(y|1) ≈ 1 from Proposition 2.3. Thus,

TN (x) = min{TN (1), TN (x)} = min{TN (x|(y|1)), TN (x)} ≤ TN (y),

IN (x) = max{IN (1), IN (x)} = max{IN (x|(y|1)), IN (x)} ≥ IN (y)

and

FN (x) = max{FN (1), FN (x)} = max{FN (x|(y|1)), FN (x)} ≥ FN (y),

for any x, y ∈ A.

The inverse of Lemma 3.15 is generally not true.

Example 3.16. Consider the neutrosophic N−filter of A in Example 3.14. Then v � u when

−0.98 = IN (u) ≤ IN (v) = −0.3.
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Lemma 3.17. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A.

Then
TN ((x|(y|1))|(z|1)) ≤ TN ((x|(z|1))|((y|(z|1))|1)),

IN ((x|(y|1))|(z|1)) ≥ IN ((x|(z|1))|((y|(z|1))|1)),

and

FN ((x|(y|1))|(z|1)) ≥ FN ((x|(z|1))|((y|(z|1))|1)),

(1)

for all x, y, z ∈ A.

Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A. Since

(x|(y|1))|(z|1) ≤ y|(z|1) ≤ (x|(z|1))|((y|(z|1))|1) from Lemma 2.4 (iii) and (xi), it follows from

Lemma 3.15 that

TN ((x|(y|1))|(z|1)) ≤ TN ((x|(z|1))|((y|(z|1))|1)),

IN ((x|(y|1))|(z|1)) ≥ IN ((x|(z|1))|((y|(z|1))|1))

and

FN ((x|(y|1))|(z|1)) ≥ FN ((x|(z|1))|((y|(z|1))|1)),

for all x, y, z ∈ A.

The inverse of Lemma 3.17 does not usually hold.

Example 3.18. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Then a

neutrosophic N−structure

AN = { 0

(−0.69,−0.12, 0)
,

u

(−0.58,−0.87,−0.22)
,

v

(−0.58,−0.87,−0.22)
,

1

(−0.14,−0.93, 0.96)
}

on A satisfies the condition (1) in Lemma 3.17 but it is not a neutrosophic N−filter of A since

min{TN (u|(0|1)), TN (u)} = min{TN (v), TN (u)} = −0.58 > −0.69 = TN (0).

Lemma 3.19. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A and a, b, c be any elements of [−1, 0] with −3 ≤ a + b + c ≤ 0. If AN is a neutrosophic

N−filter of A, then the nonempty subset AN (a, b, c) is a filter of A.

Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A and

AN (a, b, c) 6= ∅ for a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0. Since a ≤ TN (x) ≤ TN (1), b ≥
IN (x) ≥ IN (1) and c ≥ FN (x) ≥ FN (1), for all x ∈ AN (a, b, c), we have 1 ∈ AN (a, b, c).

Let x|(y|1), x ∈ AN (a, b, c). Then a ≤ TN (x), IN (x) ≤ b, FN (x) ≤ c, a ≤ TN (x|(y|1)),

IN (x|(y|1)) ≤ b and FN (x|(y|1)) ≤ c. Since

a ≤ min{TN (x|(y|1)), TN (x)} ≤ TN (y),
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IN (y) ≤ max{IN (x|(y|1)), IN (x)} ≤ b

and

FN (y) ≤ max{FN (x|(y|1)), FN (x)} ≤ c,

for all x, y ∈ A, it is obtained y ∈ AN (a, b, c). Hence, AN (a, b, c) is a filter of A.

Theorem 3.20. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-

algebra A and T a
N , IbN , F c

N be filters of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a+ b+ c ≤ 0. Then

AN is a neutrosophic N−filter of A.

Proof. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra A

and T a
N , IbN , F c

N be filters of A, for all a, b, c ∈ [−1, 0] with −3 ≤ a + b + c ≤ 0. Assume

that TN (1) < TN (x0), IN (y0) < IN (1) and FN (z0) < FN (1). If a0 =
1

2
(TN (1) + TN (x0)),

b0 =
1

2
(IN (1) + IN (y0)) and c0 =

1

2
(FN (1) + FN (z0)) in [−1, 0), then TN (1) < a0 < TN (x0),

IN (1) > b0 > IN (y0) and FN (1) > c0 > FN (z0). Thus, 1 /∈ T a0
N , 1 /∈ Ib0N and 1 /∈ F c0

N , which

contradict with (Sf − 1). Hence, TN (x) ≤ TN (1), IN (x) ≥ IN (1) and FN (x) ≥ FN (1), for all

x ∈ A. Suppose that x1, x2, x3, y1, y2 and y3 are any elements of A such that

v1 = TN (y1) < min{TN (x1|(y1|1)), TN (x1)} = u1,

u2 = max{IN (x2|(y2|1)), IN (x2)} < IN (y2) = v2,

and

u3 = max{FN (x3|(y3|1)), FN (x3)} < FN (y3) = v3.

If a
′

=
1

2
(u1 + v1), b

′
=

1

2
(u2 + v2) and c

′
=

1

2
(u3 + v3) in [−1, 0), then v1 < a

′
< u1,

u2 < b
′
< v2 and u3 < c

′
< v3. So, y1 /∈ T a

′

N , y2 /∈ Ib
′

N and y3 /∈ F c
′

N when x1|(y1|1), x1 ∈ T a
′

N ,

x2|(y2|1), x2 ∈ Ib
′

N and x3|(y3|1), x3 ∈ F c
′

N . This is a contradiction. Thereby,

min{TN (x|(y|1)), TN (x)} ≤ TN (y),

IN (y) ≤ max{IN (x|(y|1)), IN (x)}

and

FN (y) ≤ max{FN (x|(y|1)), FN (x)},

for all x, y ∈ A. Therefore, AN is a neutrosophic N−filter of A.

Lemma 3.21. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra

A. Then AN is a neutrosophic N−filter of A if and only if z ≤ y|(x|1) implies

min{TN (y), TN (z)} ≤ TN (x),

IN (x) ≤ max{IN (y), IN (z)}
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and

FN (x) ≤ max{FN (y), FN (z)},

for all x, y, z ∈ A.

Proof. Let AN be a neutrosophic N−filter of A and x, y and z be any elements of A such that

z ≤ y|(x|1). Since TN (z) ≤ TN (y|(x|1)), IN (z) ≥ IN (y|(x|1)) and FN (z) ≥ FN (y|(x|1)) from

Lemma 3.15, it follows that

min{TN (y), TN (z)} ≤ min{TN (y|(x|1)), TN (y)} ≤ TN (x),

IN (x) ≤ max{IN (y|(x|1)), IN (y)} ≤ max{IN (y), IN (z)}

and

FN (x) ≤ max{FN (y|(x|1)), FN (y)} ≤ max{FN (y), FN (z)},

for all x, y, z ∈ A.

Conversely, suppose that AN is a neutrosophic N−structure on A such that z ≤ y|(x|1)

implies

min{TN (y), TN (z)} ≤ TN (x),

IN (x) ≤ max{IN (y), IN (z)}

and

FN (x) ≤ max{FN (y), FN (z)},

for all x, y, z ∈ A. Since x ≤ 1 ≈ x|0 ≈ x|(1|1) from (n2), it is obtained that TN (x) ≤ TN (1),

IN (1) ≤ IN (x) and FN (1) ≤ FN (x), for all x ∈ A. Since x ≤ (x|(y|1))|(y|1) from Lemma 2.4

(v), we have

min{TN (x|(y|1)), TN (x)} ≤ TN (y),

IN (y) ≤ max{IN (x|(y|1)), IN (x)}

and

FN (y) ≤ max{FN (x|(y|1)), FN (x)},

for all x, y ∈ A. Hence, AN is a neutrosophic N−filter of A.

Theorem 3.22. Every neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A is a

neutrosophic N−subalgebra of A.
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Proof. Let AN be a neutrosophic N−filter of A. Since

min{TN (x), TN (y)} ≤ min{TN (1), TN (y)}
= min{TN (((y|1)|1)|(((y|1)|x)|1)), TN (y)}
= min{TN (y|((x|(y|1))|1)), TN (y)}
≤ TN (x|(y|1)),

and similarly,

IN (x|(y|1)) ≤ max{IN (x), IN (y)}

and

FN (x|(y|1)) ≤ max{FN (x), FN (y)},

from (n1), (n3) and (n5), it follows that AN is a neutrosophic N−subalgebra of A.

The inverse of Theorem 3.22 does not usually hold.

Example 3.23. The neutrosophic N−subalgebra AN of A in Example 3.2. Then it is not a

neutrosophic N−filter of A since min{TN (u|(0|1)), TN (u)} = min{TN (v), TN (u)} = −0.68 >

−0.79 = TN (0).

Definition 3.24. Let A be a strong Sheffer stroke NMV-algebra. Define

Axt
N := {x ∈ A : TN (xt) ≤ TN (x)},

Axi
N := {x ∈ A : IN (x) ≤ IN (xi)}

and

A
xf

N := {x ∈ A : FN (x) ≤ FN (xf )},

for all xt, xi, xf ∈ A. Obviously, xt ∈ Axt
N , xi ∈ Axi

N and xf ∈ A
xf

N .

Example 3.25. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Let

TN (0) = −0.113, TN (u) = −0.12, TN (v) = −0.13, TN (1) = 0, IN (0) = −0.21, IN (u) = −0.22,

IN (v) = −0.23, IN (1) = −1, FN (0) = −0.31, FN (u) = −0.32, FN (v) = −0.33, FN (1) =

−0.34, xt = u, xi = v and xf = 0. Then

Axt
N = {x ∈ A : TN (u) ≤ TN (x)} = {0, u, 1},

Axi
N = {x ∈ A : IN (x) ≤ IN (v)} = {v, 1}

and

A
xf

N = {x ∈ A : FN (x) ≤ FN (0)} = A.

Theorem 3.26. Let xt, xi and xf be any elements of a strong Sheffer stroke NMV-algebra A.

If AN is a neutrosophic N−filter of A, then Axt
N , Axi

N and A
xf

N are filters of A.
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Proof. Let AN be a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra A. Since

TN (xt) ≤ TN (1), IN (1) ≤ IN (xi) and FN (1) ≤ FN (xf ), for any xt, xi, xf ∈ A, we have 1 ∈ Axt
N ,

1 ∈ Axi
N and 1 ∈ A

xf

N . Let x1|(y1|1), x1 ∈ Axt
N , x2|(y2|1), x2 ∈ Axi

N and x3|(y3|1), x3 ∈ A
xf

N .

Then TN (xt) ≤ TN (x1|(y1|1)), TN (xt) ≤ TN (x1), IN (x2|(y2|1)) ≤ IN (xi), IN (x2) ≤ IN (xi) and

FN (x3|(y3|1)) ≤ FN (xf ), FN (x3) ≤ FN (xf ). Since

TN (xt) ≤ min{TN (x1|(y1|1)), TN (x1)} ≤ TN (y1),

IN (y2) ≤ max{IN (x2|(y2|1)), IN (x2)} ≤ IN (xi)

and

FN (y3) ≤ max{FN (x3|(y3|1)), FN (x3)} ≤ FN (xf ),

we get y1 ∈ Axt
N , y2 ∈ Axi

N and y3 ∈ A
xf

N . Thus, Axt
N , Axi

N and A
xf

N are filters of A.

Example 3.27. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. For a

neutrosophic N−filter

AN = { 0

(−0.32,−0.29,−0.07)
,

u

(−0.32,−0.29,−0.07)
,

v

(−0.1,−0.78,−0.17)
,

1

(−0.1,−0.78,−0.17)
}

of A, xt = u, xi = v and xf = 1 ∈ A, the subsets

Axt
N = {x ∈ A : TN (u) ≤ TN (x)} = A,

Axi
N = {x ∈ A : IN (x) ≤ IN (v)} = {v, 1}

and

A
xf

N = {x ∈ A : FN (x) ≤ FN (1)} = {v, 1}

of A are filterss of A.

Theorem 3.28. Let xt, xi and xf be any elements of a strong Sheffer stroke NMV-algebra A

and AN be a neutrosophic N−structure on A.

(a) If Axt
N , Axi

N and A
xf

N are filters of A, then

TN (x) ≤ min{TN (y|(z|1)), TN (y)} ⇒ TN (x) ≤ TN (z),

IN (x) ≥ max{IN (y|(z|1)), IN (y)} ⇒ IN (x) ≥ IN (z)

and

FN (x) ≥ max{FN (y|(z|1)), FN (y)} ⇒ FN (x) ≥ FN (z),

(2)

for all x, y, z ∈ A.
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(b) If AN satisfies the condition (3.2) and

TN (x) ≤ TN (1), IN (1) ≤ IN (x) and FN (1) ≤ FN (x), for all x ∈ A, (3)

then Axt
N , Axi

N and A
xf

N are filters of A, for all xt ∈ T−1N , xi ∈ I−1N and xf ∈ F−1N .

Proof. Let AN be a neutrosophic N−structure on a strong Sheffer stroke NMV-algebra A.

(a) Let Axt
N , Axi

N and A
xf

N be filters of A, for any xt, xi, xf ∈ A, and x, y, z be any elements of

A such that TN (x) ≤ min{TN (y|(z|1)), TN (y)}, IN (x) ≥ max{IN (y|(z|1)), IN (y)} and FN (x) ≥
max{FN (y|(z|1)), FN (y)}. Since y|(z|1), y ∈ Axt

N , y|(z|1), y ∈ Axi
N and y|(z|1), y ∈ A

xf

N , where

xt = xi = xf = x, it follows from (Sf − 2) that z ∈ Axt
N , z ∈ Axi

N and z ∈ A
xf

N , where

xt = xi = xf = x. Thus, TN (x) ≤ TN (z), IN (z) ≤ IN (x) and FN (z) ≤ FN (x), for all

x, y, z ∈ A.

(b) Let AN be a neutrosophic N−structure on A satisfying the conditions (2) and (3),

for xt ∈ T−1N , xi ∈ I−1N and xf ∈ F−1N . Then 1 ∈ Axt
N , 1 ∈ Axi

N and 1 ∈ A
xf

N from the

condition (3). Let x1|(y1|1), x1 ∈ Xxt
N , x2|(y2|1), x2 ∈ Axi

N and x3|(y3|1), x3 ∈ A
xf

N . Thus,

TN (xt) ≤ TN (x1|(y1|1)), TN (xt) ≤ TN (x1), IN (x2|(y2|1)) ≤ IN (xi), IN (x2) ≥ IN (xi) and

FN (x3|(y3|1)) ≤ FN (xf ), FN (x3) ≤ FN (xf ). Since

TN (xt) ≤ min{TN (x1|(y1|1)), TN (x1)},

max{IN (x2|(y2|1)), IN (x2)} ≤ IN (xi)

and

max{FN (x3|(y3|1)), FN (x3)} ≤ FN (xf ),

it follows from the condition (2) that TN (xt) ≤ TN (y1), IN (y2) ≤ IN (xi) and FN (y3) ≤ FN (xf ).

Hence, y1 ∈ Axt
N , y2 ∈ Axi

N and y3 ∈ A
xf

N . Therefore, Axt
N , Axi

N and A
xf

N are filters of A.

Example 3.29. Consider the strong Sheffer stroke NMV-algebra A in Example 3.2. Let

TN (0) = TN (v) = −1, TN (u) = TN (1) = 0, IN (0) = IN (v) = 0, IN (u) = IN (1) = −1, FN (0) =

FN (v) = −0.71, FN (u) = FN (1) = −0.5. Then the filters

Axt
N = A,Axi

N = {u.1} and A
xf

N = A

of A satisfy the condition (2) in Theorem 3.28, for xt = v, xi = u and xf = 1 ∈ A.

Moreover, let

AN = { 0

(−0.99, 0,−0.01)
,

u

(−0.99, 0,−0.01)
,

v

(−0.99, 0,−0.01)
,

1

(0,−1,−1)
}

be a neutrosophic N−structure on A satisfying the conditions (2) and (3) in Theorem 3.28.

Then the subsets

Axt
N = {x ∈ A : TN (1) ≤ TN (x)} = {1},

Axi
N = {x ∈ A : IN (x) ≤ IN (0)} = A
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and

A
xf

N = {x ∈ A : FN (x) ≤ FN (u)} = A

of A are filters of A, where xt = 1, xi = 0 and xf = u ∈ A.

4. Conclusion

In this study, neutrosophic N−structures defined by N−functions on strong Sheffer stroke

NMV-algebras have been investigated. Basic definitions and notions about strong Sheffer

stroke NMV-algebras and neutrosophic N−structures defined by N−functions on a nonempty

universe X are presented and then a neutrosophic N−subalgebra and a (a, b, c)− level set of

a neutrosophic N−structure are defined by the help of N−functions on strong Sheffer stroke

NMV-algebras. It is shown that the (a, b, c)−level set of a neutrosophic N−subalgebra of

a strong Sheffer stroke NMV-algebra is its strong Sheffer stroke NMV-subalgebra and vice

versa. Also, it is proved that the family of all neutrosophic N−subalgebras of this alge-

braic structure forms a complete distributive lattice. It is illustrated that every neutrosophic

N−subalgebra of a strong Sheffer stroke NMV-algebra satisfies TN (x) ≤ TN (1), IN (1) ≤ IN (x)

and FN (1) ≤ FN (x), for all elements x in this algebra but a neutrosophic N−structure on a

strong Sheffer stroke NMV-algebra satisfying this property is generally not its neutrosophic

N−subalgebra. Besides, it is interpreted the images of the sequence under N−functions on

a strong Sheffer stroke NMV-algebra. Moreover, it is stated the case which N−functions

determining a neutrosophic N−subalgebra of a strong Sheffer stroke NMV-algebra are con-

stant. Then a neutrosophic N−filter of a strong Sheffer stroke NMV-algebra is defined via

N−functions and shown that the functions TN , IN and FN defining the neutrosophic N−filter

satisfies TN (x) ≤ TN (y), IN (x) ≥ IN (y) and FN (x) ≥ FN (y) when x ≤ y, but the inverse does

not usually hold. It is demonstrated that (a, b, c)−level set of a neutrosophic N−filter of a

strong Sheffer stroke NMV-algebra is its filter. Indeed, it is given that the subsets defined by

N−functions on a strong Sheffer stroke NMV-algebra must be its filters so that a neutrosophic

N−structure on this algebra is a neutrosophic N−filter. It is proved that every neutrosophic

N−filter of a strong Sheffer stroke NMV-algebra is its neutrosophic N−subalgebra whereas

the inverse is not true in general. Additionally, new three subsets Axt
N , Axi

N and A
xf

N of a strong

Sheffer stroke NMV-algebra are defined by N−functions and any elements xt, xi and xf of the

algebra. We show that these subsets are filters of a strong Sheffer stroke NMV-algebra for its

neutrosophic N−filter but the inverse holds under special conditions.

In our future works, we wish to introduce new Sheffer stroke algebraic structures and inves-

tigate their neutrosophic N−structures.
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