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Abstract: In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. 

But this is a restrictive case, because there are many more situations in science and in any domain of 

knowledge when a law of composition defined on a set may be only partially-defined (or partially 

true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined 

(totally false) that we call AntiDefined.  

Again, in all classical algebraic structures, the Axioms (Associativity, Commutativity, etc.) defined on 

a set are totally true, but it is again a restrictive case, because similarly there are numerous situations 

in science and in any domain of knowledge when an Axiom defined on a set may be only 

partially-true (and partially-false), that we call NeutroAxiom, or totally false that we call AntiAxiom. 

Therefore, we open for the first time in 2019 new fields of research called NeutroStructures and

AntiStructures respectively. 

Keywords: Neutrosophic Triplets, (Axiom, NeutroAxiom, AntiAxiom), (Law, NeutroLaw, 

AntiLaw), (Associativity, NeutroAssociaticity, AntiAssociativity), (Commutativity, 

NeutroCommutativity, AntiCommutativity), (WellDefined, NeutroDefined, AntiDefined), 

(Semigroup, NeutroSemigroup, AntiSemigroup), (Group, NeutroGroup, AntiGroup), (Ring, 

NeutroRing, AntiRing), (Algebraic Structures, NeutroAlgebraic Structures, AntiAlgebraic 

Structures), (Structure, NeutroStructure, AntiStructure), (Theory, NeutroTheory, AntiTheory), 

S-denying an Axiom, S-geometries, Multispace with Multistructure.  

1. Introduction

For the necessity to more accurately reflect our reality, Smarandache [1] introduced for the first 

time in 2019 the NeutroDefined and AntiDefined Laws, as well as the NeutroAxiom and AntiAxiom, 

inspired from Neutrosophy ([2], 1995), giving birth to new fields of research called NeutroStructures 

and AntiStructures. 

Let’s consider a given classical algebraic Axiom. We defined for the first time the neutrosophic

triplet corresponding to this Axiom, which is the following: (Axiom, NeutroAxiom, AntiAxiom); while 

the classical Axiom is 100% or totally true, the NeutroAxiom is partially true and partially false (the 

degrees of truth and falsehood are both > 0), while the AntiAxiom is 100% or totally false [1].
For the classical algebraic structures, on a non-empty set endowed with well-defined binary 

laws, we have properties (axioms) such as: associativity & non-associativity, commutativity & 

non-commutativity, distributivity & non-distributivity; the set may contain a neutral element with 
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respect to a given law, or may not; and so on; each set element may have an inverse, or some set 

elements may not have an inverse; and so on. 

Consequently, we constructed for the first time the neutrosophic triplet corresponding to the

Algebraic Structures [1], which is this: (Algebraic Structure, NeutroAlgebraic Structure, AntiAlbegraic

Structure). 

Therefore, we had introduced for the first time [1] the NeutroAlgebraic Structures & the

AntiAlgebraic Structures. A (classical) Algebraic Structure is an algebraic structure dealing only with 

(classical) Axioms (which are totally true). Then a NeutroAlgebraic Structure is an algebraic 

structure that has at least one NeutroAxiom, and no AntiAxioms.  

While an AntiAlgebraic Structure is an algebraic structure that has at least one AntiAxiom. 

These definitions can straightforwardly be extended from Axiom/NeutroAxiom/AntiAxiom to any 

Property/NeutroProperty/AntiProperty, Proposition/NeutroProposition/AntiProposition, 

Theorem/NeutroTheorem/AntiTheorem, Theory/NeutroTheory/AntiTheory, etc. and from 

Algebraic Structures to other Structures in any field of knowledge. 

2. Neutrosophy

We recall that in neutrosophy we have for an item <A>, its opposite <antiA>, and in between them their 

neutral <neutA>. 

We denoted by <nonA> = <neutA> <antiA>, where  means union, and <nonA> means what is not <A>. 

Or <nonA> is refined/split into two parts: <neutA> and <antiA>. 

The neutrosophic triplet of <A> is: , with . 

3. Definition of Neutrosophic Triplet Axioms

Let  be a universe of discourse, endowed with some well-defined laws, a non-empty set 

 and an Axiom α, defined on S, using these laws. Then: 

1) If all elements of verify the axiom α, we have a Classical Axiom, or simply we say Axiom. 

2) If some elements of verify the axiom α and others do not, we have a NeutroAxiom (which is 

also called NeutAxiom).

3) If no elements of verify the axiom α, then we have an AntiAxiom. 

The Neutrosophic Triplet Axioms are: 

(Axiom, NeutroAxiom, AntiAxiom) with 

NeutroAxiom ⋃ AntiAxiom = NonAxiom,  

and NeutroAxiom ⋂ AntiAxiom = φ (empty set), 

where ⋂ means intersection. 

Theorem 1: The Axiom is 100% true, the NeutroAxiom is partially true (its truth degree > 0) and 

partially false (its falsehood degree > 0), and the AntiAxiom is 100% false. 

Proof is obvious. 
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Theorem 2: Let d: {Axiom, NeutroAxiom, AntiAxiom} → [0 ,1] represent the degree of negation 

function. 

The NeutroAxiom represents a degree of partial negation {d ∊ (0, 1)} of the Axiom, while the 

AntiAxiom represents a degree of total negation {d = 1} of the Axiom.  

Proof is also evident. 

4. Neutrosophic Representation

We have:  = Axiom; 

 = NeutroAxiom (or NeutAxiom); 

  = AntiAxiom; and     = NonAxiom. 

Similarly, as in Neutrosophy, NonAxiom is refined/split into two parts: NeutroAxiom and AntiAxiom. 

5. Application of NeutroLaws in Soft Science

In soft sciences the laws are interpreted and re-interpreted; in social and political legislation the 

laws are flexible; the same law may be true from a point of view, and false from another point of 

view. Thus, the law is partially true and partially false (it is a Neutrosophic Law).

For example, “gun control”. There are people supporting it because of too many crimes and violence 

(and they are right), and people that oppose it because they want to be able to defend themselves 

and their houses (and they are right too).  

We see two opposite propositions, both of them true, but from different points of view (from 

different criteria/parameters; plithogenic logic may better be used herein).  How to solve this? 

Going to the middle, in between opposites (as in neutrosophy): allow military, police, security, 

registered hunters to bear arms; prohibit mentally ill, sociopaths, criminals, violent people from 

bearing arms; and background check on everybody that buys arms, etc. 

6. Definition of Classical Associativity

Let  be a universe of discourse, and a non-empty set , endowed with a well-defined 

binary law . The law  is associative on the set , iff , . 

7. Definition of Classical NonAssociativity

Let  be a universe of discourse, and a non-empty set , endowed with a well-defined 

binary law . The law  is non-associative on the set , iff , such that 

. 

So, it is sufficient to get a single triplet  (where  may even be all three equal, or only 

two of them equal) that doesn’t satisfy the associativity axiom. 

Yet, there may also exist some triplet  that satisfies the associativity axiom: 

. 

The classical definition of NonAssociativity does not make a distinction between a set 

whose all triplets  verify the non-associativity inequality, and a set  whose some 

triplets verify the non-associativity inequality, while others don’t. 
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8. NeutroAssociativity & AntiAssociativity

If  = (classical) Associativity, then  = (classical) NonAssociativity. 

But we refine/split  into two parts, as above: 

 = NeutroAssociativity; 

 = AntiAssociativity. 

Therefore, NonAssociativity = NeutroAssociativity  AntiAssociativity. 

The Associativity’s neutrosophic triplet is: <Associativity, NeutroAssociativity, AntiAssociativity>. 

9. Definition of NeutroAssociativity

Let  be a universe of discourse, endowed with a well-defined binary law and a 

non-empty set . 

The set  is NeutroAssociative if and only if: 

there exists at least one triplet  such that: ; and 

there exists at least one triplet  such that: . 

Therefore, some triplets verify the associativity axiom, and others do not. 

10. Definition of AntiAssociativity

Let  be a universe of discourse, endowed with a well-defined binary law and a non-empty 

set . 

The set  is AntiAssociative if and only if: for any triplet  one has 

. Therefore, none of the triplets verify the associativity axiom. 

11. Example of Associativity

Let N = {0, 1, 2, …, ∞}, the set of natural numbers, be the universe of discourse, and the set 

⊂ N, also the binary law  be the classical addition modulo 10 defined on N. 

Clearly the law * is well-defined on S, and associative since:  

 (mod 10), for all . 

The degree of negation is 0%. 

12. Example of NeutroAssociativity

, and the well-defined binary law  constructed as below: 

 (mod 10). 

Let’s check the associativity: 

The triplets that verify the associativity result from the below equality: 

 or  (mod 10) or  (mod 10), whence . 
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Hence, two general triplets of the form: verify the 

associativity. 

The degree of associativity is , corresponding to the two numbers  out of ten. 

While the other general triplet: 

do not verify the associativity. 

The degree of negation of associativity is . 

13. Example of AntiAssociativity

, and the binary law  well-defined as in the below Cayley Table: 

a b 

a b b 

b a a 

,  . 

 possible triplets on : 

Theorem 3. For any

Proof. We have 

1)  

while . 

2) 

3) 

4) 

5) 

6) 

7) 

8)
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Therefore, there is no possible triplet on  to satisfy the associativity. Whence the law is 

AntiAssociative. The degree of negation of associativity is . 

14. Definition of Classical Commutativity

Let  be a universe of discourse endowed with a well-defined binary law , and a non-empty 

set . The law  is Commutative on the set , iff , . 

15. Definition of Classical NonCommutativity

Let  be a universe of discourse, endowed with a well-defined binary law , and a non-empty 

set . The law  is NonCommutative on the set , iff , such that . 

So, it is sufficient to get a single duplet  that doesn’t satisfy the commutativity axiom. 

However, there may exist some duplet  that satisfies the commutativity axiom: 

. 

The classical definition of NonCommutativity does not make a distinction between a set 

whose all duplets  verify the NonCommutativity inequality, and a set  whose 

some duplets verify the NonCommutativity inequality, while others don’t. 

That’s why we refine/split the NonCommutativity into NeutroCommutativity and 

AntiCommutativity. 

16. NeutroCommutativity & AntiCommutativity

Similarly to Associativity we do for the Commutativity:

If  = (classical) Commutativity, then  = (classical) NonCommutativity. 

But we refine/split  into two parts, as above: 

 = NeutroCommutativity; 

  = AntiCommutativity. 

Therefore,  NonCommutativity = NeutroCommutativity  AntiCommutativity. 

The Commutativity’s neutrosophic triplet is: 

<Commutativity, NeutroCommutativity, AntiCommutativity>. 

In the same way, Commutativity means all elements of the set commute with respect to a given 

binary law, NeutroCommutativity means that some elements commute while others do not, while 

AntiCommutativity means that no elements commute. 

17. Example of NeutroCommutativity

, and the well-defined binary law . 

a b c 

a b c c 

b c b a 

c b b c 
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 (commutative); 

 (not commutative); 

 (not commutative). 

We conclude that  is  commutative, and  not commutative. 

Therefore, the degree of negation of the commutativity of  is 67%. 

18. Example of AntiCommutativity

, and the below binary well-defined law . 

a b 

a b b 

b a a 

where ,  (not commutative) 

Other pair of different element does not exist, since we cannot take  nor . The degree of 

negation of commutativity of this  is 100%. 

19. Definition of Classical Unit-Element

Let  be a universe of discourse endowed with a well-defined binary law  and a non-empty 

set .  

The set  has a classical unit element , iff  is unique, and for any  one has 

. 

20. Partially Negating the Definition of Classical Unit-Element

It occurs when at least one of the below statements occurs:

1) There exists at least one element that has no unit-element.

2) There exists at least one element that has at least two distinct unit-elements , , 

, such that: 

, 

. 

3) There exists at least two different elements , such that they have different unit- 

elements , , with , and . 

21. Totally Negating the Definition of Classical Unit-Element

The set  has AntiUnitElements, if: 
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has either no unit-element, or two or more unit-elements (unicity of unit- Each element

element is negated).

22. Definition of NeutroUnitElements

The set  has NeutroUnit Elements, if: 

1) [Degree of Truth] There exist at least one element

that has a single unit-element.

2) [Degree of Falsehood] There exist at least one element

23. Definition of AntiUnit Elements

The set  has AntiUnit Elements, if: 

Each element has either no unit-element, or two or more distinct unit-elements.

24. Example of NeutroUnit Elements

, and the well-defined binary law : 

a b c 

a b b a 

b b b a 

c a b c 

Since, 

 have the same unit element c).the common unit element of a and c is c (two distinct elements

From 

we see that the element  has two distinct unit elements  and . 

Since only one element b does not verify the classical unit axiom (i.e. to have a unique unit), out of 3

elements, the degree of negation of unit element axiom is , while  is the degree 

of truth (validation) of the unit element axiom. 

25. Example of AntiUnit Elements

, endowed with the well-defined binary law  as follows: 

a ∊ S

b ∊ S that has either no unit-

element, or at least two distinct unit-elements.
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a b c 

a a a a 

b a c b 

c a c b 

Element  has 3 unit-elements: , because: 

and   

Element 

.   

has no u-it element, since:

and , but . 

Element  has no unit-element, since:

, but , 

and . 

The degree of negation of the unit-element axiom is . 

26. Definition of Classical Inverse Element

Let  be a universe of discourse endowed with a well-defined binary 

law . 

Let  be the classical unit element, which is unique. 

For any element , there exists a unique element, named the inverse of , denoted by , 

such that: 

. 

27. Partially Negating the Definition of Classical Inverse Element

It occurs when at least one statement from below occurs: 

1) There exists at least one element  that has no inverse 

or 

2) There exists at least one element  that has two or more inverses 

28. Totally Negating the Definition of Classical Inverse Element

Each element has either no inverse, or two or more inverses with respect to some ad-hoc 

unit-elements respectively.

with respect to no ad-hoc unit-element;

with respect to some ad-hoc unit-elements.
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29. Definition of NeutroInverse Elements

The set  has NeutroInverse Elements if: 

1) [Degree of Truth] There exist at least one element  

 

2) [Degree of Falsehood] There exists at least one element  that does not have any inverse 

with respect to no ad-hoc unit  element, or has at least two distinct inverses with respect to

some ad-hoc unit-elements.

30. Definition of AntiInverse Elements

The set has AntiInverse Elements, if: each element has either no inverse with respect to no

 ad-hoc unit-element, or two or more distinct inverses with respect to some ad-hoc unit-elements.

31. Example of NeutroInverse Elements

 endowed with the binary well-defined law * as below: 

a b c 

a a b c 

b b a a 

c b b b 

Because , hence its ad-hoc unit/neutral element  and correspondingly its 

inverse element is . 

Because , hence its ad-hoc inverse/neutral element ; 

from , we get . 

No , hence no . 

Hence a and b have ad-hoc inverses, but c doesn’t. 

32. Example of AntiInverse Elements

Similarly,  endowed with the binary well-defined law * as below: 

a b c 

a b b c 

b a a a 

c c a a 

There is no neut(a) and no neut(b), hence: no inv(a) and no inv(b). 

that has a unique inverse with respect to some

ad-hoc unit-element.
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 , hence: . 

 , hence: ;  

 hence: ; whence we get two inverses of c. 

33. Cases When Partial Negation (NeutroAxiom) Does Not Exist

Let’s consider the classical geometric Axiom: 

On a plane, through a point exterior to a given line it’s possible to draw a single parallel to that line. 

The total negation is the following AntiAxiom: 

On a plane, through a point exterior to a given line it’s possible to draw either no parallel, or two or 

more parallels to that line. 

The NeutroAxiom does not exist since it is not possible to partially deny and partially approve this 
axiom.

34. Connections between the neutrosophic triplet (Axiom, NeutroAxiom, AntiAxiom) and the

S-denying an Axiom 

The S-denying of an Axiom was first defined by Smarandache [3, 4] in 1969 when he constructed 

hybrid geometries (or S-geometries) [5 – 18]. 

35. Definition of S-denying an Axiom

An Axiom is said S-denied [3, 4] if in the same space the axiom behaves differently (i.e., validated 

and invalided; or only invalidated but in at least two distinct ways). Therefore, we say that an axiom 

is partially or totally negated { or there is a degree of negation in (0, 1] of this axiom }:
http://fs.unm.edu/Geometries.htm. 

36. Definition of S-geometries

A geometry is called S-geometry [5] if it has at least one S-denied axiom.

Therefore, the Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries were united 

altogether for the first time, into the same space, by some S-geometries. These S-geometries could be

partially Euclidean and partially Non-Euclidean, or only Non-Euclidean but in multiple ways.  

The most important contribution of the S-geometries was the introduction of the degree of

negation of an axiom (and more general the degree of negation of any theorem, lemma, scientific or 

humanistic proposition, theory, etc.). 

Many geometries, such as pseudo-manifold geometries, Finsler geometry, combinatorial Finsler 

geometries, Riemann geometry, combinatorial Riemannian geometries, Weyl geometry, Kahler 

geometry are particular cases of S-geometries. (Linfan Mao).

37. Connection between S-denying an Axiom and NeutroAxiom / AntiAxiom

“Validated and invalidated” Axiom is equivalent to NeutroAxiom. While “only invalidated but in at 

least two distinct ways” Axiom is part of the AntiAxiom (depending on the application). 

 “Partially negated” ( or 0 < d < 1, where d is the degree of negation ) is referred to NeutroAxiom. 

While “there is a degree of negation of an axiom” is referred to both NeutroAxiom ( when 0 < d < 1 ) 

and AntiAxiom ( when d = 1 ). 

38. Connection between NeutroAxiom and MultiSpace

http://fs.unm.edu/Geometries.htm
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In any domain of knowledge, a S-multispace with its multistructure is a finite or infinite (countable 

or uncountable) union of many spaces that have various structures (Smarandache, 1969, [19]). The 

multi-spaces with their multi-structures [20, 21] may be non-disjoint. The multispace with 

multistructure form together a Theory of Everything. It can be used, for example, in the Unified Field 

Theory that tries to unite the gravitational, electromagnetic, weak, and strong interactions in physics. 

Therefore, a NeutroAxiom splits a set M, which it is defined upon, into two subspaces: one

where the Axiom is true and another where the Axiom is false. Whence M becomes a BiSpace with

BiStructure (which is a particular case of MultiSpace with MultiStructure). 

39. (Classical) WellDefined Binary Law

Let  be a universe of discourse, a non-empty set , and a binary law  defined on . 

For any , one has . 

40. NeutroDefined Binary Law

There exist at least two elements (that could be equal)  such that . And 

there exist at least other two elements (that could be equal too)  such that .

41. Example of NeutroDefined Binary Law

Let U = {a, b, c} be a universe of discourse, and a subset , endowed with the below 

NeutroDefined Binary Law : 

a b 

a b b 

b a c 

We see that: ,  but  = c

42. AntiDefined Binary Law

For any  one has . 

43. Example of AntiDefined Binary Law

Let U = {a, b, c, d} a universe of discourse, and a subset , and the below binary 

well-defined law . 

a b 

a c d 

b d c 

where all combinations between a and b using the law * give as output c or d who do not belong to S. 

c*d ∉ S.
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44. Theorem 4 (The Degenerate Case)
If a set is endowed with AntiDefined Laws, all its algebraic structures based on them will be 

AntiStructures. 

45. WellDefined n-ary Law

Let  be a universe of discourse, a non-empty set , and a n-ary law, for n integer,

, defined on . 

. 

For any , one has . 

46. NeutroDefined n-ary Law

There exists at least a n-plet  such that The 

elements  may be equal or not among themselves. 

And there exists at least a n-plet  such that  The 

elements may be equal or not among themselves. 

47. AntiDefined n-ary Law

For any , one has . 

48. WellDefined n-ary HyperLaw

Let  be a universe of discourse, a non-empty set , and a n-ary hyperlaw, for n 

integer, : 

, where  is the power set of . 

For any , one has . 

49. NeutroDefined n-ary HyperLaw

There exists at least a n-plet  such that . The 

elements  may be equal or not among themselves. 

And there exists at least a n-plet  such that . The 

elements  may be equal or not among themselves. 

50. AntiDefined n-ary HyperLaw

For any , one has . 

* 

The most interesting are the cases when the composition law(s) are well-defined (classical way) and 

neutro-defined (neutrosophic way). 

L(a1, a2, ..., an)∊ S.

L(a1, a2, ..., an) ∉ S.
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51. WellDefined NeutroStructures

Are structures whose laws of compositions are well-defined, and at least one axiom is 

NeutroAxiom, while not having any AntiAxiom.

52. NeutroDefined NeutroStructures

Are structures whose at least one law of composition is NeutroDefined, and all other axioms are 

NeutroAxioms or Axioms. 

53. Example of NeutroDefined NeutroGroup

Let U = {a, b, c, d} be a universe of discourse, and the subset 

, endowed with the binary law : 

a b c 

a a c c
b a a a
c c a d 

NeutroDefined Law of Composition: 

Because, for example: a*b = c ∊ S, but c*c = d ∉ S.
NeutroAssociativity: 

Because, for example: a*(a*c) = a*c = c and (a*a)*c = a*c = c;

while, for example: a*(b*c) = a*a = a and (a*b)*c = c*c = d ≠ a.
NeutroCommutativity: 

Because, for example: a*c = c*a = c, but a*b = c while b*a = a ≠ c.
NeutroUnit Element: 

There exists the same unit-element a for a and c, or neut(a) = neut(c) = a, since a*a = a and c*a = a*c = c.

But there is no unit element for b, because b*x = a, not b, for any x ∊ S (see the above Cayley Table). 
NeutroInverse Element: 

With respect to the same unit element a, there exists an inverse element for a, which is a, or inv(a) = a, 
because a*a = a, and an inverse element for c, which is b, or inv(c) = b, because c*b = b*c = a.

But there is no inverse element for b, since b has no unit element. 

Therefore (S, *) is a NeutroDefined NeutroCommutative NeutroGroup.

54. WellDefined AntiStructures

Are structures whose laws of compositions are well-defined, and have at least one AntiAxiom. 

55. NeutroDefined AntiStructures

Are structures whose at least one law of composition is NeutroDefined and no law of 

composition is AntiDefined, and has at least one AntiAxiom. 

56. AntiDefined AntiStructures

Are structures whose at least one law of composition is AntiDefined, and has at least one 

AntiAxiom. 
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57. Conclusion

The neutrosophic triplet (<A>, <neutA>, <antiA>), where <A> may be an “Axiom”, a 

“Structure”, a “Theory” and so on, <antiA> the opposite of <A>, while <neutA> (or <neutroA>) their 

neutral in between, are studied in this paper.  

The NeutroAlgebraic Structures and AntiAlgebraic Structures are introduced now for the first 

time, because they have been ignored by the classical algebraic structures. Since, in science and 

technology and mostly in applications of our everyday life, the laws that characterize them are not 

necessarily well-defined or well-known, and the axioms / properties / theories etc. that govern their 

spaces may be only partially true and partially false ( as <neutA> in neutrosophy, which may be a 

blending of truth and falsehood ).  

Mostly in idealistic or imaginary or abstract or perfect spaces we have rigid laws and rigid 

axioms that totally apply (that are 100% true). But the laws and the axioms should be more flexible in 

order to comply with our imperfect world. 
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Abstract: Technology selection is a leading step for decision makers throughout the technology 

selection process. The extraction of convenient technology is pretended to be a real challenge that 

faces decision makers. The technology selection considers the qualitative and quantitative criteria 

which needs to a special representation due to the conditions of non-compensation and uncertainty 

on real life. The objectives of this study is to make a hybrid approach using decision making trial 

and evaluation laboratory (DEMATEL) for detecting the positive and negative regions, and 

assurance region data envelopment analysis (AR-DEA) for evaluating the efficiency of Decision 

Making Units (DMUs). The hybrid model is protracted with neutrosophic philosophy in 

representing the perspectives of specialists and experts to achieve the most optimized outputs. An 

illustrative case study, about technology revolution and digital transformation in EGYPT, is 

presented to demonstrate the proposed model.  

Keywords: Neutrosophic sets; Technology Selection; DEMATEL; Assurance Region; Data 

Envelopment Analysis.   

 

 

1. Introduction 

Technology has been an innovative manner that facilitates human life activities in real life. The 

selection of the appropriate technology is pretended to be a hard targets for experts. The selected 

technology will directly influence on the competitive advantages for organizations. Indeed, 

technology not only has valuable benefits, but also has susceptible weakness. Due to the technology 

complexity of operational and strategic distinctive, the technology selection can aids decision makers 

to build a vision to be able to choose the appropriate candidates of technologies [1]. The technology 

can be prescribed in many dimensionality terms such as cost, flexibility, quick delivery, and time [2].  

The process of technology selection addressed by multiple methodologies over time, the classical 

approaches used was the mathematical programming [3]. The mathematical programming objective 

is to select the most convenient technology with lowest production cost by the use of non-linear 0-1 

programming model [4]. Considering the complexity of technology selection, a fuzzy GP approach 

is presented to select the most appropriate machine tool and to allocate to a flexible manufacturing 

systems technology [5]. Data envelopment analysis (DEA) is a nonparametric efficiency method, such 

that data is not necessary to fit normal distribution [6]. The DEA can be used efficiently in technology 

selection. The DEA can assign weights for inputs and outputs to achieve to the maximum level of 
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efficiency. In [7] presents a methodology consists of two phases for solving the technology problem 

process. The first phase, the data envelopment analysis (DEA) is focused on extracting the best 

vendor's solutions with respect to various technology parameters. The second stage, multi-attribute 

decision making model is used to prioritize and metric the outputted technology selection from first 

phase. The objective of decision-making units (DMUs) is to be efficient by producing the maximized 

outcomes and minimized incomes. The efficiency of DMUs can be evaluated with DEA as a powerful 

tool. In DEA, the input and outputs must be determined. In [8] proposes an innovative model, IDEA 

(Imprecise Data Envelopment Analysis) model to rank the technology suppliers. In [9] illustrated a 

weight multi-criteria decision-making (MCDM) methodology to evaluate the relative efficiency of 

DMUs according to various outputs and one determined input. The efficiency of DUMs is a model 

derived from of DEA methodology to extract exact and ordinal outcomes. When importance of 

preferences information between inputs and outputs are combined in multiple models, the resulted 

model is called Assurance region (AR) models. The efficiency problem includes technological and 

commercial aspects. A study about Superconducting Super Collider (SSC) in United States is 

conducted to reduce the number of site location [10]. By applying DEA on case study's data, the 

output included five out of six solutions were efficient. However, by including more analytical 

bounds, AR decreased the output to be one out of six. The AR is applied in another case study, about 

an efficient analysis for the possible linear production sets to make a real reduction on candidates 

[11]. 

 

The process of technology selection includes many technical and operational comparisons such 

as: cost, capacity, load, velocity, and etc. Many studies focus on the efficiency to enhance the decisions 

for the technology selection [12, 13]. The DEMTAL is a kind of structural modeling suggested to solve 

complex and interrelated problems [12]. The DEMTAL can formulate and analyze the problem into 

relationships between the correlated and complex criterions in order to attain the best solutions. 

Many decision-making methods are provided to organizations to choose the best technology [1, 3, 4, 

7, 8]. However, the statement of any decision is a surrounded with environment of vague, impression, 

inconsistency, and uncertainty. According to the complex considerations of the environmental 

conditions in technology selection, researchers integrate fuzzy to DEMATEL method to attain more 

accurate analysis [14-17]. Actually, the fuzzy set considered the degree of membership function and 

neglected the degree of non- membership, and indeterminate [18]. Hence, the fuzzy DEMTAL con 

not addressed the decisions which are associated with uncertainty and inconsistency. To overcome 

fuzzy set limitations, neutrosophic sets proposed to address the conditions of uncertainty and 

inconsistency [19, 33-39]. 

 

Neutrosophic sets are a novel aspect in philosophy that investigates the scope and origin of 

neutralities [20, 21]. The neutrosophic sets are used in many complex applications and achieved 

awesome results such as in IoT influential factors [22] , IoT Transitions difficulties on enterprises [19]  

personnel selection [23], cloud services [24], supplier selection [18, 25-27], supply chain management 

(SCM) [25]. In real life situations, the preferences and correlations between criterions cannot be easily 

determined by decision makers. Hence neutrosophic can deal with uncertainty and inconsistency 

conditions. Neutrosophic aids decision makers to find compensations methodology to the 

indeterminate decision cases. Therefore, the research aims to propose a novel methodology that 

integrates the assurance region- data envelopment analysis (AR-DEA) with neutrosophic DEMTAL 

to enhance the technology selection process. Some basic and important definitions about 

neutrosophic sets are provided in [22].    

    

For clarity, the reset of research is organized as follows: Section 2 mentions neutrosophic 

DEMTAL methodology. Section 3 represents basic steps of (AR-DEA). Section 4 illustrates the 

integrated methodology for technology selection. Section 5 presents a numerical example. Finally, 

section 6 ends with the conclusions and future work. 
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2. The Neutrosophic DEMATEL Methodology 

The neutrosophic sets developed to cover the current conditional environmental of uncertainty 

and inconsistency that cannot be covered with other methods such as fuzzy and intuitionistic fuzzy 

[28]. The neutrosophic sets can apply compensatory methods for the indeterminate situations for 

decision judgments. DEMATEL is a methodology used to analyze the preferences between complex 

criterions by building well-structural model [2]. It is very hard task to take decision of preferences of 

various criterions. Hence, the research proposes to extend the traditional DEMTEL with neutrosophic 

set theory in order add valuable advantages:  

1. Neutrosophic can present various expert judgments for a specific problem. 

2. Neutrosophic can support perspectives of experts with compensatory values for the degree 

of true, false decisions. In addition to indeterminate decisions. 

3. Neutrosophic can definitely represent different expert's perspectives to demonstrate if any 

anomalies found in the general judgments, such as: less experience, or biasness. 

4. Neutrosophic can represent expert judgments in real situations of uncertainty and 

inconsistency of information  

Therefore, the current study integrates neutrosophic with DEMATEL methodology in order to 

attain more accurate analysis. The steps of neutrosophic DEMATEL are mentioned as follows:  

Step 1.  Determine the aim of your study and detect the following issues: 

• The decision maker experts in the proposed study. 

• Identify the basic criterions related to study 

Step 2.  Construct decision judgments of the current study in a pairwise comparison matrix  

• Construct the pairwise comparison matrix from decision judgments for the preferences scale 

mentioned in Table 1 [23]. Experts should determine their perspectives and expectation of 

the problem to detect maximum truth, minimum indeterminacy, and minimum false 

membership function.  

Table 1. The Linguistics phrase and corresponding NTS 

Score Linguistic Phrase NTS 

1 Equally significant 1 = 〈〈1, 1, 1〉; 0.50,0.50,0. 50〉 

3 Slightly significant 3 = 〈〈2, 3, 4〉; 0.30,0.75, 0.70〉 

5 Strongly significant 5 = 〈〈4, 5,6〉; 〈0.80,0.15,0.20〉 

7 very strongly significant 7 = 〈〈6,7, 8〉, 0.90,0.10, 0.10〉 

9 Absolutely significant 9 = 〈〈9,9, 0〉; 1.00,0.00, 0.00〉 

2 

 

sporadic values between two 

close scales 

2 = 〈〈1,2, 3〉; 0.40,0.60, 0.65〉 

4 4 = 〈〈3,4, 5〉; 0.35,0.60, 0.40〉 

6 6 = 〈〈5,6, 7〉; 0.70,0.25, 0.30〉 

8 8 = 〈〈7, 8, 9〉; 0.85,0.10, 0.15〉 

 

Step 3. Construct initial direct relation 
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• Construct a general vision for your study from aggregating decision makers' perspectives. 

The averaged aggregated pairwise comparison matrix is formulated by the use of the 

following equation ijr . 
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• The general vision are constructed by the estimated preferences and resulted in an 

aggregated pairwise comparison matrix as follows in (2): 

11 1

1

n

n mn

r r

A

r r

 
 

=  
 
 

                   (2) 

•  Change the aggregates pairwise comparison matrix from the form of triangular 

neutrosophic scale to the form of crisp value by the use of the following score function [19]: 

9
))(

ijijij

ji

FIT
umlrs

jijji

++
=  ,            (3)                                                

where l, m, u denotes lower, median, upper  of the scale neutrosophic numbers, T, I, F are the truth-

membership, indeterminacy,  and falsity membership functions respectively of triangular 

neutrosophic number. 

Step 4. Construct the normalized direct relation matrix 

The initial direct relation is represented in the form of (2). According to previous step (3), the 

normalized direct relation matrix can be computed as follows: 

B= njmir
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Step 5. Obtain the total relation matrix. 

Apply the following equation to produce the total relation matrix from the generalized direct relation 

matrix Y. The total matrix relation is computed as follows [12]: 
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( ) 1−
−= YIYT  ,                                                  (6) 

such that I denotes to identity matrix, and T is the matrix of total relation 

Step 6. Identify the cause effect relationship using the function of summation of rows and columns 

The cause effect relationship is detected by using the summation of rows (Ri), of columns (Cj) form 

total matrix relation T as follows in next equations [14]: 
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                                                  (9) 

Step 7. Build the casual effect relationship diagram  

The analysis of cause effect diagram two axes denotes the followings: 

• Horizontal axes: represents the summation of rows and columns ( ji CR + ), and refers to the 

importance of the proposed criteria.  

• Vertical axes: represents the subtraction of rows and columns ( ji CR − ), and refers to the 

degree of influence of the selected criteria 

3. The AR-DEA methodology 

Considering the whole decision maker units (DMU) in the decision maker process for AR-DEA 

methodology, the decision maker is influenced with other complementary players such as [28] and 

modeled in Fig.1:  

• Buyers: anybody requests for a service according to considered contract. . 

• Users: anybody actually receives and use the service. 

• Influencers: anybody affects sales by supplying information or advice 

• Gatekeepers: anybody controls the follow of information for the suppliers. 
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Figure 1. Decision makers unit 

The DEA is an approach used to evaluate the efficiencies for DMUs [6]. The challenge in DMUs of 

technology selection is the absence for decision maker's judgments and preferences. The weight 

restriction inclusion in DEA model allows the integration of relative important between inputs and 

outputs for technology selection problem. The extension of DEA method with further calculations 

led to the development of the AR model [10]. The AR introduces a domain of possible candidates for 

multiple virtual suppliers. The next steps are discussed the scale of input and output levels, NB. The 

DMUs are strict to be in positive manner. 

Step 8: Transform problem scale from ordinal to interval 

The proposed study uses a novel weight technique which is so-called ordinal weight restriction 

assurance region [2]. The decision problem affected with various incomes and outcome. By the use 

of neutrosophic DEMATEL, the input and output weights can be obtained by the following 

equations: 

𝑋1 ≥ 𝑋2 ≥ ⋯ ≥ 𝑋𝑖                                                     (10) 

𝑌1 ≥ 𝑌2 ≥ ⋯ ≥ 𝑌𝑗                                                     (11) 

The preceding Eq. (10), and Eq. (11) represent ordinal scale. For using DEA, novel methods proposed 

to transform ordinal scale into cardinal scale [29]. The proposed study uses the following equations 

to transform ordinal scale into interval scale: 

𝑿𝒊 ∈ [𝜹𝒖𝒎−𝒊, 𝒖𝟏−𝒊];  𝒊 = 𝟏, ⋯ , 𝒎 ; 𝜹 ≤ 𝒖𝟏−𝒎  ,                                (12) 

𝒀𝒋 ∈ [𝜹𝒖𝒏−𝒋, 𝒖𝟏−𝒋];  𝒋 = 𝟏, ⋯ , 𝒏 ; 𝜹 ≤ 𝒖𝟏−𝒏   ,                                 (13) 
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where 𝐗𝐢 ,  𝐘𝐣  represents the interval scale lower and upper bounds for inputs/outputs, 𝒖  is a 

parameter indicates the preference intensity given by decision makers and must be greater than 1.  𝜹 

is a ratio parameter indicates by decision makers, and 𝒊, 𝒋 represents the ordinal scale of DEMATEL 

final ranking. 

Step 9: The weight restrictions to solve AR-DEA methodology 

The final output from the proposed Eq. (12), Eq. (13) presents the absolute number for interval scale 

of lower and upper bounds for the input/output weight priorities. In addition, the use of interval 

scale for weights substitutes the linear programming methods [29]. Unlike [2] AR without weight 

restrictions, and linear programming method [29], the proposed final type of AR is introduced in 

form. (14). Such that the weight restriction AR is added and modeled as follows: 

 

𝐸0=𝑚𝑎𝑥 ∑ 𝑤𝑦𝑗 𝑦𝑗0
𝑠
𝑗=1

 , 

 𝑠. 𝑡 ∑ 𝑤𝑥𝑖  𝑥𝑖0
𝑚
𝑖=1  , 

 ∑ 𝑤𝑦𝑗  𝑦𝑗𝑧  −
𝑠
𝑗=1 ∑ 𝑤𝑥𝑖  𝑥𝑖𝑧 ≤ 1 , ∀𝑧

𝑚
𝑖=1  ,                                  (14) 

𝜕𝑖 ≤ 𝑤𝑥𝑖 ≤ 𝛾𝑖 ,                                     ∀𝑖 ,  

𝛽𝑗 ≤ 𝑤𝑦𝑗 ≤ 𝜔𝑗 ,                                     ∀𝑖 ,  

 

where wxi  is the weight for input, wyj  is the weight of output, ∂i, γi, β, ωj  are user specified 

constants. The weight restrictions a raise some challenges such as problem may not be solves, relative 

efficiency may not be computed. So [30] proposes to multiply constants of restricts A and B as follows 

in form (15): 

 

𝐸0=𝑚𝑎𝑥 ∑ 𝑤𝑦𝑗 𝑦𝑗0
𝑠
𝑗=1

 , 

 𝑠. 𝑡 ∑ 𝑤𝑥𝑖  𝑥𝑖0
𝑚
𝑖=1  , 

 ∑ 𝑤𝑦𝑗  𝑦𝑗𝑧  −
𝑠
𝑗=1 ∑ 𝑤𝑥𝑖  𝑥𝑖𝑧 ≤ 1 , ∀𝑧

𝑚
𝑖=1  ,                                 (15) 

𝜕𝑖𝐴 ≤ 𝑤𝑥𝑖 ≤ 𝛾𝑖𝐴,                                     ∀𝑖 ,  

𝛽𝑗𝐵 ≤ 𝑤𝑦𝑗 ≤ 𝜔𝑗𝐵,                                     ∀𝑖,  

  

4. The Proposed hybrid methodology 

The environment of decision making is surrounded with vague, impression, uncertainty, 

incomplete information, and non-compensatory. The integrated methodology of decision maker's 

judgments of DEMATEL and AR-DEA is modeled and summarized in the Fig.2. The steps of the 

proposed study have been mentioned in details in the previous two sections and will be summarized 

in Fig.3  
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Figure 2. The hybrid methodology of neutrosophic DEMATEL with AR-DEA 

 

Figure 3. Steps for the proposed hybrid methodology 
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5. A case study for the proposed hybrid methodology 

The proposed hybrid methodology is applied in a wide range of technology selection in Egypt. 

Egypt is going towards a huge information technology revolution and digital transformation on the 

practices for many sector of the Egyptian state.  The technology revolution contains several axes, 

including recent developments in information and communications technology. The digital 

transformation revolution is including the fifth generation of communications, artificial intelligence, 

and cloud computing. Hence, the current decision makers faces a huge challenges for selecting the 

most appropriate and efficient technology that will cause a direct influence on the Egyptian state. 

Hence, we used to apply the proposed hybrid methodology of neutrosophic DEMTAL and AR-DEA. 

A standard input and output parameters are used in [1, 2]. We consider cost as input, while consider 

repeatability, load, capacity, velocity, and amount of know-how transfer as outputs for technology 

selection as mentioned in table 2. 

 

Table 2. The description for the main criterions for technology selection 

Criteria Type Symbol Description  

Cost Input X1 The disbursement correlated with technology 

life cycle of introduction, growth, maturity, and 

decline [31].   

Repeatability Output Y1 The degree of closeness of the convention 

between outcomes under same measurements 

and conditions [1].  

Load Capacity Output Y2 The maximum load for intended property to 

achieve to the intended expectations with a 

given distinct amount of weight [32].   

Know- how amount 

transfer 

Output Y3 The use of distinct technology in a way to 

operate in such an efficient and effective 

manner [2].  

Step 1: Determine decision makers experts whom are the actual input paramter for the hybird 

propsed methodology. 

Step 2: The decision maker judgements are collected and scaled by the neutrosophic scale 

mentioned in table 1.  

Step 3: Obtain the intial direct relation matrix. The aggregatd paire-wise comparison matrix is 

obtained by applying Eq.(1) and formed in (2) as depicated in table 3. Apply the score function on 

the aggregated pair-wise comparison matrix mentioned in Eq.(3) to change the neutrosophic scale to 

crisp values as mentioned in table 4.  

Step 4: Construct th normaized direct matrix by apply Eq.(4) and Eq.(5). The results are mentioned 

table 5. 

Step 5: The total relation matrix is computed by the useof Eq.(6) and mentioned in table 6 

Step 6: The cause effect relation is presented by the detection of total matrix relation T by the use of 

Eq.(7), Eq. (8), Eq(9). The resuls of cause effect relation in table 7. According to table 7 the priotorize 

in importance are Y1, Y2, and Y3, and the less important are Y3, Y2, and Y1.   

Step 7: The cause effect diagram is denoted as ( ji CR + ) horizontally, and ( ji CR − ) vertically ,and 

illustrated in Fig 4. 
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Step 8:  The ranking from the previous step is Transformed by the use of Eq. (12), Eq. (13) from 

ordinal scale to interval scale as mentioned in table 8. 

Step 9:  Considering the DMUs possible scenarios, the use of weight restriction for efficiency is to 

solve the hybrid neutrosophic AR-DEA methodology. To focus on the importance of the proposed 

study, ranking computed with/without weight restrictions and results mentioned in table 9. The 

without weight restriction is computed from [6], and with weight restriction computed according to 

Eq. (15). Indeed, a difference between rank1, and rank2 notified which lead to the great important for 

the proposed method as mentioned in Fig.5. By the way, the increase of the amount of parameters in 

the proposed demonstrates the influence of decision makers than other traditional methods. 

 

Table 3. The initial aggregated pairwise comparison matrix for decision maker's experts 

Criteria Y1 Y2 Y3 

Y1 50.0,50.0,50.0;1,1,1  70.0,75.0,30.0;4,3,2 
30.0,25.0,70.0;7,6,5  

Y2 07.0,75.0,30.0;4,3,21
 50.0,50.0,50.0;1,1,1 

60.0,65.0,40.0;3,2,1  

Y3 304.0,25.0,70.0;7,6,51
 06.0,65.0,40.0;3,2,11

 
50.0,50.0,50.0;1,1,1  

Table 4.The crisp values for initial aggregated pairwise comparison matrix 

Criteria Y1 Y2 Y3 

Y1 1 1.855 2.101 

Y2 0.539 1 1.388 

Y3 0.475 0.720 1 

Table 5.The normalized direct matrix 

Criteria Y1 Y2 Y3 

Y1 0.20175 0.374272 0.423978 

Y2 0.108752 0.20175 0.280204 

Y3 0.096003 0.145262 0.20175 

Table 6. The total relation matrix 

Criteria Y1 Y2 Y3 

Y1 0.512384 0.913638 1.123984 

Y2 0.288305 0.512387 0.684009 

Y3 0.234351 0.385095 0.512388 
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Table 7.The cause effect relation of total relation 

Rows Ri Cj 
ji CR +
 ji CR −

 
Rank 

Columns 

1 2.550 1.035 3.585046 1.514966 1 

2 1.484 1.811 3.29582 -0.32642 3 

3 1.131 2.320 3.452215 -1.18855 2 

 

Figure 4. The cause effect diagram 

Table 8. The transformation of ordinal scale to interval scale for Ur 

Outputs Ordinal Scale  Lower bound of 

output weight 

Upper bound of 

output weight 

U1 1 0.22 1 

U2 3 0.1 0.44 

U3 2 0.15 0.66 

Table 9. Efficiency score with consideration of with/without weight restrictions 

DMU Without weight 

restriction 

Rank1 With weight 

restriction 

Rank2 

1 1.00 1 1.00 1 

2 0.731 3 0.664 3 

3 0.881 2 0.748 2 

4 0.730 4 0.544 5 

5 0.650 5 0.530 4 

-1.5

-1

-0.5

0

0.5

1

1.5

2

3.25 3.3 3.35 3.4 3.45 3.5 3.55 3.6

Cause Effect Diagram
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Figure 5. The ranking with/without weight restrictions 

6. Conclusion 

In this study, a hybrid neutrosophic DEMATEL with AR-DEA for technology selection is proposed. 

First, the DEMATEL aggregate the decision judgments in conditions of non-compensation, 

uncertainty, and incomplete information by the use of neutrosophic scale. The DEMATEL detect 

positive and negative regions in the form of cause effect relation, and introduce ranking for relations 

of inputs and outputs effects for technology selection process. Second the use of AR-DEA  evaluate 

the efficiency for DMUs according to weight restrictions of AR to involve many influences of 

decision makers, rather than the traditional method of non-considering weight restrictions. A case 

study is applied on technology revolution and digital transformation in EGYPT that demonstrates 

the importance for the proposed study. For future trends, we can extend study by use of TOPSIS 

and MUTLIMOORA methods and make comparisons among ranking results. 
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Abstract: For the first time Smarandache introduced neutrosophic sets which can be used as a mathematical
tool for dealing with indeterminate and inconsistent information. the notion of BMBJ-neutrosophic set and subalge-
bra, as a generalization of a neutrosophic set, is introduced, and it’s application to BCI/BCK-algebras is investi-
gated. The concept of BMBJ-neutrosophic subalgebras in BCI/BCK-algebras is introduced, and related properties
are investigated. New BMBJ-neutrosophic subalgebra is established by using an BMBJ-neutrosophic subalgebra of
a BCI/BCK-algebra. Alos, homomorphic (inverse) image of BMBJ-neutrosophic subalgebra and translation of
BMBJ-neutrosophic subalgebra is investigated. At the end, we provided conditions for an BMBJ-neutrosophic set to
be an BMBJ-neutrosophic subalgebra.

Keywords: BMBJ-neutrosophic set; BMBJ-neutrosophic subalgebra; BMBJ-neutrosophic S-extension.

1 Introduction
Different types of uncertainties are encountered in some complex system and many fields like biological, be-
havioural and chemical etc. L.A. Zadeh [33] in 1965 introduced the fuzzy set for the first time to handle
uncertainties in many applications. Also K. Atanassov introduced the intuitionistic fuzzy set on the universe
X as a generalisation of fuzzy set [6] in 1986. The concept of neutrosophic set is developed by Smarandache
([27], [28] and [29]), and this is a more general platform that extends the notions of classic set like (intu-
itionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Neutrosophic set theory is applied to various
fields which is referred to the [1], [2], [3], [4], [5] [8], [9], [22] and [24]. Neutrosophic algebraic structures in
BCI/BCK-algebras are discussed in the papers [7], [13], [14], [15], [19], [16], [17], [18], [20], [25], [26],
[30], [31] and [32].

In this paper, we introduce the notion of BMBJ-neutrosophic sets and subalgebra, as a generalisation of
neutrosophic set, and we investigate it’s application and related properties it to BCI/BCK-algebras. We
provide some characterizations of BMBJ-neutrosophic subalgebra, and by using an BMBJ-neutrosophic sub-
algebra of a BCI/BCK-algebra, a new BMBJ-neutrosophic subalgebra will be propose. We consider the ho-
momorphic inverse image of BMBJ-neutrosophic subalgebra, and consider translation of BMBJ-neutrosophic
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subalgebra. At the last step, we provide some conditions for an BMBJ-neutrosophic set to be an BMBJ-
neutrosophic subalgebra.

2 Preliminaries

A BCI/BCK-algebra is an important class of logical algebras introduced by K. Iséki (see [11] and [12]) and
was extensively investigated by several researchers.

By a BCI-algebra, we mean a set X with a special element 0 and a binary operation ∗ that satisfies the
following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCI/BCK-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (2.1)
(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2.2)
(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (2.3)
(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (2.4)

where x ≤ y if and only if x ∗ y = 0. Any BCI-algebra X satisfies the following conditions (see [10]):

(∀x, y ∈ X)(x ∗ (x ∗ (x ∗ y)) = x ∗ y), (2.5)
(∀x, y ∈ X)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)). (2.6)

A nonempty subset S of a BCI/BCK-algebra X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.
By an interval number we mean a closed subinterval ã = [a−, a+] of I, where 0 ≤ a− ≤ a+ ≤ 1. Denote

by [I] the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and
refined maximum (briefly, rmax) of two elements in [I]. We also define the symbols “�”, “�”, “=” in case of
two elements in [I]. Consider two interval numbers ã1 :=

[
a−1 , a

+
1

]
and ã2 :=

[
a−2 , a

+
2

]
. Then

˜rmin {a1, ã2} =
[
min

{
a−1 , a

−
2

}
,min

{
a+

1 , a
+
2

}]
,

˜rmax {a1, ã2} =
[
max

{
a−1 , a

−
2

}
,max

{
a+

1 , a
+
2

}]
,

˜ ˜a1 � a2 ⇔ a−1 ≥ a−2 , a
+
1 ≥ a+

2 ,
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˜ ˜
˜ ˜
and similarly we may have ã1 � a2 and ã1 = ã2. To say ã1 � ã2 (resp. ã1 ≺ ã2) we mean ã1 � a2 and
a1 6= ã2 (resp. ã1 � a2 and ã1 6= ã2). Let ãi ∈ [I] where i ∈ Λ. We define

rinf
i∈Λ

ãi =

[
inf
i∈Λ

a−i , inf
i∈Λ

a+
i

]
and rsup

i∈Λ
ãi =

[
sup
i∈Λ

a−i , sup
i∈Λ

a+
i

]
.

LetX be a nonempty set. A function A : X → [I] is called an interval-valued fuzzy set (briefly, an IVF set)
in X. Let [I]X stand for the set of all IVF sets in X. For every A ∈ [I]X and x ∈ X, A(x) = [A−(x), A+(x)]
is called the degree of membership of an element x to A, where A− : X → I and A+ : X → I are fuzzy sets
in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote
A = [A−, A+].

Let X be a non-empty set. A neutrosophic set (NS) in X (see [28]) is a structure of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an indeterminate membership
function, and AF : X → [0, 1] is a false membership function. For the sake of simplicity, we shall use the
symbol A = (AT , AI , AF ) for the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

We refer the reader to the books [10, 21] for further information regarding BCi/BCK-algebras, and to the
site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding neutrosophic set theory.

3 BMBJ-neutrosophic structures with applications in
BCI/BCK-algebras

Definition 3.1. Let X be a non-empty set. By an MBJ-neutrosophic set in X , we mean a structure of the form:

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X}

where MA and JA are fuzzy sets in X , which are called a truth membership function and a false membership
function, respectively, and B̃A is an IVF set in X which is called an indeterminate interval-valued membership
function.

For the sake of simplicity, we shall use the symbol A = (MA, B̃A, JA) for the MBJ-neutrosophic set

A := {〈x;MA(x), B̃A(x), JA(x)〉 | x ∈ X}.

Definition 3.2. Let X be a BCI/BCK-algebra. An MBJ-neutrosophic set A = (MA, B̃A, JA) in X is called
an BMBJ-neutrosophic subalgebra of X if it satisfies:

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
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(∀x, y ∈ X)


MA(x ∗ y) ≥ min{MA(x),MA(y)},
B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) ≥ min{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) ≤ max{JA(x), JA(y)},
MA(x) + B̃−A(x) ≤ 1, B̃+

A(x) + JA(x) ≥ 1}.

 (3.1)

Example 3.3. Consider a set X = {0, a, b, c} with the binary operation ∗ which is given in Table 1. Then

Table 1: Cayley table for the binary operation “∗”

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

(X; ∗, 0) is a BCK-algebra (see [21]). Let A = (MA, B̃A, JA) be an MBJ-neutrosophic set in X defined by
Table 2. It is routine to verify that A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X .

Table 2: MBJ-neutrosophic set A = (MA, B̃A, JA)

X MA(x) B̃A(x) JA(x)
0 0.7 [0.3, 0.8] 0.2
a 0.3 [0.1, 0.5] 0.6
b 0.1 [0.3, 0.8] 0.4
c 0.5 [0.1, 0.5] 0.7

In what follows, let X be a BCI/BCK-algebra unless otherwise specified.

Proposition 3.4. If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then MA(0) ≥ MA(x),
B̃−A(0) ≤ B̃−A(x), B̃+

A(0) ≥ B̃+
A(x) and JA(0) ≤ JA(x) for all x ∈ X .

Proof. For any x ∈ X , we have

MA(0) = MA(x ∗ x) ≥ min{MA(x),MA(x)} = MA(x),

B̃−A(0) = B̃−A(x ∗ x) ≤ max{B̃−A(x), B̃−A(x)} = B̃−A(x),

B̃+
A(0) = B̃−A(x ∗ x) ≥ min{B̃+

A(x), B̃−A(x)} = B̃+
A(x)

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
BCI/BCK-algebras.



Neutrosophic Sets and Systems, Vol. 31, 2020 35

and

JA(0) = JA(x ∗ x) ≤ max{JA(x), JA(x)} = JA(x).

This completes the proof.

Proposition 3.5. LetA = (MA, B̃A, JA) be an BMBJ-neutrosophic subalgebra ofX . If there exists a sequence
{xn} in X such that

lim
n→∞

MA(xn) = 1, lim
n→∞

B̃−A(xn) = 0, lim
n→∞

B̃+
A(xn) = 1 and lim

n→∞
JA(xn) = 0, (3.2)

then MA(0) = 1, B̃−A(0) = 0, B̃+
A(0) = 1 and JA(0) = 0.

Proof. Using Proposition 3.4, we know that MA(0) ≥ MA(x), B̃−A(0) ≤ B̃−A(x), B̃+
A(0) ≥ B̃+

A(x) and
JA(0) ≤ JA(x) for all x ∈ X . for every positive integer n. Note that

1 ≥MA(0) ≥ lim
n→∞

MA(xn) = 1,

0 ≤ B̃−A(0) ≤ lim
n→∞

B̃−A(xn) = 0,

1 ≥ B̃+
A(0) ≥ lim

n→∞
B̃+

A(xn) = 1,

0 ≤ JA(0) ≤ lim
n→∞

JA(xn) = 0.

Therefore MA(0) = 1, B̃−A(0) = 0, B̃+
A(0) = 1 and JA(0) = 0.

Theorem 3.6. Given an BMBJ-neutrosophic set A = (MA, B̃A, JA) in X , if (MA, JA) is an intuitionistic
fuzzy subalgebra of X , and B−A and B+

A are fuzzy subalgebras of X , then A = (MA, B̃A, JA) is an BMBJ-
neutrosophic subalgebra of X .

Proof. It is sufficient to show that B̃A satisfies the condition

(∀x, y ∈ X)(B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)}), (3.3)

(∀x, y ∈ X)(B̃+
A(x ∗ y) ≥ min{B̃+

A(x), B̃+
A(y)}). (3.4)

For any x, y ∈ X , we get

B̃A(x ∗ y) = [B̃−A(x ∗ y), B̃+
A((x ∗ y)]

≥ [max B̃−A(x), B̃−A(y)},min{B̃+
A(x), B̃+

A(y)}].

Therefore B̃A satisfies the condition (3.3), and so A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of
X .

If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then

[B−A(x ∗ y), B+
A(x ∗ y)] = B̃A(x ∗ y) � rmin{B̃A(x), B̃A(y)}

= rmin{[B−A(x), B+
A(x), [B−A(y), B+

A(y)]}
= [min{B−A(x), B−A(y)},min{B+

A(x), B+
A(y)}]
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for all x, y ∈ X . It follows that B−A(x ∗ y) ≥ min{B−A(x), B−A(y)} and B+
A(x ∗ y) ≥ min{B+

A(x), B+
A(y)}.

Thus B−A and B+
A are fuzzy subalgebras of X . But (MA, JA) is not an intuitionistic fuzzy subalgebra of X as

seen in Example 3.3. This shows that the converse of Theorem 3.6 is not true.
Given an BMBJ-neutrosophic set A = (MA, B̃A, JA) in X , we consider the following sets.

U(MA; t) := {x ∈ X |MA(x) ≥ t},
L(B̃−A ; δ1) := {x ∈ X | B̃−A(x) ≤ δ1},
U(B̃+

A ; δ2) := {x ∈ X | B̃+
A(x) ≥ δ2},

L(JA; s) := {x ∈ X | JA(x) ≤ s}

where t, s ∈ [0, 1] and [δ1, δ2] ∈ [I].

Theorem 3.7. An BMBJ-neutrosophic set A = (MA, B̃A, JA) in X is an BMBJ-neutrosophic subalgebra of
X if and only if the non-empty sets U(MA; t), L(B̃−A ; δ1), U(B̃+

A ; δ2) and L(JA; s) are subalgebras of X for all
t, δ1, δ2,∈ [0, 1].

Proof. Suppose that A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X . Let t, s ∈ [0, 1] and
[δ1, δ2] ∈ [I] be such thatU(MA; t), L(B̃−A ; δ1), U(B̃+

A ; δ2) andL(JA; s) are non-empty. For any x, y, a, b, u, v ∈
X , if x, y ∈ U(MA; t), a, b ∈ L(B̃−A ; δ1), c, d ∈ U(B̃+

A ; δ2) and u, v ∈ L(JA; s), then

MA(x ∗ y) ≥ min{MA(x),MA(y)} ≥ min{t, t} = t,

B̃−A(a ∗ b) ≤ max{B̃−A(a), B̃−A(b)} ≤ max{δ1, δ1} = δ1,

B̃+
A(c ∗ d) ≥ min{B̃+

A(c), B̃+
A(d)} ≥ min{δ2, δ2} = δ2,

JA(u ∗ v) ≤ max{JA(u), JA(v)} ≤ min{s, s} = s,

and so x ∗ y ∈ U(MA; t), a ∗ b ∈ L(B̃−A ; δ1), c ∗ d ∈ U(B̃+
A ; δ2) and u ∗ v ∈ L(JA; s). Therefore U(MA; t),

L(B̃−A ; δ1), U(B̃+
A ; δ2) and L(JA; s) are subalgebras of X .

Conversely, assume that the non-empty sets U(MA; t), L(B̃−A ; δ1), U(B̃+
A ; δ2) and L(JA; s) are subalgebras

of X for all t, s, δ1, δ2 ∈ [0, 1]. If MA(a0 ∗ b0) < min{MA(a0),MA(b0)} for some a0, b0 ∈ X , then a0, b0 ∈
U(MA; t0) but a0 ∗ b0 /∈ U(MA; t0) for t0 := min{MA(a0),MA(b0)}. This is a contradiction, and thus MA(a ∗
b) ≥ min{MA(a),MA(b)} for all a, b ∈ X . Similarly, we can show that B̃−A(a ∗ b) ≤ max{B̃−A(a), B̃−A(b)},
B̃+

A(c ∗ d) ≥ min{B̃+
A(c), B̃+

A(d)} and JA(a ∗ b) ≤ max{JA(a), JA(b)} for all a, b ∈ X .

Using Proposition 3.4 and Theorem 3.7, we have the following corollary.

Corollary 3.8. If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then the sets XMA
:= {x ∈

X | MA(x) = MA(0)}, XB̃−
A

:= {x ∈ X | B̃−A(x) = B̃−A(0)}, XB̃+
A

:= {x ∈ X | B̃+
A(x) = B̃+

A(0)}, and
XJA := {x ∈ X | JA(x) = JA(0)} are subalgebras of X .

We say that the subalgebras U(MA; t), L(B̃−A ; δ1), U(B̃+
A ; δ2) and L(JA; s) are BMBJ-subalgebras of A =

(MA, B̃A, JA).

Theorem 3.9. Every subalgebra of X can be realized as BMBJ-subalgebras of an BMBJ-neutrosophic subal-
gebra of X .
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Proof. Let K be a subalgebra of X and let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in X defined by

MA(x) =

{
t if x ∈ K,
0 otherwise, B̃−A(x) =

{
γ1 if x ∈ K,
1 otherwise, B̃+

A(x) =

{
γ2 if x ∈ K,
0 otherwise, JA(x) =

{
s if x ∈ K,
1 otherwise,

(3.5)

where t ∈ (0, 1], s ∈ [0, 1) and γ1, γ2 ∈ (0, 1] with γ1 < γ2. It is clear that U(MA; t) = K, L(B̃−A ; γ1) = K,
U(B̃+

A ; γ2) = K and L(JA; s) = K. Let x, y ∈ X . If x, y ∈ K, then x ∗ y ∈ K and so

MA(x ∗ y) = t = min{MA(x),MA(y)}
B̃−A(x ∗ y) = γ1 = max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) = γ2 = max{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) = s = max{JA(x), JA(y)}.

If any one of x and y is contained in K, say x ∈ K, then MA(x) = t, B̃−A(x) = γ1, B̃+
A(x) = γ2, JA(x) = s,

MA(y) = 0, B̃−A(y) = 0, B̃+
A(y) = 0 and JA(y) = 1. Hence

MA(x ∗ y) ≥ 0 = min{t, 0} = min{MA(x),MA(y)}
B̃−A(x ∗ y) ≤ 1 = max{γ1, 1} = max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) ≥ 0 = min{γ2, 0} = min{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) ≤ 1 = max{s, 1} = max{JA(x), JA(y)}.

If x, y /∈ K, then MA(x) = 0 = MA(y), B̃−A(x) = 1 = B̃−A(y), B̃+
A(x) = 0 = B̃+

A(y) and JA(x) = 1 = JA(y).
It follows that

MA(x ∗ y) ≥ 0 = min{0, 0} = min{MA(x),MA(y)}
B̃−A(x ∗ y) ≤ 1 = max{1, 1} = max{B̃−A(x), B̃−A(y)},
B̃+

A(x ∗ y) ≥ 0 = min{0, 0} = min{B̃+
A(x), B̃+

A(y)},
JA(x ∗ y) ≤ 1 = max{1, 1} = max{JA(x), JA(y)}.

Therefore A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X .

Theorem 3.10. For any non-empty subset K of X , let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in
X which is given in (3.5). If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then K is a
subalgebra of X .

Proof. Let x, y ∈ K. Then MA(x) = t = MA(y), B̃−A(x) = γ1 = B̃−A(y), B̃+
A(x) = γ2 = B̃+

A(y) and
JA(x) = s = JA(y). Thus

MA(x ∗ y) ≥ min{MA(x),MA(y)} = t,

B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)} = γ1,

B̃+
A(x ∗ y) ≥ min{B̃+

A(x), B̃+
A(y)} = γ2,

JA(x ∗ y) ≤ max{JA(x), JA(y)} = s,

H. Bordbar, M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, BMBJ-neutrosophic subalgebras in
BCI/BCK-algebras.



38 Neutrosophic Sets and Systems, Vol. 31, 2020

and therefore x ∗ y ∈ K. Hence K is a subalgebra of X .

Using an BMBJ-neutrosophic subalgebra of a BCI-algera, we establish a new BMBJ-neutrosophic subal-
gebra.

Theorem 3.11. Given an BMBJ-neutrosophic subalgebra A = (MA, B̃A, JA) of a BCI-algebra X , let
A∗ = (M∗

A, B̃
∗
A, J

∗
A) be an BMBJ-neutrosophic set in X defined by M∗

A(x) = MA(0 ∗ x), B̃∗A(x) = B̃A(0 ∗ x)
and J∗A(x) = JA(0 ∗ x) for all x ∈ X . Then A∗ = (M∗

A, B̃
∗
A, J

∗
A) is an BMBJ-neutrosophic subalgebra of X .

Proof. Note that 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y) for all x, y ∈ X . We have

M∗
A(x ∗ y) = MA(0 ∗ (x ∗ y)) = MA((0 ∗ x) ∗ (0 ∗ y))

≥ min{MA(0 ∗ x),MA(0 ∗ y)}
= min{M∗

A(x),M∗
A(y)},

(B̃−A)∗(x ∗ y) = B̃−A(0 ∗ (x ∗ y)) = B̃−A((0 ∗ x) ∗ (0 ∗ y))

≤ max{B̃−A(0 ∗ x), B̃−A(0 ∗ y)}
= max{(B̃−A)∗(x), (B̃−A)∗(y)}

(B̃+
A)∗(x ∗ y) = B̃+

A(0 ∗ (x ∗ y)) = B̃+
A((0 ∗ x) ∗ (0 ∗ y))

≥ min{B̃+
A(0 ∗ x), B̃+

A(0 ∗ y)}
= min({B̃+

A)∗(x), (B̃+
A)∗(y)},

and

J∗A(x ∗ y) = JA(0 ∗ (x ∗ y)) = JA((0 ∗ x) ∗ (0 ∗ y))

≤ max{JA(0 ∗ x), JA(0 ∗ y)}
= max{J∗A(x), J∗A(y)}

for all x, y ∈ X . Therefore A∗ = (M∗
A, B̃

∗
A, J

∗
A) is an BMBJ-neutrosophic subalgebra of X .

Theorem 3.12. Let f : X → Y be a homomorphism of BCK/BCI-algebras. If B = (MB, B̃B, JB) is an
MBJ-neutrosophic subalgebra of Y , then f−1(B) = (f−1(MB), f−1(B̃B), f−1(JB)) is an BMBJ-neutrosophic
subalgebra of X , where f−1(MB)(x) = MB(f(x)), f−1(B̃B)(x) = B̃B(f(x)) and f−1(JB)(x) = JB(f(x))
for all x ∈ X .

Proof. Let x, y ∈ X . Then

f−1(MB)(x ∗ y) = MB(f(x ∗ y)) = MB(f(x) ∗ f(y))

≥ min{MB(f(x)),MB(f(y))}
= min{f−1(MB)(x), f−1(MB)(y)},
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f−1(B̃−B)(x ∗ y) = B̃−B(f(x ∗ y)) = B̃−B(f(x) ∗ f(y))

≤ max{B̃−B(f(x)), B̃−B(f(y))}
= max{f−1(B̃−B)(x), f−1(B̃−B)(y)},

f−1(B̃+
B)(x ∗ y) = B̃+

B(f(x ∗ y)) = B̃+
B(f(x) ∗ f(y))

≥ min{B̃+
B(f(x)), B̃+

B(f(y))}
= min{f−1(B̃+

B)(x), f−1(B̃+
B)(y)},

and

f−1(JB)(x ∗ y) = JB(f(x ∗ y)) = JB(f(x) ∗ f(y))

≤ max{JB(f(x)), JB(f(y))}
= max{f−1(JB)(x), f−1(JB)(y)}.

Hence f−1(B) = (f−1(MB), f−1(B̃B), f−1(JB)) is an BMBJ-neutrosophic subalgebra of X .

Let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in a set X . We denote

> := 1− sup{MA(x) | x ∈ X},
Π := inf{B̃−B(x) | x ∈ X}.
π := 1− sup{B̃+

B(x) | x ∈ X}.
⊥ := inf{JA(x) | x ∈ X}.

For any p ∈ [0,>], a ∈ [0,Π], b ∈ [0, π] and q ∈ [0,⊥], we define AT = (Mp
A, B̃

a
A, B̃

b
A, J

q
A) by

Mp
A(x) = MA(x) + p, B̃a

A(x) = B̃−A(x) + a, B̃b
A(x) = B̃+

A(x) + b and Jq
A(x) = JA(x)− q. Then AT = (Mp

A,
B̃a

A, B̃
b
A, J

q
A) is an BMBJ-neutrosophic set in X , which is called a (p, a, b, q)-translative BMBJ-neutrosophic

set of A = (MA, B̃A, JA).

Theorem 3.13. If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then the (p, a, b, q)-
translative BMBJ-neutrosophic set of A = (MA, B̃A, JA) is also an BMBJ-neutrosophic subalgebra of X .

Proof. For any x, y ∈ X , we get

Mp
A(x ∗ y) = MA(x ∗ y) + p ≥ min{MA(x),MA(y)}+ p

= min{MA(x) + p,MA(y) + p} = min{Mp
A(x),Mp

A(y)},

B̃a
A(x ∗ y) = B̃−A(x ∗ y) + a ≤ max{B̃−A(x), B̃−A(y)}+ a

= max{B̃−A(x) + a, B̃−A(y) + a} = max{B̃a
A(x), B̃a

A(y)},
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B̃b
A(x ∗ y) = B̃+

A(x ∗ y) + b ≥ min{B̃+
A(x), B̃+

A(y)}+ b

= min{B̃+
A(x) + b, B̃+

A(y) + b} = max{B̃b
A(x), B̃b

A(y)},

and

Jq
A(x ∗ y) = JA(x ∗ y)− q ≤ max{JA(x), JA(y)} − q

= max{JA(x)− q, JA(y)− q} = max{Jq
A(x), Jq

A(y)}.

Therefore AT = (Mp
A, B̃

a
A, B̃

b
A, J

q
A) is an BMBJ-neutrosophic subalgebra of X .

Theorem 3.14. Let A = (MA, B̃A, JA) be an BMBJ-neutrosophic set in X such that its (p, a, b, q)-translative
BMBJ-neutrosophic set is an BMBJ-neutrosophic subalgebra of X for p ∈ [0,>], a ∈ [0,Π], b ∈ [0, π] and
q ∈ [0,⊥]. Then A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X .

Proof. Assume that AT = (Mp
A, B̃

a
A, B̃

b
A, J

q
A) is an BMBJ-neutrosophic subalgebra of X for p ∈ [0,>],

a ∈ [0,Π], b ∈ [0, π] and q ∈ [0,⊥]. Let x, y ∈ X . Then

MA(x ∗ y) + p = Mp
A(x ∗ y) ≥ min{Mp

A(x),Mp
A(y)}

= min{MA(x) + p,MA(y) + p}
= min{MA(x),MA(y)}+ p,

B̃a
A(x ∗ y)− a = B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)}

= max{B̃a
A(x)− a, B̃a

A(y)− a}
= max{B̃−A(x), B̃−A(y)} − a.

B̃b
A(x ∗ y)− b = B̃+

A(x ∗ y) ≥ min{B̃+
A(x), B̃+

A(y)}
= min{B̃b

A(x)− b, B̃b
A(y)− b}

= min{B̃+
A(x), B̃+

A(y)} − b.

and

JA(x ∗ y)− q = Jq
A(x ∗ y) ≤ max{Jq

A(x), Jq
A(y)}

= max{JA(x)− q, JA(y)− q}
= max{JA(x), JA(y)} − q.

It follows that MA(x ∗ y) ≥ min{MA(x),MA(y)}, B̃−A(x ∗ y) ≤ max{B̃−A(x), B̃−A(y)}, B̃+
A(x ∗ y) ≥

min{B̃+
A(x), B̃+

A(y)} and JA(x ∗ y) ≤ max{JA(x), JA(y)} for all x, y ∈ X . Hence A = (MA, B̃A, JA)
is an BMBJ-neutrosophic subalgebra of X .
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Definition 3.15. Let A = (MA, B̃A, JA) and B = (MB, B̃B, JB) be BMBJ-neutrosophic sets in X . Then
B = (MB, B̃B, JB) is called an BMBJ-neutrosophic S-extension of A = (MA, B̃A, JA) if the following
assertions are valid.

(1) MB(x) ≥MA(x), B̃−A(x) ≤ B̃−A(x), B̃+
A(x) ≥ B̃+

A(x) and JB(x) ≤ JA(x) for all x ∈ X ,

(2) If A = (MA, B̃A, JA) is an BMBJ-neutrosophic subalgebra of X , then B = (MB, B̃B, JB) is an
BMBJ-neutrosophic subalgebra of X .

Theorem 3.16. Given p ∈ [0,>], a ∈ [0,Π], b ∈ [0, π] and q ∈ [0,⊥], the (p, a, b, q)-translative BMBJ-
neutrosophic set AT = (Mp

A, B̃
a
A, B̃

b
A, J

q
A) of an BMBJ-neutrosophic subalgebra A = (MA, B̃A, JA) is an

BMBJ-neutrosophic S-extension of A = (MA, B̃A, JA).

Proof. Straightforward.
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Abstract: The neutrosophic set is an imprecise set to deal the concepts of uncertainty, vagueness 

and irregularity, which consists of three independent functions called truth-membership, 

indeterminacy-membership and falsity-membership. This set is a generalization of Atanassov’s 

intuitionistic fuzzy sets. The neutrosophic supra topological space is a set together with 

neutrosophic supra topology. The intension of this paper is to develop the concept of 

-neutrosophic supra topological spaces. We further investigate the closure and interior operators 

in -neutrosophic supra topological spaces. Moreover, some weak form of -neutrosophic supra 

topological open sets are defined and establish their relations with suitable examples. 

Keywords: N-neutrosophic supra topology; N-neutrosophic supra -open set; N-neutrosophic 

supra semi- open set; N-neutrosophic supra pre-open set; N-neutrosophic supra -open set.  

 

 

1. Introduction 

A. Lottif Zadeh[1] developed a new set to analyze imprecise, vagueness and ambiguity 

information, namely fuzzy set, it discuss each element along with the membership value. Fuzzy set 

theory [2, 3, 4, 5] was applied in various fields such control systems, artificial intelligence, biology, 

medical diagnosis, economics and probability. C. L. Chang [6] introduced the concept of fuzzy 

topological space. R. Lowen [7] further studied about the fuzzy topological compactness. 

AbdMonsef and Ramadan [9] introduced fuzzy supra topological spaces and its continuous 

mappings. In 1986, K. Atanassov [10] introduced intuitionistic fuzzy set as a generalization of the 

fuzzy set, by taking into account both the degrees of membership and of non-membership of an 

element subject to the condition that their sum does not exceed 1. Some researchers [11, 12, 13, 14, 

15, 16, 17] used the intuitionistic fuzzy sets in pattern recognition, medical diagnosis, data mining 

process. Dogan Coker [18] generalized the fuzzy topological spaces into intuitionistic fuzzy 

topological spaces and further Reza Saadati and Jin Han Park [19] studied the properties of 

intuitionistic fuzzy topological spaces. The concept of intuitionistic fuzzy supra topological space 

mailto:e-mail:%20visjoy05796@gmail.com
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was initiated by N. Turnal [20]. Neutrosophic set is the generalization of Atanassov’s intuitionistic 

fuzzy set, developed by Florentin Samarandache [21, 22, 23] which is a set considering the degree 

of membership, the degree of indeterminacy-membership and the degree of falsity-membership 

whose values are real standard or non-standard subset of unit interval ] 0- ; 1+[. Recently many 

researchers [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] introduced neutrosophic numbers, 

several similarity measures and single-valued neutrosophic sets, which are applied in attribute 

decision making, information system quality, medical diagnosis, control systems, artificial 

intelligence, etc. Salama et al. [38, 39] defined the neutrosophic crisp set and neutrosophic 

topological space. In 1963, Norman Levine [40] initiated the concept of semi open sets and 

discussed the continuous functions in classical spaces. O.Njastad [41] showed that the family of all 

-open sets forms a topology. Mashhour et al. [42] investigated the properties of pre open sets. 

Andrijevic [43] discussed the behavior of -open sets in classical topology. By relaxing one of the 

topological axioms, Mashhour et al. [44] further developed the concept of supra topological space 

with the properties. Devi et al. [45] introduced the properties of -open sets and -continuous 

functions in supra topological spaces. Supra topological pre-open sets and its continuous functions 

are defined by O.R.Sayed [46]. Saeid Jafari et al. [47] investigated the properties of supra -open 

sets and its continuity. In 2016, Lellis Thivagar et al. [48] developed a new theory called 

-topological spaces and its own open sets. Apart from this, M. Lellis Thivagar and M.Arockia 

Dasan [49] derived some new -topologies by the help of weak open sets and mappings in 

-topological spaces. Recently, G.Jayaparthasarathy et al. [50] defined the concept of neutrosophic 

supra topological spaces and proposed a new method to solve medical diagnosis problems by 

using single valued neutrosophic score function. 

The present paper is organized as follows: The second section gives some basic properties of 

fuzzy, intuitionistic, neutrosophic sets and neutrosophic supra topological spaces. The third section 

extends the concept of neutrosophic supra topological spaces into -neutrosophic supra 

topological spaces with the properties of closure and interior operators. In the next section, we 

introduce some weak open sets in -neutrosophic supra topological spaces, namely 

-neutrosophic supra -open sets, -neutrosophic supra semi-open sets, -neutrosophic supra 

pre-open sets and -neutrosophic supra -open sets. The fifth section discusses the relationship 

between -neutrosophic supra topological closed sets. In the next section, we compare the 

neutrosophic supra topological spaces and -neutrosophic supra topological spaces with their 

limitations. The seventh section states the conclusion and future work of this paper. Finally all the 

necessary references of this paper are given. 

2. Preliminaries  

In this section, we discuss some basic definitions and properties of fuzzy, intuitionistic, 

neutrosophic sets and neutrosophic supra topological spaces which are useful in sequel. 

Definition 2.1 [1] Let  be a non empty set and a fuzzy set  on  is of the form 

, where  represents the degree of membership 

function of each  to the set  For ,  denotes the collection of all fuzzy sets of  

Definition 2.2 [10] Let  be a non empty set. An intuitionistic set    is of the 

form , where  and  represent the degree of 

membership and non membership function respectively of each  to the set  and  
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 for all . The set of all intuitionistic sets of  is denoted by 

 

Definition 2.3 [21] Let  be a non empty set. A neutrosophic set  having the form 

, where  and  ]-0,1+[ represent 

the degree of membership (namely , the degree of indeterminacy (namely ) and the 

degree of non membership (namely ) respectively of each  to the set  such that 

 for all . For ,  denotes the collection of all 

neutrosophic sets of X. 

Definition 2.4. [22] The following statements are true for neutrosophic sets A and B on X: 

≤ , ≤  and  ≥  for all x∈ X if and only if A B. 

A  B and B  A if and only if A = B. 

A ∩ B = (x, min , , min , max  : x ∈ X . 

A ∪ B = ( max , max , ,min , (x) ) : x ∈ X  

More generally, the intersection and the union of a collection of neutrosophic sets  , are 

defined by  Ai = x , ,  : x ∈ X}  and 

Ai  = : x ∈ X}. 

Corollary 2.5. [23] The following statements are true for the neutrosophic sets , and  on 

 

 and , if  and . 

, if  and . , if  and . 

, if  and  . 

Definition 2.6. [50] Let  be two neutrosophic sets of , then the difference of  and  is a 

neutrosophic set on , defined as 

. Clearly 

 and  

Notation 2.7. Let X be a non empty set. We consider the neutrosophic empty set as ∅= 

 and the neutrosophic whole set as  

Corollary 2.8. [50] The following statements are true for the neutrosophic sets on : 
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. 

(ii) .  

iii)  if  

Definition 2.9. [39] Let  be a non empty set. A subfamily of  is said to be a 

neutrosophic topology on  if the neutrosophic sets and ∅ belong to , is closed under 

arbitrary union and is closed under finite intersection. Then  is called neutrosophic 

topological space    ( shortly nts ), members of are known as neutrosophic open sets and their 

complements are neutrosophic closed sets. For a neutrosophic set of , the interior and closure 

of are respectively defined as: ) =  

and  

Definition 2.10. [50] Let be a non empty set. A sub collection  is said to be a 

neutrosophic supra topology on  if the sets ∅, X and is closed under arbitrary union. 

Then the ordered pair  is called neutrosophic supra topological space on ( for short 

nsts). The elements of are known as neutrosophic supra open sets and its complement is called 

neutrosophic supra closed. Let  be a neutrosophic topological space, then a neutrosophic 

supra topology on is said to be an associated neutrosophic supra topology with            

if . Every neutrosophic topology on  is neutrosophic supra topology on  

Definition 2.11. [50] Let  be a neutrosophic set on nsts ), then the  and 

 are respectively defined as: and  and 

 = and  

3.  N-Neutrosophic Supra Topological Spaces  

In this section, we introduce -neutrosophic supra topological spaces and investigate the 

properties of closure, interior operators in N-neutrosophic supra topological spaces. 

Definition 3.1. Let be a non empty set, ,   be N-arbitrary neutrosophic supra 

topologies defined on . Then the collection  is 

said to be a N-neutrosophic supra topology if it satisfies the following axioms: 

. 

. 

Then the N-neutrosophic supra topological space is the non empty set  together with the 

collection N ,denoted by  and its elements are known as N -open sets on  A 

neutrosophic subset  of  is said to be N -closed on  if  is N -open on . The set 
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of all N -open sets on  and the set of all N -closed sets on are respectively denoted by 

 and  

Remark 3.2. For instance, if , then  is called the classical neutrosophic 

supra topological space [50]. If , then  is called the bi neutrosophic supra 

topological space. If , then  is called the tri neutrosophic supra topological space 

defined on and so on. 

Example 3.3. Let , assume the neutrosophic supra topologies 

 

 and 

 

 

 and 

 

 Therefore 

 is a quad neutrosophic supra topological space on  

Remark 3.4. (i) If  , then . 

 (ii) Union of two -neutrosophic supra topologies is again an -neutrosophic supra topology. 

 (iii) Intersection of two -neutrosophic supra topologies is again an -neutrosophic supra  

     topology. 

Proof. (i): The proof is trivial. 

(ii): Let  and  be two -neutrosophic supra topologies on . Clearly, X and ∅ 

are the elements of . Let  , then by definition 

of -neutrosophic supra topology . Thus the union of two 

-neutrosophic supra topologies is a -neutrosophic supra topology. 

(iii): Let  and be two -neutrosophic supra topologies on . Clearly, and ∅ 

are the elements of . Let  ∈  , then  ∈ 

 ,  ∈  and so  ∈  . Thus the intersection 

of two -neutrosophic supra topologies is a -neutrosophic supra topology. 
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Remark 3.5. In classical -topological spaces, the union of two N-topologies need not be a 

-topology. But this statement is not true in -neutrosophic supra topological spaces as proved 

above. Thus the union of two -neutrosophic supra topologies is a -neutrosophic supra 

topology. 

Definition 3.6. Let  be a -neutrosophic supra topological space and be a 

neutrosophic set of . Then 

 -interior of is defined by  = and is -open . 

-closure of A is defined by  =  and  is -closed . 

Theorem 3.7. The following are true for neutrosophic sets  and  of -neutrosophic supra 

topological space  

 if and only if  is -neutrosophic supra closed. 

 =  if and only if  is -neutrosophic supra open. 

, if . 

 ⊆ , if . 

⊆ . 

⊆  

  ). 

  ⊇ ). 

  = .  

 = . 

Proof. (i):  Since =  and by definition  is -neutrosophic supra closed, 

then  is -neutrosophic supra closed. Conversely, if is any -neutrosophic supra closed 

containing , and since  is the intersection of all -neutrosophic supra closed sets 

containing , then and  is the smallest -neutrosophic supra closed 

set containing . Since is -neutrosophic supra closed, then the smallest -neutrosophic supra 

closed set containing  is  itself. Therefore,  
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(ii): Since  and by definition  is -neutrosophic supra open, then  

is -neutrosophic supra open. Conversely, if  is any -neutrosophic supra open contained in 

, and since  is the union of all -neutrosophic supra open sets contained in  then 

 and  is the largest -neutrosophic supra open set contained in . 

Since  is N-neutrosophic supra open, then the largest -neutrosophic supra open set contained 

in  is  itself. Therefore, . 

(iii): 

. 

      Thus, . 

(iv): 

     

     Thus, . 

(v): Since , then by part (iii)  

(vi): Since , then by part (iv) ( ). 

(vii): Since , then by part (iii)  

(viii): Since , then by part (iv)  

(ix): , is a 

N-neutrosophic supra open in  and . Thus, 

 

(x): = is a - 

neutrosophic supra closed in  and .  Thus, 

. 

Remark 3.8. If we take complement of either side of (ix) and (x) of previous theorem, we get 

(i) . 

(ii) . 

Theorem 3.9. Let  be a N-neutrosophic supra topological space and A be a neutrosophic 

set of X. Then 

(i)  
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(ii) . 

Proof. (i): By definition of N-neutrosophic supra topological space, we have 

 

Therefore,  

(ii): Since  then 

which 

implies . 

4. -Neutrosophic Supra Topological Weak Open Sets 

In this section, we introduce some new classes of -neutrosophic supra topological open sets and 

discuss the relationship between them. 

Definition 4.1. A neutrosophic set of a -neutrosophic supra topological space  is 

called 

N-neutrosophic supra -open set if  

-neutrosophic supra semi-open set if  

N-neutrosophic supra pre-open set if  

-neutrosophic supra -open set if  

The set of all -neutrosophic supra -open (resp. -neutrosophic supra semi-open, 

-neutrosophic supra pre-open and -neutrosophic supra -open) sets of  is denoted 

by  (resp.  and  

Theorem 4.2. Let A be a subset of -neutrosophic supra topological space . Then 

every -neutrosophic supra open set is -neutrosophic supra -open. 

every -neutrosophic supra -open set is -neutrosophic supra semi-open. 

every -neutrosophic supra -open set is -neutrosophic supra pre-open 
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every -neutrosophic supra semi-open set is -neutrosophic supra -open. 

every -neutrosophic supra pre-open set is -neutrosophic supra -open. 

Proof.(i): Assume  is -neutrosophic supra open, .  

Since   

Then  Therefore,  is -neutrosophic supra semi-open. 

(ii): Assume  is -neutrosophic supra -open and since  then 

 Therefore,  is -neutrosophic 

supra semi-open. 

(iii): Assume  is -neutrosophic supra -open and since , then 

Then 

 Therefore, A is N-neutrosophic 

supra pre-open. 

(iv): Assume  is -neutrosophic supra semi-open and since ,  then 

). Then 

 Therefore, is -neutrosophic 

supra -open. 

(v): Assume  is -neutrosophic supra pre-open and since , then 

 Therefore,  is -neutrosophic supra 

-open. 

 

The converse of the above theorem need not be true as shown in the following examples.  

Example4.3. Let  and , assume 

 Then 

 

 is a bi neutrosophic supra topology on . Then the 

neutrosophic set is 2-neutrosophic supra -open but 

not 2-neutrosophic supra open. 
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Example4.4. Let  and , assume 

, 

 Then 

 

 is a bi neutrosophic supra topology on . Then the 

neutrosophic set is 2-neutrosophic supra pre-open, 

2-neutrosophic supra -open, but not 2-neutrosophic supra -open and not 2-neutrosophic supra 

semi-open. 

Example4.5. Let  and , 

assume

 and  Then 

 

 is a tri neutrosophic 

supra topology on . Then  =  is 3-neutrosophic supra 

semi-open and 3-neutrosophic supra -open, but not 3-neutrosophic supra -open and not 

3-neutrosophic supra pre-open. 

Theorem 4.6. A neutrosophic set  in a -neutrosophic supra topological space  is 

-neutrosophic supra -open set if and only if  is both -neutrosophic supra semi-open and 

-neutrosophic supra pre-open. 

Proof. Assume that is -neutrosophic supra -open set, then 

. Since  then  

. Therefore,  is both 

-neutrosophic supra semi-open and -neutrosophic supra pre-open. On the other hand, assume 

that  is both -neutrosophic supra semi-open and -neutrosophic supra pre-open. Then  

 Therefore,  is -neutrosophic 

supra -open. 

Lemma 4.7. The arbitrary union of -neutrosophic supra -open ( resp. -neutrosophic supra 

semi-open, -neutrosophic supra pre-open, -neutrosophic supra -open) sets is 
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-neutrosophic supra -open ( resp. -neutrosophic supra semi-open, -neutrosophic supra 

pre-open, -neutrosophic supra -open). 

Proof. Here we only prove for -neutrosophic supra -open sets and similarly we can prove for 

-neutrosophic supra semi-open, -neutrosophic supra pre-open, -neutrosophic supra -open 

sets. Assume that  then  Since 

 Then  

Therefore  is a -neutrosophic supra -open set. 

Remark 4.8. Intersection of any two -neutrosophic supra -open ( resp. -neutrosophic supra 

semi-open, -neutrosophic supra pre-open, -neutrosophic supra -open) sets need not be a 

-neutrosophic supra  -open ( resp. -neutrosophic supra semi-open, -neutrosophic supra 

pre-open, -neutrosophic supra -open) set. 

Example 4.9. Let and , 

assume , 

 and 

. Then  

is a tri neutrosophic supra topology on  and ) is a tri neutrosophic supra topological 

space on . Here 0.5)) and 

 are both 3-neutrosophic supra -open and 

3-neutrosophic supra semi open, but  is not 3-neutrosophic supra -open and not 3- 

neutrosophic supra semi-open. 

Example4.10. Let , assume the neutrosophic supra topologies 

 

. Then  

 is a tri neutrosophic 

supra topology on  and  is a tri neutrosophic supra topological space on . Here the 

neutrosophic sets  and 

are 3-neutrosophic supra pre-open and 
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3-neutrosophic supra -open, but  is not 3-neutrosophic supra pre-open and 

3-neutrosophic supra -open. 

Remark 4.11. In classical topological spaces, O. Njastad [41] proved that the collection of all  

-open sets form a topology which is finer than the collection of all open sets. This statement need 

not be true in neutrosophic topological spaces as shown in the following example, that is, the 

collection of all neutrosophic -open sets need not be a neutrosophic topology, but this collection 

forms a neutrosophic supra topology. 

Example4.12. Let  assume the neutrosophic topology 

and  is a neutrosophic topological space on . Here 

 and  are 

neutrosophic -open, but  is not neutrosophic -open. 

Lemma 4.13. Let  and  be a -neutrosophic supra open set such that 

, then  is -neutrosophic supra open. 

Proof. Assume that  is a -neutrosophic supra open set such that . 

Then  . Therefore,  is -neutrosophic supra 

open. 

Lemma 4.14. Let  and  be a -neutrosophic supra -open set such that 

, then  is -neutrosophic supra -open. 

Proof. Assume that  is a -neutrosophic supra -open set such that . 

Then Therefore, 

 is -neutrosophic supra -open. 

Lemma 4.15. Let  and  be a -neutrosophic supra semi-open set such that 

, then  is -neutrosophic supra semi-open. 

Proof. Assume that  is a -neutrosophic supra semi-open set such that 

. Then  

Therefore,  is -neutrosophic supra semi-open. 

Lemma 4.16. Let  and  be a -neutrosophic supra pre-open set such that 

, then  is -neutrosophic supra pre-open. 

Proof. Assume that  is a -neutrosophic supra pre-open set such that . 

Then  Therefore,  is 

-neutrosophic supra pre-open. 
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Lemma 4.17. Let  and  be a -neutrosophic supra -open set such that 

, then  is -neutrosophic supra -open. 

Proof. Assume that  is a -neutrosophic supra -open set such that . 

Then )). Therefore, 

 is -neutrosophic supra -open. 

5. -Neutrosophic Supra Topological Weak Open Sets 

In this section, we introduce some weak closed sets in -neutrosophic supra topological spaces 

and investigate the relationship between them. 

Definition 5.1. A neutrosophic set  of a -neutrosophic supra topological space ) is 

called -neutrosophic supra -closed (resp. -neutrosophic supra semi-closed, neutrosophic 

supra pre-closed and -neutrosophic supra -closed) if the complement of is -neutrosophic 

supra -open (resp. -neutrosophic supra semi-open, -neutrosophic supra pre-open and 

-neutrosophic supra -open). The set of all -neutrosophic supra -closed (resp. 

-neutrosophic supra semi-closed, -neutrosophic supra pre-closed and -neutrosophic supra 

-closed) sets of  is denoted by  (resp  and 

 

Theorem 5.2. A neutrosophic set  of a -neutrosophic supra topological space ) is 

 -neutrosophic supra -closed if . 

-neutrosophic supra semi-closed if . 

-neutrosophic supra pre-closed if . 

-neutrosophic supra -closed if . 

Proof. : Here we shall prove parts (i) only and the remaining parts similarly follows. Assume  

is -neutrosophic supra -closed, then  is -neutrosophic supra -open and 

. Then  

Theorem 5.3. Let  be a subset of -neutrosophic supra topological space ). Then 

  every -neutrosophic supra closed set is -neutrosophic supra -closed. 

  every -neutrosophic supra -closed set is -neutrosophic supra semi-closed. 

  every -neutrosophic supra -closed set is -neutrosophic supra pre-closed. 
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  every -neutrosophic supra semi-closed set is -neutrosophic supra -closed. 

  every -neutrosophic supra pre-closed set is -neutrosophic supra -closed. 

Proof.  The proof follows from theorem 4.2 and definition 5.1. 

The converse of the above theorem need not be true as shown in the following examples. 

Example 5.4. Consider example 4.3, the neutrosophic set  

is 2-neutrosophic supra -closed but not 2-neutrosophic supra closed. Consider example 4.4, the 

neutrosophic set  is 2-neutrosophic supra pre-closed, 

2-neutrosophic supra -closed, but not 2-neutrosophic supra -closed and not 2-neutrosophic 

supra semi-closed. Consider example 4.5, the neutrosophic set 

 is 3-neutrosophic supra semi-closed and 3-neutrosophic 

supra -closed, but not 3-neutrosophic supra -closed and not 3-neutrosophic supra pre-closed. 

Theorem 5.5. A neutrosophic set  in a -neutrosophic supra topological space ) is 

-neutrosophic supra -closed set if and only if  is both -neutrosophic supra semi-closed and 

-neutrosophic supra pre-closed. 

Proof.  The proof follows directly from theorem 4.6 and definition 5.1. 

Lemma 5.6. The arbitrary intersection of -neutrosophic supra -closed (resp. -neutrosophic 

supra semi-closed, -neutrosophic supra pre-closed, -neutrosophic supra -closed) sets is 

-neutrosophic supra -closed (resp. -neutrosophic supra semi-closed, -neutrosophic supra 

pre-closed, -neutrosophic supra -closed). 

Proof.  The proof follows directly from lemma 4.7 and definition 5.1. 

Remark 5.7. Union of any two -neutrosophic supra -closed (resp. -neutrosophic supra 

semi-closed, -neutrosophic supra pre-closed, -neutrosophic supra -closed) sets need not be a 

-neutrosophic supra -closed (resp. -neutrosophic supra semi-closed, -neutrosophic supra 

pre-closed, -neutrosophic supra -closed) set. 

Example5.8. Consider example 4.9, the neutrosophic sets 

 and  are both 

3-neutrosophic supra -closed and 3-neutrosophic supra semi-closed, but  is not 

3-neutrosophic supra -closed and not 3-neutrosophic supra semi-closed. Consider example 4.10, 

the neutrosophic sets  and 

 are 3-neutrosophic supra pre-closed and 

3-neutrosophic supra -closed, but  is not 3-neutrosophic supra pre-closed and 

3-neutrosophic supra -closed. 
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Lemma5.9. Let  and  be a -neutrosophic supra -closed set such that 

 then  is -neutrosophic supra -closed. 

Proof. Assume that  is a -neutrosophic supra -closed set such that . 

Then . Therefore, B 

is -neutrosophic supra -closed. 

Lemma 5.10. Let  and  be a -neutrosophic supra semi-closed set such that 

  then is -neutrosophic supra semi-closed. 

Proof. Assume that  is a -neutrosophic supra semi-closed set such that 

. Then  and 

. Therefore,  is -neutrosophic 

supra semi-closed. 

Lemma 5.11. Let and  be a -neutrosophic supra pre-closed set such that 

, then  is -neutrosophic supra pre-closed. 

Proof.  Assume that  is a -neutrosophic supra pre-closed set such that 

. Then . 

Therefore,  is -neutrosophic supra pre-closed. 

Lemma 5.12. Let  and  be a -neutrosophic supra -closed set such that 

, then  is -neutrosophic supra -closed. 

Proof. Assume that  is a -neutrosophic supra -closed set such that . 

Then . Therefore, 

 is -neutrosophic supra -closed. 

 

6.Comparison and Limitations   

S.No Neutrosophic supra topological spaces -Neutrosophic supra topological spaces 

1 A sub collection  of neutrosophic 

sets on a non empty set X is said to be a 

neutrosophic supra topology on X if the 

sets  and , for 

. A non empty set X 

together with the collection  is 

called neutrosophic supra topological 

Let be a non empty set, ,  

 be -arbitrary neutrosophic 

supra topologies defined on . Then the 

collection
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space on X (for short nsts) denoted by 

the ordered pair . The members 

of  are known as neutrosophic supra 

open sets. 
 is said to be a -neutrosophic supra topology 

if it satisfies the following axioms: 

(i) . 

(ii)  

The N-neutrosophic supra topological space is 

the non empty set  together with the 

collection N , denoted by . The 

elements of N are known as N -open sets 

on  

2 It is a generalization of intuitionistic 

supra topological spaces. 

It is an extension of neutrosophic supra 

topological spaces. 

3 Every neutrosophic topology is 

neutrosophic supra topology. 

Every N-neutrosophic topology is 

N-neutrosophic supra topology. 

4 It is a particular case of N-neutrosophic 

supra topology, that is if N=1, then we 

have neutrosophic supra topology. 

It is a general form of neutrosophic supra 

topology. 

5 Union of two neutrosophic supra 

topologies is again a neutrosophic 

supra topology. Intersection of two 

neutrosophic supra topologies is again 

a neutrosophic supra topology. These 

two properties may not true in 

neutrosophic topology. 

Union of two N-neutrosophic supra topologies 

is again an N-neutrosophic supra topology. 

Intersection of two N-neutrosophic supra 

topologies is again an N-neutrosophic supra 

topology. These two properties may not true in 

N-neutrosophic topology. 

6 The collection of neutrosophic supra 

-open sets need not form a 

neutrosophic topology, but it is a 

neutrosophic supra topology. 

The collection of N-neutrosophic supra 

-open sets need not form an N-neutrosophic 

topology, but this collection is an 

N-neutrosophic supra topology. 
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7. Conclusions and Future Work  

Neutrosophic topological space is a generalization intuitionistic fuzzy topological space to deal 

the concept of vagueness. This paper has developed  N -neutrosophic supra topological spaces and 

its closure operator. Moreover, we have defined some weak form of open sets in N-neutrosophic 

supra topological spaces and established their relations. Apart from this, we have observed that the 

collection of weak open sets in N-neutrosophic supra topological spaces need not form an 

N-neutrosophic topology, but this forms an N-neutrosophic supra topology. We can be developed 

and implement these N-neutrosophic supra topological open sets to other research areas of topology 

such as Nano topology, Rough topology, Digital topology and so on. 

 

Funding: This research received no external funding from any funding agencies. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Zadeh, L.A. Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications, 

1968, Volume 23, pp. 421 – 427. 

2. Adlassnig, K.P. Fuzzy set theory in medical diagnosis, IEEE Transactions on Systems, Man, and 

Cybernetics, 1986, Volume 16 (2), pp. 260 – 265. 

3. Sugeno, M. An Introductory survey of fuzzy control, Information sciences,1985, Volume 36,  pp. 59 – 83. 

4. Innocent, P.R.; John, R.I. Computer aided fuzzy medical diagnosis, Information Sciences, 2004, Volume 162, 

pp.  81 – 104. 

5. Roos, T.J. Fuzzy Logic with Engineering Applications, McGraw Hill P.C., New York, 1994. 

6. Chang, C.L. Fuzzy topological spaces,  J. Math. Anal. and Appl., 1968, Volume 24, pp. 182 – 190. 

7. Lowen, R. Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 1976, Volume 56, pp. 621 

– 633. 

8. Mashhour, A.S.; Allam, A.A.; Mohmoud, F.S.; Khedr, F.H. On supra topological spaces, Indian J.Pure and 

Appl.Math.,1983, Volume 14(4), pp. 502 – 510. 

9. Abd El-monsef, M.E.; Ramadan, A.E. On fuzzy supra topological spaces, Indian J. Pure and Appl.Math., 

1987, Volume 18(4), pp. 322 – 329. 

10. Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1986, Volume 20, pp. 87 – 96. 

11. De, S.K.; Biswas, A.; Roy, R. An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets and 

System, 2001, Volume 117(2), pp. 209–213. 

12. Biswas, P.; Pramanik, S.; Giri, B.C. A study on information technology professionals’ health problem based 

on intuitionistic fuzzy cosine similarity measure, Swiss Journal of Statistical and Applied Mathematics, 

2014, Volume 2(1), pp. 44–50. 

13. Khatibi, V.; Montazer, G.A. Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition, 

Artificial Intelligence in Medicine, 2009, Volume 47(1), pp. 43–52. 

14. Hung, K.C.; Tuan, H.W. Medical diagnosis based on intuitionistic fuzzy sets revisited, Journal of 

Interdisciplinary Mathematics, 2013, Volume 16(6), pp. 385 – 395. 

15. Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy sets in some medical applications, In International Conference 

on Computa-tional Intelligence, Springer, Berlin, Heidelberg, 2001, pp. 148 – 151. 

16. De, S.K.;  Biswas, A.; Roy, R. An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets 

and System, 2001, Volume 117(2), pp. 209 – 213. 

17. Khatibi, V.; Montazer, G.A. Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition, 

Artificial Intelligence in Medicine, 2009, Volume  47(1), pp. 43–52. 

18. Dogan Coker. An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and system, 1997, 

Volume 88(1), pp. 81 – 89. 

19. Reza Saadati.; Jin Han Park. On the intuitionistic fuzzy topological space, Chaos, Solitons and Fractals, 

2006, Volume 27(2), pp. 331 – 344. 



Neutrosophic Sets and Systems, Vol. 31, 2020     61  

 

 

G.Jayaparthasarathy, M.Arockia Dasan, V.F.Little Flower and R.Ribin Christal, New Open Sets in N-Neutrosophic Supra 

Topological Spaces 

20. Turnal, N. An over view of Intuitionistic fuzzy Supra topological Spaces, Hacettepe Journal of Mathematics 

and statistics, 2003, Volume 32, pp. 17-26. 

21. Smarandache, F. A unifying field of logics. Neutrosophy: neutrosophic probability, set and logic, American 

Research Press, Rehoboth, 1998. 

22. Smarandache, F.; Pramanik, S. New trends in neutrosophic theory and applications, Brussels, Belgium, EU: 

Pons Editions, 2016. 

23. Smarandache, F. Neutrosophic set, a generalization of the intuitionistic fuzzy sets, Int. J. Pure. Appl. Math., 

2005, Volume  24, pp. 287 – 297. 

24. Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets, Multi-space and 

Multi-structure, 2010, Volume 4, pp. 410–413. 

25. Ye, J. Neutrosophic tangent similarity measure and its application to multiple attribute decision making, 

Neutrosophic Sets and Systems, 2015, Volume 9, pp. 85–92. 

26. Ye, J.; Ye, S. Medical diagnosis using distance-based similarity measures of single valued neutrosophic 

multisets, Neutrosophic Sets and Systems, 2015, Volume 7, pp. 47–54. 

27. Broumi, S.; Smarandache, F. Several similarity measures of neutrosophic sets, Neutrosophic Sets and 

Systems, 2013, Volume 1, pp. 54–62. 

28. Pramanik, S.; Mondal, K. Cotangent similarity measure of rough neutrosophic sets and its application to 

medical diagnosis, Journal of New Theory, 2015, Volume 4, pp. 90–102. 

29. Abdel-Basset, M.; Mohamed, R.; Zaied, A. E. N. H.; Smarandache, F. A hybrid plithogenic decision-making 

approach with quality function deployment for selecting supply chain sustainability metrics, Symmetry, 

2019, Volume 11(7),  903. 

30. Abdel-Baset, M.; Chang, V.; Gamal, A. Evaluation of the green supply chain management practices: A 

novel neutrosophic approach, Computers in Industry, 2019, Volume 108, 210-220. 

31. Abdel-Basset, M.; Saleh, M.; Gamal, A.; Smarandache, F. An approach of TOPSIS technique for developing 

supplier selection with group decision making under type-2 neutrosophic number, Applied Soft 

Computing, 2019,  Volume 77, 438-452. 

32. Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A group decision making framework based 

on neutrosophic TOPSIS approach for smart medical device selection, Journal of medical systems, 2019, 

Volume 43(2), 1-13. 

33. Abdel-Basset, M.; Atef, A.; Smarandache, F. A hybrid Neutrosophic multiple criteria group decision 

making approach for project selection, Cognitive Systems Research, 2019, Volume 57, 216-227. 

34. Abdel-Basset, M.; Mumtaz, A.; Atef, A. Resource levelling problem in construction projects under 

neutrosophic environment, The Journal of Supercomputing, 2019: 1-25. 

35. Karaaslan, F. Gaussian single-valued neutrosophic numbers and its application in multi-attribute decision 

making, Neutrosophic Sets and Systems, 2018, Volume 22, pp.101–117. 

36. Giri, B. C.; Molla, M. U.; Biswas, P. TOPSIS Method for MADM based on Interval Trapezoidal 

Neutrosophic Number, Neutrosophic Sets and Systems, 2018, Volume 22, pp. 151-167. 

37. Aal, S. I. A.; Ellatif, A.M.A.A.; Hassan, M.M. Two Ranking Methods of Single Valued Triangular 

Neutrosophic Numbers to Rank and Evaluate Information Systems Quality, Neutrosophic Sets and 

Systems, 2018, Volume 19, pp. 132-141. 

38. Salama, A. A.; Alblowi, S.A. Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of 

Mathematics, 2012, Volume 3(4), pp. 31–35.  

39. Salama, A.A.; Smarandach, F.; Valeri Kroumov. Neutrosophic Crisp Sets and Neutrosophic Crisp 

Topological Spaces, Neutrosophic Sets and Systems, 2014, Volume 2, pp. 25–30. 

40. Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 1963, Volume 

70, pp. 36 – 41. 

41. Njastad, O. On some classes of nearly open sets, Pacific J. Math., 1965, Volume 15, pp. 961 – 970. 

42. Mashhour, A.S.; Abd El-Monsef, M.E.; El-Deeb, S.N. On pre continuous and weak pre continuous 

mappings, Proc. Math. Phys. Soc., Egypt, 1982, Volume 53, pp. 47 – 53. 

43. Andrijevic, D. Semi-preo pen sets, Mat. Vesnik, 1986, Volume 38(1), pp. 24 – 32. 

44. Mashhour, A.S.; Allam, A.A.; Mohmoud, F.S.; Khedr, F.H. On supra topological spaces, Indian J. Pure and 

Appl.Math., 1983, Volume 14(4), pp. 502–510. 

45. Devi, R.; Sampathkumar, S.; Caldas, M. On supra -open sets and supr -continuous functions. General 

Mathematics,16 (2), 77-84. 



Neutrosophic Sets and Systems, Vol. 31, 2020     62  

 

 

G.Jayaparthasarathy, M.Arockia Dasan, V.F.Little Flower and R.Ribin Christal, New Open Sets in N-Neutrosophic Supra 

Topological Spaces 

46. Sayed, O. R. Supra pre open sets and supra pre-continuity on topological spaces, VasileAlecsandri 

University of Bacau Faculty of Sciences, Scientific Studies and Research Series Mathematics and 

Informatics, 2010, Volume 20(2), pp. 79-88. 

47. Saeid Jafari.; Sanjay Tahiliani. Supra -open sets and supra -continuity on topological spaces, Annales 

Univ. SCI. Budapest., 2013, Volume 56, pp. 1–9. 

48. LellisThivagar, M.; Ramesh, V.; Arockia Dasan, M. On new structure of N-topology, Cogent Mathematics, 

2016, Volume 3, pages- 10. 

49. LellisThivagar, M.; Arockia Dasan, M. New Topologies via Weak N-Topological Open Sets and Mappings, 

Journal of New Theory, 2019, 29, pp. 49-57. 

50. Jayaparthasarathy, G.; Little Flower, V.F.; Arockia Dasan, M. Neutrosophic Supra Topological Applications 

in Data Mining Process, Neutrosophic Sets and System, 2019, Volume 27, pp. 80 – 97. 

 

 

 

 

Received: Oct 15, 2019.  Accepted: Jan 29, 2020 

 



                                    Neutrosophic Sets and Systems, Vol. 31, 2020 
University of New Mexico  

 

Nada A. Nabeeh and Ahmed Abdel-Monem, A Novel Methodology for Assessment of Hospital Service according to BWM, 

MABAC, PROMETHEE II 

 

 

 

A Novel Methodology for Assessment of Hospital Service 
according to BWM, MABAC, PROMETHEE II 

Nada A. Nabeeh1, Ahmed Abdel-Monem2 and Ahmed Abdelmouty 3 

1Information Systems Department, Faculty of Computers and Information Sciences, Mansoura University, Egypt, 

nada.nabeeh@gmail.com 

2,3Faculty of Computers and Informatics, Zagazig University, Egypt, aabdelmounem@zu.edu.eg; a_abdelmouty@yahoo.com 

* Corresponding author: Nada A. Nabeeh (e-mail: nada.nabeeh@gmail.com). 

 

Abstract: In this study, a proposed methodology of Best Worst Method (BWM), Multi-Attributive 

Border Approximation Area Comparison (MABAC), and Preference Ranking Organization Method 

for Enrichment Evaluations (PROMETHEE II) are suggested to achieve a methodical and systematic 

procedure to assess the hospital serving under the canopy of neutrosophic theory.  The assessing of 

hospital serving challenges of ambiguity, vagueness, inconsistent information, qualitative 

information, imprecision, subjectivity and uncertainty are handled with linguistic variables 

parameterized by bipolar neutrosophic scale. Hence, the hybrid methodology of Bipolar 

Neutrosophic Linguistic Numbers (BNLNs) of BWM is suggested to calculate the significance 

weights of assessment criteria, and MABAC as an accurate method is presented to assess hospital 

serving. In addition to consider the qualitative criteria compensation in hospital service quality in 

MABAC in order to overcome drawbacks PROMETHEE II of non-compensation to reinforce the 

serving effectiveness arrangements of the possible alternatives.  An experiential case including 9 

assessment criteria, 2 public and 3 private hospitals in Sharqiyah EGYPT assessed by 3 evaluators 

from several scopes of medical industry to prove validity of the suggested methodology. The case 

study shows that the service effectiveness of private hospitals is superior to public hospitals, since 

the public infirmaries are scarcely reinforced by governmental institutions. 

Keywords: Hospital service; Neutrosophic Sets; Bipolar; BWM; MABAC; PROMETHEE II 

 

 

1. Introduction 

Nowadays, the achievements of best service are regarded as the key success for organizations. 

The major aim to estimate service fitness is to measure service execution, detect service trouble, spun 

service allocation, and deliver the best service for users[1]. Several studies have been performed to 

gauge service efficiency of different scopes. e.g. web [2], airport [3, 4], transportation [5], bank [6] and 

healthcare [7]. In healthcare, control and service efficiency rating are very important for hospitals and 

medical centers fields. There are more than 50 generic and private hospitals in Sharqiyah EGYPT with 
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tackled unceasing competitive pressure. The medical providers claim that the ability to deliver an 

efficient healthcare service to patients grantee the future achievement in healthcare[8]. 

 For patients, who looking for healthcare services there are two main anxieties superiority and 

efficiency of the hospitals and medical centers. Hospitals and medical centers have to augment their 

healthcare value and effectiveness to help patients to achieve the most desirable service [9]. The 

managements of hospital try to fulfill the requirements of patients [10]. Such that, the hospital and 

medical centers are the service that directly connect, interact, and supply people with medical 

facilities [11]. The main goal for hospitals includes hold and engage more patients as possible by 

achieving their latent requirements and desires [11]. The main challenge for healthcare in hospitals is 

the service value given for patients [11]The growing of service value includes assessment the value 

of connecting with the doctors, employers, mangers, physicians, surgeons and nurses with patients 

in an efficient manner [12].  

The hospital service value can be described according to various criterions either qualitative or 

quantitative. Hence, the hospital services are a problem of multi-criteria decision making (MCDM) 

with multiple criterions, alternatives, and decision makers. Researches illustrated various 

methodologies evaluate the service value [13-15] . However, the environment of hospital services is 

surrounded with complexity conditions of ambiguity, vagueness, inconsistent information, 

qualitative information, imprecision, subjectivity and uncertainty. Hence, the study proposed a 

hybrid methodology of BWM, MABAC, and PROMETHEE II as an effective tool in multi-criteria 

decision making based on BNLNs to make assessment of hospital services. The traditional BWM is 

extended with BNLNs terms to facilitate the description of qualitative criterions and alternatives [16]. 

The MABAC is suggested as an influential methodology to handle the complex and uncertain 

decision making problems [17]. The PROMETTEE is a methodology depends on non-compensation 

of criteria. The MABAC is combined with PROMETTEE to overcome the limitations of non-

compensation and challenges of hospital service problems and recommend the final rankings to 

assess service value in Sharqiyah EGYPT.  

The article is planned as follows: Section 2 presents the literature review. Section 3 presents the 

hybrid methodology of decision making for assessing of hospital serving by the use of neutrosophic 

theory by the integration of the BWM, MABAC and PROMETHEE II. Section 4 presents a case study 

to validate the proposed model and achieve to a final efficient rank. Section 5 summarizes the aim of 

the proposed study and the future work.  

 

2. Related Studies 

In this section, a review of literature will be displayed about the environment assessment of 

hospital service quality. The SERVQUAL is a well-defined methodology used to evaluate service 

effectiveness. The SERVQUAL has been applied in several aspects which comprise education [18], 

retail [19-21] and healthcare [22]. The MABAC been extended under various fuzzy environments [23]. 

E.g. combined interval fuzzy rough sets with the MABAC method to rank the firefighting chopper 

[24]. [25] presented rough numbers with the MABAC for sustainable system evaluation. Hence, to 

beat limitations of MABAC method the concept of PROMETHE II has been presented. Many of 



Neutrosophic Sets and Systems, Vol. 31, 2020     65  

 

 

Nada A. Nabeeh and Ahmed Abdel-Monem, A Novel Methodology for Assessment of Hospital Service according to BWM, 

MABAC, PROMETHEE II 

studies have been enhanced the PROMETHEE II method to solve decision making issues under 

ambiguous contexts [26]. In [27],  presented the PROMETHEE II method under hesitant fuzzy 

linguistic circumstances to choose green logistic suppliers. Due to conditions of uncertainty and 

incomplete information,  a novel PROMETHEE II method is proposed to solve decision making 

issues under probability multi-valued neutrosophic situation [28]. Usually, it is hard for DMs to 

straight allocate the weight values of assessment criteria in advance. [16] presented a novel weights 

calculation method, the BWM approach. In [29], combined the BWM method with grey system to 

calculate the weights of criteria. In [30], the BWM method enhanced with applying hesitant fuzzy 

numbers to explain criteria relative significance grades. In real life situations decisions, alternatives, 

criterions are taken in conditions of ambiguity, vagueness, inconsistent information, qualitative 

information, imprecision, subjectivity and uncertainty. In [31-43], proposes LNNs based on 

descriptive expressions to describe the judgments of decision makers, criterions, and alternatives. We 

propose to build a hybrid methodology of BNLNs based on BWM, MABAC, and PROMETHEE II. 

  

3. Methodology 

In this study, a hybrid methodology for assessment of hospital service quality is based on 

BNLNs.  

 

The traditional BWM method is extended with descriptive BNLNs to prioritize the problem's 

criterions. The MABAC is proposed to deal with the complexity and uncertainty hospital service 

quality. The PROMETHEE II is used to solve the non-compensation problem of criteria. Hence, a 

hybrid methodology is built by using BWM, MABAC and PROMETHEE II as mentioned in Figure 1. 

 

 

Figure.1. The overall conceptualization of the proposed approach 

 

In this section, a hybrid decision making framework is designed built on the integration of extended 

BWM, MABAC and PROMETHEE II methodologies to determine the desirable substitute hospital 

that achieves the requirements and the expectation of patients by evaluating a group of candidate 

hospitals. The steps of the proposed bipolar neutrosophic with BWM, MABAC and PROMETHEE II 

are modeled in Figure 2 and mentioned in details as following 



Neutrosophic Sets and Systems, Vol. 31, 2020     66  

 

 

Nada A. Nabeeh and Ahmed Abdel-Monem, A Novel Methodology for Assessment of Hospital Service according to BWM, 

MABAC, PROMETHEE II 

 

Figure 2. Framework of hybrid decision making 

Phase 1: Obtain Hybrid Assessment Information  

The goal from this phase is to obtain the hybrid assessment information:  

Step 1: Construct an original decision makers assessment matrix 

The linguistic term (LTS) provided by DMs using descriptive expressions such as: (Extremely 

important, Very important, Midst important, Perfect, Approximately similar, Poor, Midst poor, Very 

poor, Extremely poor. The BNLNS  is an extension of fuzzy set, bipolar fuzzy set, intuitionistic fuzzy 

set, LTS,  and neutrosophic sets is introduced by [35]. Bipolar Neutrosophic is [𝑇+, 𝐼+, 𝐹+, 𝑇−, 𝐼−, 𝐹−] 

where 𝑇+, 𝐼+, 𝐹+ range in [1,0] and 𝑇−, 𝐼−, 𝐹− range in [-1,0]. 𝑇+, 𝐼+, 𝐹+ is the positive membership 

degree indicating the truth membership, indeterminacy membership and falsity membership and 

𝑇−, 𝐼−, 𝐹−  is the negative membership degree indicates the truth membership, indeterminacy 
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membership and falsity membership. E.g. [0.3, 0.2, 0.6, -0.2, -0.1, -0.5] is a bipolar neutrosophic 

number. 

.  

For BNLNS qualitive criteria values can be calculated by decision makers under a predefined the 

LTS. Then, an initial hybrid decision making matrix is built as [32] 

             𝐶1 … 𝐶𝑝 

𝐺𝐷 =
𝐻1
:
𝐻𝑜

   [

𝑏11
𝐷 ⋯ 𝑏1𝑝

𝐷

⋮ ⋱ ⋮
𝑏𝑜1
𝐷 ⋯ 𝑏𝑜𝑝

𝐷
]                                                                                                                                               (1) 

Where 𝑏𝑠𝑟
𝐷  is a BNLNS, representing the assessment result of alternative 𝐻𝑠(𝑠 = 1,2, … . 𝑜)  with 

respect to criterion 𝐶𝑟(𝑟 = 1,2, … . 𝑝) and 𝐷 = 1,2,3 represent number of decision maker. 

Step 2:  Convert BNLNs into crisp value using score function mentioned as [36] 

𝑠(𝑏𝑜𝑝) = (
1

6
) ∗ (𝑇+ + 1 − 𝐼+ + 1 − 𝐹+ + 1 + 𝑇− − 𝐼− − 𝐹−)                                                                               (2) 

Step 3:  Aggregate decision makers assessment matrix [34] 

𝑏𝑠𝑟 = 
∑ (𝑏𝑜𝑝

𝐷 )𝐷
𝐷=1

𝐷
                                                                                                                                                                 (3) 

Where 𝑇𝑠𝑟
+𝐷  is a truth degree in positive membership for decision makers (D), 𝐼𝑠𝑟

+𝐷  is a 

indeterminacy degree and 𝐹𝑠𝑟
+𝐷  the falsity degree. 𝑇𝑠𝑟

−𝐷 the truth degree in negative membership for 

decision maker (D), 𝐼𝑠𝑟
−𝐷    the indeterminacy degree and  𝐹𝑠𝑟

−𝐷  the falsity degree. 

 

Step 4:  Build an initial aggregated assessment matrix 

           𝐶1 … 𝐶𝑝 

𝐺 =
𝐻1
:
𝐻𝑜

  [
𝑏11 ⋯ 𝑏1𝑟
⋮ ⋱ ⋮
𝑏𝑠1 ⋯ 𝑏𝑠𝑟

]                                                                                                                                                  (4) 

Step 5: Standardize the hybrid assessment matrix. 

Normalize the positive and negative criteria of the decision matrix as follows:  

For crisp value, the assessment data 𝑏𝑠𝑟(𝑠 = 1,2, …… . 𝑜,   𝑟 = 1,2, …… . 𝑝)  can be normalized with 

[17]: 

𝑁𝑠𝑟 =

{
 
 

 
 

𝑏𝑠𝑟 −min
𝑟
(𝑏𝑠𝑟)

max
𝑟
(𝑏𝑠𝑟) − min

𝑟
(𝑏𝑠𝑟)

,  𝐹𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

max
𝑟
(𝑏𝑠𝑟) − 𝑏𝑠𝑟

max
𝑟
(𝑏𝑠𝑟) − min

𝑟
(𝑏𝑠𝑟)

, 𝐹𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

                                                                                     (5) 

Then, a normalized hybrid assessment matrix is formed as 

           𝐶1 … 𝐶𝑝 

𝑁 =
𝐻1
:
𝐻𝑜

  [

𝑁11 ⋯ 𝑁1𝑝
⋮ ⋱ ⋮
𝑁𝑜1 ⋯ 𝑁𝑜𝑝

]                                                                                                                                                 (6) 

Where 𝑁𝑠𝑟  shows the normalized value of the decision matrix of Sth alternative in Rth criteria 
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Phase 2: Calculate the Criteria Weights Based on Extended BWM 

In this study, the BWM is extended with LTS to obtain the weights of criteria given linguistic 

expressions. 

Step 6: Select the best and the worst criteria  

When calculated the assessment criteria { 𝐶1 … 𝐶𝑝}, decision makers need to choose the best 

(namely, the most significant) criterion, denoted as 𝐶𝐵 . Meanwhile the worst (namely, the least 

significant) criterion should be selected and represented as  𝐶𝑊.  

Step 7: Acquire the linguistic Best-to-Others vector 

Make pairwise comparison between the most important criterion 𝐶𝐵 and the other criteria, then a 

linguistic Best to-Others vector is obtained with [16]: 

 

𝐿𝐶𝐵 = (𝐶𝐵1, 𝐶𝐵2………….  𝐶𝐵𝑝)                                                                                                                                       (7) 

 

Where 𝐶𝐵𝑟  is a linguistic term within a certain LTS, representing the preference degree of the best 

criterion 𝐶𝐵 over criterion 𝑐𝑟(𝑟 = 1,2, ……𝑝) In specific, 𝐶𝐵𝐵 = 1.  

Step 8: Obtain the linguistic Others-to-Worst vector.  

Similarly, make pairwise comparison between the other criteria and the worst criterion 𝐶𝑊, then a 

linguistic Others-to-Worst vector is obtained with [16]: 

 

𝐿𝐶𝑊 = (𝐶1𝑊, 𝐶2𝑊 ………….  𝐶𝑝𝑊)                                                                                                                                   (8) 

 

Where 𝐶𝑟𝑊 is a linguistic term within a certain LTS, representing the preference degree of criterion 

𝑐𝑟(𝑟 = 1,2, ……𝑝) over the worst criterion 𝐶𝑊 in precise, 𝐶𝑊𝑊 = 1. 

Step 9: Acquire the weights of criteria 

The goal from this step to obtain optimal weights of criteria so that the BWM is extended with crisp 

number for nonlinear programming model as mentioned [16]:  

min ε 

S.t. 

{
|
wB

wr
− CBr|  ≤ ε For all r

|
wr

wW
− CrW|  ≤ ε For all r

                                                                                                                                                   (9)                                                                                                                                 

Where wr  is the weight of criterion Cr , wB  is the weight of the best criteria CB and, wW  is the 

weight of the worst criteria CW. when solving model (9) the weight of wr and optimal consistency 

index ε can be computed.  

Phase 3: Build the Difference Matrix Based on MABAC method 

Build difference matrix built on the idea of MABAC method  

Step 10: Calculate the weighted normalized assessment matrix  

Given the normalized values of assessment and the weights of criteria. The weighted normalized 

values of each criterion are got as follow [17]: 

𝑁̂𝑠𝑟 = (𝑤𝑟 +𝑁𝑠𝑟 ∗ 𝑤𝑟 ,    𝑠 = 1,2, … . 𝑜, 𝑟 = 1,2, … . 𝑝                                                (10)     



Neutrosophic Sets and Systems, Vol. 31, 2020     69  

 

 

Nada A. Nabeeh and Ahmed Abdel-Monem, A Novel Methodology for Assessment of Hospital Service according to BWM, 

MABAC, PROMETHEE II 

Where 𝑤𝑟 is a weight of criteria r and 𝑁𝑠𝑟  is a normalized value of s and r.                                                                               

Step 11: Determine the border approximation area vector 

The border approximation area vector X is computed as [17]: 

𝑋𝑟 =
1

𝑝
∑ 𝑁̂𝑠𝑟
𝑝
𝑠=1   𝑠 = 1,2, … . 𝑜, 𝑟 = 1,2, … . 𝑝                                                      (11)                                                                                                                  

By calculating the values of the border approximation area matrix, a o × 1 matrix is obtained. 

Step 12: Obtain the difference matrix 

The difference degree between the border approximation area 𝑋𝑟  and each element 𝑁̂𝑠𝑟 in the 

weighted normalized assessment matrix can be calculated with [17]: 

 

𝑆𝑠𝑟 = 𝑁̂𝑠𝑟 − 𝑋𝑟                                                                                (12)                                                                                                                                      

Hence, the difference matrix S = (Ssr)oxp is accomplished. 

Phase 4: Get the Ranking Results Based on PROMETHEE II 

Attain the rank of hospitals based on PROMETHEE II method 

Step 13: Compute the full preference degree 

Compute the alternative difference of 𝑠𝑡ℎ alternative with respect to other alternative. the preference 

function is used in this study as follows [37]: 

 

𝑃𝑟(𝐻𝑠 , 𝐻𝑡) = {
0               if 𝑆𝑠𝑟 − 𝑆𝑡𝑟 ≤ 0 
𝑆𝑠𝑟 − 𝑆𝑡𝑟  if Ssr − Str > 0 

𝑠, 𝑡 = 1,2, … . . 𝑜                                           (13)                                                                          

Then the aggregated preference function can be computed as: 

 

𝑃(𝐻𝑠 , 𝐻𝑡) = ∑ 𝑤𝑟 ∗  𝑃𝑟(𝐻𝑠 , 𝐻𝑡)/∑ 𝑤𝑟
𝑜
𝑝

𝑜
𝑝                                                            (14)                                                                      

Step 14: Calculate the positive and negative flows of alternatives 

The positive fl0w (namely, the outgoing flow) 𝜓+(𝐻𝑖) [37]: 

𝜓+(𝐻𝑖) =
1

𝑛−1
∑ 𝑃(𝐻𝑠 , 𝐻𝑡) 𝑠 = 1,2, …… . . 𝑜𝑜
𝑡=1,𝑡≠𝑠                                                   (15)                                              

The negative fl0w (namely, the entering flow) 𝜓−(𝐻𝑖) [37]: 

𝜓−(𝐻𝑖) =
1

𝑛−1
∑ 𝑃(𝐻𝑡 , 𝐻𝑠) 𝑠 = 1,2, …… . . 𝑜𝑜
𝑡=1,𝑡≠𝑠                                                   (16)                                                  

Step 15: Attain the final ranking result of alternatives 

The net outranking 𝜓(𝐻𝑖) of alternative 𝐻𝑖  [37]: 

𝜓(𝐻𝑖) = 𝜓
+(𝐻𝑖) − 𝜓

−(𝐻𝑖) 𝑠 = 1,2, … . 𝑜                                                         (17)                                                                     

Hence, the final ranking order can be achieved according to the net outranking flow value of each 

alternative. The larger the value of 𝜓(𝐻𝑖), the better the alternative 𝐻𝑖 . 

4. Case Study 

In this section, a case of hospital service quality for 2 public and 3 private hospitals in Sharqiyah 

EGYPT is presented to verify the applicability for the method. The hybrid methodology aims to 

provide best medical and health-care serving performance for patients. Two governmental hospitals: 

Zagazig University Hospital (ZUH, 𝐻1 ) and MABARRA Hospital (MH, 𝐻2 ), and three private 
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hospitals - El-Salam Hospital (ESH, 𝐻3), GAWISH hospital (GH, 𝐻4) and EL-HARAMAIN hospital 

(EHH, 𝐻5 ). The proposed hospitals are selected to be assessed by 3 evaluators with regard to 9 

assessing criteria. The 3 evaluators notice that the actual state of affairs, meeting patients people, 

doctors, and nurses of these 5 hospitals with regard to 15 criteria to measure the service performance. 

The suggested approach integrates the BWM, MABAC and PROMETHEE II with BNLNs in order to 

make assessing for hospital service  

The main and sub-criteria of hospital service quality is decided by the aid of consultation 

involving healthcare managers, experts and academicians. Therefore, the study considers the four 

main criteria and 9 sub-criteria as shown in Figure 3, and described in Table 1.  

 

Figure. 3. The structure for assessing the hospitals service quality. 

Table 1. hospital of service quality criteria 

Factor Criteria Description 

Hospital staff  C1 Staff Services 

 C2 Ability of doctors to understand patients’ needs 

 C3 Medical staff with professional abilities 

Hospital equipment C4 Medical equipment level of the hospital 

Hospital services  C5 Security within hospital 

 C6 Quality of the food service for the patients  

 C7 Cleanliness of facilities and buildings 

pharmacy and medical 

treatment  

 C8 Pharmacist’s advice on medicine preservation 

 C9 Confidence to provided medical services 
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In phase 1. Experts make assessment with respect to the evaluation criteria in table 1. As criteria C1to 

C9 are qualitative factors, evaluation information of these subjective criteria is by means of BNLNs. 

Even though all the 9 criteria belong to benefit type, their scopes are different.  

Step 1: Construct an original decision makers assessment matrix 

calculate the suitable LTS for weights of criteria and alternatives with respect to every criterion. Each 

LTS is extended by bipolar neutrosophic sets to be BNLNs as mentioned in table 2. The BNLNs is 

described  as follows [36]: Extremely important = [0.9,0.1,0.0,0.0, -0.8, -0.9] Where the first three 

numbers present the positive membership degree.  (𝑇+(𝑥), 𝐼+(𝑥), 𝐹+(𝑥) )  0.9, 0.1 and 0.1, such that 

𝑇+(𝑥) the truth degree in positive membership.  𝐼+(𝑥)  the indeterminacy degree and  𝐹+(𝑥) the 

falsity degree. The last three numbers present the negative membership degree. 

(𝑇−(𝑥), 𝐼−(𝑥), 𝐹−(𝑥) )  0.0, -0.8, and -0.9, 𝑇−(𝑥) the truth degree in negative membership, such that 

𝐼−(𝑥) the indeterminacy degree and 𝐹−(𝑥) the falsity degree. Table 1, table 2, and table 3 represent 

the assessments for the three evaluators by the use of Eq. (1). 

Step 2: Convert BNLNs into crisp value using score function 

Convert BNLNs to crisp value in table 2 by using score function in Eq. (2). 

Step 3: Aggregate decision makers assessment matrix using Eq. (3). 

Step 4: Build an initial Aggregated assessment matrix using Eq. (4), and shown in table 6. 

Step 5: Standardize the hybrid assessment matrix 

Normalized the aggregated decision matrix, given the positive or negative type of the criteria using 

Eq. (5), the normalized values of the aggregated decision matrix using Eq. (6) are shown as in Table 

11. 

Table 2. Bipolar neutrosophic numbers scale 

 

LTS 

Bipolar neutrosophic numbers scale  

[𝑻+(𝒙), 𝑰+(𝒙), 𝑭+(𝒙), 𝑻−(𝒙), 𝑰−(𝒙), 𝑭−(𝒙)] 

 

Crisp value 

Extremely important  [0.9,0.1,0.0,0.0, -0.8, -0.9] 0.92 

Very important  [1.0,0.0,0.1, -0.3, -0.8, -0.9] 0.73 

Midst important [0.8,0.5,0.6, -0.1, -0.8, -0.9] 0.72 

Perfect [0.7,0.6,0.5, -0.2, -0.5, -0.6] 0.58 

Approximately similar [0.5,0.2,0.3, -0.3, -0.1, -0.3] 0.52 

Poor [0.2,0.3,0.4, -0.8, -0.6, -0.4] 0.45 

Midst poor [0.4,0.4,0.3, -0.5, -0.2, -0.1] 0.42 

Very poor [0.3,0.1,0.9, -0.4, -0.2, -0.1] 0.36 

Extremely poor [0.1,0.9,0.8, -0.9, -0.2, -0.1] 0.13 

 

In Phase 2. The goal from this phase determine the weights of criteria based on evaluation of decision 

maker. Use BWM to calculate weights of criteria.  

Step 6: Select the best and the worst criteria  

At the beginning C3 is the best criteria and the C1 is the worst criteria.  

Step 7: Acquire the linguistic Best-to-Others vector  

Construct pairwise comparison vector for the best criteria using Eq. (7) in table 7. 
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Step 8: Obtain the linguistic Others-to-Worst vector  

Construct pairwise comparison vector for the worst criteria using Eq. (8) in table 8.  

Step 9: Acquire the weights of criteria 

By applying best to others and worst to others using Eq. (9) the weights are computed in table 10. 

Figure 4 shows priority of criteria. Compute consistency ratio:  𝜀 = 0.05. For the consistency ratio, as 

𝐶𝐵𝑊 = 0.7  the consistency index for this problem is 3.73 from table 9 and the consistency ratio 

0.05/3.73 = 0.013, which indicates a desirable consistency. 

 

Figure 4. Priority weights of criteria 

Table 3. Assessment of hospitals services by the first evaluator 

Criteria/Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 

H1 0.13 0.36 0.92 0.73 0.52 0.36 0.52 0.92 0.73 

H2 0.36 0.42 0.52 0.36 0.42 0.52 0.73 0.42 0.36 

H3 0.72 0.73 0.92 0.73 0.73 0.73 0.52 0.72 0.73 

H4 0.36 0.42 0.52 0.36 0.42 0.52 0.73 0.42 0.36 

H5 0.92 0.73 0.52 0.92 0.73 0.52 0.73 0.72 0.92 

 

Table 4. Assessment of hospitals service by the second evaluator 

Criteria/Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 

H1 0.42 0.13 0.92 0.72 0.36 0.36 0.13 0.92 0.73 

H2 0.36 0.42 0.52 0.36 0.42 0.52 0.73 0.42 0.36 

H3 0.72 0.73 0.73 0.92 0.73 0.73 0.72 0.72 0.73 

H4 0.36 0.42 0.52 0.36 0.42 0.52 0.73 0.42 0.36 

H5 0.92 0.73 0.52 0.92 0.73 0.52 0.73 0.72 0.92 
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Table 5. Assessment of hospitals service by the third evaluator. 

Criteria/Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 

H1 0.36 0.42 0.92 0.73 0.42 0.36 0.52 0.73 0.73 

H2 0.36 0.52 0.52 0.42 0.73 0.52 0.52 0.42 0.73 

H3 0.72 0.73 0.73 0.72 0.73 0.52 0.52 0.72 0.73 

H4 0.36 0.42 0.52 0.36 0.42 0.52 0.73 0.42 0.36 

H5 0.92 0.73 0.52 0.92 0.73 0.52 0.73 0.72 0.92 

 

Table 6. Aggregation values of ranking alternatives by all decision makers 

Criteria/Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 

H1 0.30 0.30 0.92 0.73 0.43 0.36 0.39 0.86 0.73 

H2 0.36 0.45 0.52 0.38 0.52 0.52 0.66 0.42 0.48 

H3 0.72 0.73 0.79 0.79 0.73 0.66 0.56 0.72 0.73 

H4 0.36 0.42 0.52 0.36 0.42 0.52 0.73 0.42 0.36 

H5 0.92 0.73 0.52 0.92 0.73 0.52 0.73 0.72 0.92 

 

Table 7. pairwise comparison vector for the best criterion 

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 

C5 0.72 0.13 1 0.13 0.58 0.45 0.52 0.42 0.36 

 

Table 8. pairwise comparison vector for the worst criterion 

Criteria C3 

C1 1 

C2 0.13 

C3 0.72 

C4 0.58 

C5 0.52 

C6 0.13 

C7 0.42 

 C8 0.36 

C9 0.52 

 

Table 9. The consistency Index 

Criteria 1 2 3 4 5 6 7 8 9 

Weights 0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

 

 

 

Table 10. Weights of criteria based on BWM 
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Criteria 𝐂𝟏 𝐂𝟐 𝐂𝟑 𝐂𝟒 𝐂𝟓 𝐂𝟔 𝐂𝟕 𝐂𝟖 𝐂𝟗 

Weights 0.16 0.072 0.062 0.143 0.133 0.072 0.117 0.108 0.133 

 

In Phase 3: Build the Difference Matrix Based on MABAC method: 

 Step 10: Calculate the weighted normalized assessment matrix  

Construct the weighted normalized decision matrix using Eq. (10). E.g. the weighted normalized 

values of the first criteria are as follows: 

𝑁̂11 = 𝑤1 + 𝑁11 ∗ 𝑤1 = 0.16 ∗ (1 + 0) =  0.16 

𝑁̂21 = 𝑤1 + 𝑁21 ∗ 𝑤1 = 0.16 ∗ (1 + 0) =  0.175 

𝑁̂31 = 𝑤1 + 𝑁31 ∗ 𝑤1 = 0.16 ∗ (1 + 0) =  0.268 

𝑁̂41 = 𝑤1 + 𝑁41 ∗ 𝑤1 = 0.16 ∗ (1 + 0) =  0.175 

𝑁̂51 = 𝑤1 + 𝑁51 ∗ 𝑤1 = 0.16 ∗ (1 + 0) =  0.32 

The other weighted normalized values of the criteria are determined in table 12.  

Step 11: Determine the border approximation area vector 

Compute the border approximate area matrix using Eq. (11). The amounts of the border 

approximate area matrix are as follows: 

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 

Approximation 

area 

0.2196 0.1098 0.0826 0.2132 0.1954 0.1092 0.1939 0.1588 0.2 

 

Figure 5 show amount of the border approximate area. 

 

Figure 5. Border approximation area 

Step 12: Obtain the difference matrix 

Compute The distance from the border approximate area using Eq. (12). The distance of each 

alternative from the border approximate area, is shown in table 13. 
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Table 11. Normalized values of the Aggregated decision matrix 

Criteria/Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 

H1 0 0 1 0.660 0.032 0 0 1 0.660 

H2 0.096 0.348 0 0.035 0.322 0.533 0.794 0 0.214 

H3 0.677 1 0.675 0.767 1 1 0.5 0.681 0.660 

H4 0.096 0.279 0 0 0 0.533 1 0 0 

H5 1 1 0 1 1 0.533 1 0.681 1 

 

Table 12. Values of the weighted normalized decision matrix 

Criteria/Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 

H1 0.16 0.072 0.124 0.237 0.137 0.072 0.117 0.216 0.220 

H2 0.175 0.097 0.062 0.148 0.175 0.110 0.209 0.108 0.161 

H3 0.268 0.144 0.103 0.252 0.266 0.144 0.1755 0.181 0.220 

H4 0.175 0.092 0.062 0.143 0.133 0.110 0.234 0.108 0.133 

H5 0.32 0.144 0.062 0.286 0.266 0.110 0.234 0.181 0.266 

 

Table 13. Distance from the border approximate area 

Criteria/Alternatives C1 C2 C3 C4 C5 C6 C7 C8 C9 

H1 -0.05 -0.03 0.04 0.02 -0.05 -0.03 -0.07 0.05 0.02 

H2 -0.04 -0.01 -0.02 -0.06 -0.02 0.0008 0.01 -0.05 -0.03 

H3 0.04 0.03 0.02 0.03 0.07 0.03 -0.01 0.02 0.02 

H4 -0.04 -0.01 -0.02 -0.07 -0.06 0.0008 0.04 -0.05 -0.06 

H5 0.10 0.03 -0.02 0.07 0.07 0.0008 0.04 0.02 0.06 

 

In phase 4: Get the Ranking Results Based on PROMETHEE II 

Step 13: Compute the full preference degree 

Calculate the evaluative differences of 𝑠𝑡ℎ alternative with respect to other alternatives. Compute 

the preference function using Eq. (13). Calculate the aggregated preference function using Eq. (14) in 

table 14.  

Step 14: Calculate the positive and negative flows of alternatives 

Calculate the positive and negative flows of alternatives using Eq. (15) Eq. (16) in table 14. Calculate 

the net outranking flow of each alternative in the fourth column using Eq. (17) in table 14. Indicates 

that 𝜓(𝐻5) > 𝜓(𝐻3) > 𝜓(𝐻1) > 𝜓(𝐻2) > 𝜓(𝐻4). 

Step 15: Attain the final ranking result of alternatives 

Determine the ranking of all the considered alternatives in table 15 depending on the values of net 

flow in last column in table 14. The ranking order is H5 ≻ 𝐻3 ≻ H1 ≻ H2 ≻ H4. Hence, the best hospital 

alternative isH5. Figure 6 shows the order of hospitals. 
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Figure 6. Order of hospitals 

 

Table 14. The aggregated preference function 

Alternatives  H1 H2 H3 H4 H5 Leaving 

flow 

𝜓+(𝐻𝑖) 

Entering 

flow  

𝜓−(𝐻𝑖) 

Net 

flow 

H1 0 0.03261 0.00448 0.03936 0.00696 0.020853 0.039006 -0.01815 

H2 0.018608 0 0.00234 0.01074 0 0.007922 0.039006 -0.03108 

H3 0.04745 0.059312 0 0.070052 0.004582 0.045349 0.039006 0.006343 

H4 0.018128 0.00351 0.00585 0 0 0.006872 0.039006 -0.03213 

H5 0.071838 0.07888 0.02649 0.08611 0 0.06583 0.039006 0.026824 

 

Table 15. Final Rank Of alternatives 

Alternatives  Rank 

H1 3 

H2 4 

H3 2 

H4 5 

H5 1 

 

5. Conclusion 

The study proposes a hybrid methodology of neutrosophic set with BWM, MABAC and 

PROMETHEE II to assess a set of possible hospitals in an effort to reach to the superior qualified 

substitute that pleases the desires and the anticipations for patients. Consequently, raw data surveyed 
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from 3 evaluators and assessed by the neutrosophic BWM, MABAC and PROMETHEE model to 

measure the proportional healthcare service effectiveness performance of 5 hospitals. The outcomes 

display that the 5 most significant criteria for assessing the hospital service effectiveness are: Staff 

Services, medical equipment level of the hospital, security within hospital, confidence to provided 

medical services and cleanliness of facilities and buildings. Particularly, because the private 

infirmaries are hardly supported by government intuitions, they are prompted to provide superior 

services than public infirmaries in order to enhance patients’ gratification and consequently keep 

allegiance to the hospital. The future work includes using other applicable methodologies such as 

TOPSIS and making comparative studies that reflect on the assessing of hospital services.    
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1. Introduction 

Florentin Smarandache introduced Neutrosophic sets in 1998 [16], which is the 

generalization of the intuitionistic fuzzy sets. In some real time situations, decision makers faced 

some difficulties with uncertainty and inconsistency values. Neutrosophic sets helped the decision 

makers to deal with uncertainty values. Abdel-Basset et.al. used neutrosophic concept in real life 

decision-making problems [1-7]. The concept of single valued neutrosophic set was introduced by 

Wang. et. al [17].  

As a generalization of classical algebraic structure, Algebraic hyper structure was introduced 

by F. Marty [11]. Corsini and Leoreanu-Fotea developed the applications of hyper structure [9]. 

Algebraic hyperstructures has many applications in fuzzy sets, lattices, artificial intelligence, 

automation, combinatorics. Corsini introduced hypergroup theory [8]. After while the 

hyperstructure theory has seen broader applications in many fields. Some of the recent works on 

hyperstructures related to vague soft groups, vague soft rings and vague soft ideals can be found in 

[12, 13]. 

 In this paper we develop the theory of single valued neutrosophic hypergroup and also 

established some results on single valued neutrosophic hypergroup. 

2. Preliminaries 

Definition 2.1 [17] Let X be a space of points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function TA, an indeterminancy-

membership function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real 

standard or non-standard subsets of ]0−, 1+[.  

 𝑇𝐴: 𝑋 →]0−, 1+[ 

 𝐼𝐴: 𝑋 →]0−, 1+[ 

 𝐹𝐴: 𝑋 →]0−, 1+[ 
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There is no restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥) and 𝐹𝐴(𝑥), so 0− ≤ 𝑠𝑢𝑝𝑇𝐴(𝑥) + 𝑠𝑢𝑝𝐼𝐴(𝑥) +

𝑠𝑢𝑝𝐹𝐴(𝑥) ≤ 3+.  

Definition 2.2 [17] Let X be a space of points (objects),with a generic element of X denoted by x. A 

single valued neutrosophic set (SVNS) A in X is characterized by TA, IA and FA. For each point x in X, 

TA, IA, FA ∈ [0,1].  

Definition 2.3 [17] The complement of a SVNS A is denoted by c(A) and is defined by 

 Tc(A)(x) = FA(x) 

 Ic(A)(x) = 1 − IA(x) 

 Fc(A)(x) = TA(x), for all x in X.   

Definition 2.4  [17] A SVNS A is contained in the other SVNS  B, A ⊆ B, if and only if, 

 TA(x) ≤ TB(x) 

 IA(x) ≥ IB(x) 

 FA(x) ≥ FB(x), for all x in X.   

Definition 2.5 [17] The union of two SVNS s A and B is a SVNS   C, written as C = A ∪ B, whose truth, 

indeterminancy and falsity-membership functions are defined by, 

 TC(x) = max(TA(x), TB(x)) 

 IC(x) = min(IA(x), IB(x)) 

 FC(x) = min(FA(x), FB(x)), for all x in X.   

Definition 2.6 [17] The intersection of two SVNS s A and B is a SVNS C, written as C = A ∩ B, whose 

truth, indeterminancy and falsity-membership functions are defined by, 

 TC(x) = min(TA(x), TB(x)) 

 IC(x) = max(IA(x), IB(x)) 

 FC(x) = max(FA(x), FB(x)), for all x in X.  

Definition 2.7 [17] The falsity-favorite of a SVNS B, written as B∇ A, whose truth and falsity-

membership functions are defined by  

 TB(x) = TA(x) 

 IB(x) = 0 

 FB(x) = min{FA(x) + IA(x),1}, for all x in X.  

Definition 2.8 [13] A hypergroup 〈H,∘〉 is a set H equipped with an associative hyperoperation (∘

): H × H → P(H) which satisfies x ∘ H = H ∘ x = H for all x ∈ H  (Reproduction axiom)   

Definition 2.9 [13] A hyperstructure 〈H,∘〉 is called an Hv-group if the following axioms hold: 

 (i) x ∘ (y ∘ z) ∩ (x ∘ y) ∘ z ≠ ∅ for all x, y, z ∈ H, 

 (ii) x ∘ H = H ∘ x = H for all x ∈ H. 

If 〈H,∘〉 only satisfies (i), then 〈H,∘〉  is called a Hv- semigroup.   

Definition 2.10 [13] A subset K of H is called a subhypergroup if 〈K,∘〉 is a hypergroup of 〈H,∘〉.  

3. Single Valued Neutrosophic Hypergroup. 

Throughout this section 𝐻 denotes the hypergroup < 𝐻,∘>  

Definition 3.1 Let 𝒜 be a single valued neutrosophic set over H. Then 𝒜 is called a single valued 

neutrosophic hypergroup over H, if the following conditions are satisfied (𝑖)  ∀  𝑝, 𝑞 ∈ 𝐻,

𝑚𝑖𝑛{𝑇𝒜(𝑝), 𝑇𝒜(𝑞)} ≤ 𝑖𝑛𝑓{𝑇𝒜(𝑟):  𝑟 ∈ 𝑝 ∘ 𝑞}, 

 𝑚𝑎𝑥{𝐼𝒜(𝑝), 𝐼𝒜(𝑞)} ≥ 𝑠𝑢𝑝{𝐼𝒜(𝑟):  𝑟 ∈ 𝑝 ∘ 𝑞}  𝑎𝑛𝑑 
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 𝑚𝑎𝑥{𝐹𝒜(𝑝), 𝐹𝒜(𝑞)} ≥ 𝑠𝑢𝑝{𝐹𝒜(𝑟):  𝑟 ∈ 𝑝 ∘ 𝑞} 

(𝑖𝑖)  ∀  𝑙, 𝑝 ∈ 𝐻, 𝑡ℎ𝑒𝑟𝑒  𝑒𝑥𝑖𝑠𝑡𝑠  𝑞 ∈ 𝐻  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑝 ∈ 𝑙 ∘ 𝑞  𝑎𝑛𝑑 

 𝑚𝑖𝑛{𝑇𝒜(𝑙), 𝑇𝒜(𝑝)} ≤ 𝑇𝒜(𝑞), 

 𝑚𝑎𝑥{𝐼𝒜(𝑙), 𝐼𝒜(𝑝)} ≥ 𝐼𝒜(𝑞)  𝑎𝑛𝑑 

 𝑚𝑎𝑥{𝐹𝒜(𝑙), 𝐹𝒜(𝑝)} ≥ 𝐹𝒜(𝑞) 

(𝑖𝑖𝑖)  ∀  𝑙, 𝑝 ∈ 𝐻, 𝑡ℎ𝑒𝑟𝑒  𝑒𝑥𝑖𝑠𝑡𝑠  𝑟 ∈ 𝐻  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑝 ∈ 𝑟 ∘ 𝑙  𝑎𝑛𝑑 

 𝑚𝑖𝑛{𝑇𝒜(𝑙), 𝑇𝒜(𝑝)} ≤ 𝑇𝒜(𝑟), 

 𝑚𝑎𝑥{𝐼𝒜(𝑙), 𝐼𝒜(𝑝)} ≥ 𝐼𝒜(𝑟)  𝑎𝑛𝑑 

 𝑚𝑎𝑥{𝐹𝒜(𝑙), 𝐹𝒜(𝑝)} ≥ 𝐹𝒜(𝑟) 

 If 𝒜 satisfies condition (i) then  𝒜 is a single valued neutrosophic semihypergroup over H. Condition 

(ii) and (iii) represent the left and right reproduction axioms respectively. Then 𝒜 is a single valued 

neutrosophic subhypergroup of H.  

Example 3.2 If the family of t-level sets of SVNS  𝒜 over H  

 𝒜t = {p ∈ H  |  T𝒜(p) ≥ t, I𝒜(p) ≤ t  and  F𝒜(p) ≤ t}  is a subhypergroup of H then, 

𝒜 is a single valued neutrosophic hypergroup over H.   

 

Theorem 3.3 Let 𝒜 be a SVNS  over H. Then 𝒜 is a single valued neutrosophic hypergroup over H iff 

𝒜 is a single valued neutrosophic semihypergroup over H and also 𝒜 satisfies the left and right 

reproduction axioms.   

Proof. The proof is obvious from Definition: 3.1   

 

Theorem 3.4 Let 𝒜 be a SVNS  over H. If 𝒜 is a single valued neutrosophic hypergroup over H ,then 

∀ t ∈ [0,1] 𝒜t ≠ ∅ is a subhypergroup of H.  

Proof. Let 𝒜 be a single valued neutrosophic hypergroup over H and let p, q ∈ 𝒜t, then  

T𝒜(p), T𝒜(q) ≥ t, I𝒜(p), I𝒜(q) ≤ t and F𝒜(p), F𝒜(q) ≤ t. 

Then we have, 

                inf{T𝒜(r): r ∈ p ∘ q} ≥ min{T𝒜(p), T𝒜(q)} ≥ min{t, t} = t 

sup{I𝒜(r): r ∈ p ∘ q} ≤ t and 

 sup{F𝒜(r): r ∈ p ∘ q} ≤ t 

This implies r ∈ 𝒜t. Then ∀  r ∈ p ∘ q  , p ∘ q ⊆ 𝒜t. 

Thus ∀r ∈ 𝒜t, we obtain r ∘ 𝒜t ⊆ 𝒜t 

Now, Let l, p ∈ 𝒜t, then there exist q ∈ H such that p ∈ l ∘ q and 

                        {T𝒜(q)} ≥ min{T𝒜(l), T𝒜(p)} ≥ min{t, t} = t 

{I𝒜(q)} ≤ t and 

{F𝒜(q)} ≤ t.  This implies q ∈ 𝒜t 

This proves that 𝒜t ⊆ r ∘ 𝒜t. As such 𝒜t = r ∘ 𝒜t 

Which proves that 𝒜t is a subhypergroup of H.  

 

Theorem 3.5 Let 𝒜 be a SVNS  over H. Then the following are equivalent, 

(i) 𝒜 is a single valued neutrosophic hypergroup over H  

(ii) ∀ t ∈ [0,1] 𝒜t ≠ ∅ is a subhypergroup of H.  

Proof. (i) ⇒ (ii) The proof is obvious from Theorem : 3.4. 



Neutrosophic Sets and Systems, Vol. 31, 2020 83  

 

 

S. Rajareega, D. Preethi, J. Vimala, Ganeshsree Selvachandran and Florentin Smarandache, Some Results on Single Valued 

Neutrosophic Hypergroup 

(ii) ⇒ (i) Now assume that 𝒜t is a subhypergroup of H. 

Let p, q ∈ 𝒜t0
 and let min{T𝒜(p), T𝒜(q)} = max{I𝒜(p), I𝒜(q)} = max{F𝒜(p), F𝒜(q)} = t0  

Since p ∘ q ⊆ 𝒜t0
, then for every r ∈ p ∘ q, T𝒜(r) ≥ t0, I𝒜(r) ≤ t0, F𝒜(r) ≤ t0 

                min{T𝒜(p), T𝒜(q)} ≤ inf{T𝒜(r):  r ∈ p ∘ q}, 

max{I𝒜(p), I𝒜(q)} ≥ sup{I𝒜(r):  r ∈ p ∘ q} and 

max{F𝒜(p), F𝒜(q)} ≥ sup{F𝒜(r):  r ∈ p ∘ q}  

Condition (i) is verified. 

Next, let l, p ∈ 𝒜t1
, for every t1 ∈ [0,1] and  

let min{T𝒜(l), T𝒜(q)} = max{I𝒜(l), I𝒜(p)} = max{F𝒜(l), F𝒜(q)} = t1  

Then there exist q ∈ 𝒜t1
 such that p ∈ l ∘ q ⊆ 𝒜t1

. Since q ∈ 𝒜t1
, 

T𝒜(q) ≥ t1 = min{T𝒜(l), T𝒜(q)} 

I𝒜(q) ≤ t1 = max{I𝒜(l), I𝒜(q)} 

F𝒜(q) ≤ t1 = max{F𝒜(l), F𝒜(q)} 

Condition (ii) is verified. Similarly, (iii) . 

  

Theorem 3.6 Let 𝒜 be a SVNS  over H. Then 𝒜 be a single valued neutrosophic hypergroup over H 

iff  ∀ α, β, γ ∈ [0,1], 𝒜(α,β,γ) is a subhypergroup of H.   

Proof. The proof is straight forward.   

 

Theorem 3.7 Let 𝒜 be a single valued neutrosophic hypergroup over H and  ∀ t1, t2 ∈ [0,1] 𝒜t1
 and 

𝒜t2
 be the t-level sets of 𝒜 with t1 ≥ t2, then  𝒜t1

 is a subhypergroup of 𝒜t2
.   

Proof. ∀t1, t2 ∈ [0,1], 𝒜t1
 and 𝒜t2

 be the t-level sets of 𝒜 with t1 ≥ t2 

This implies that 𝒜t1
⊆ 𝒜t2

 

By Theorem 3.4. 𝒜t1
 is a subhypergroup of 𝒜t2

.  

 

Theorem 3.8 Let 𝒜 and ℬ be single valued neutrosophic hypergroups over H. Then 𝒜 ∩ ℬ is a single 

valued neutrosophic hypergroup over H if it is non-null.   

Proof. Suppose 𝒜 and ℬ be single valued neutrosophic hypergroups over H. 

By Definition: 2.6. 𝒜 ∩ ℬ = {< p, T𝒜∩ℬ(p), I𝒜∩ℬ(p), F𝒜∩ℬ(p) > :  p ∈ H} 

where T𝒜∩ℬ(p) = T𝒜(p) ∧ Tℬ(p), I𝒜∩ℬ(p) = I𝒜(p) ∨ Iℬ(p) and F𝒜∩ℬ(p) = F𝒜(p) ∨ Fℬ(p) 

For all p, q ∈ H  

(i) min{T𝒜∩ℬ(p), T𝒜∩ℬ(q)} = min{T𝒜(p) ∧ Tℬ(p), T𝒜(q) ∧ Tℬ(q)} 

 ≤ min{T𝒜(p), T𝒜(q)} ∧ min{Tℬ(p), Tℬ(q)} 

 ≤ inf{T𝒜(r):  r ∈ p ∘ q} ∧ inf{Tℬ(r):  r ∈ p ∘ q} 

 ≤ inf{T𝒜(r) ∧ Tℬ(r):  r ∈ p ∘ q} 

 = inf{T𝒜∩ℬ(r):  r ∈ p ∘ q} 

 Similarly, we can prove that max{I𝒜∩ℬ(p), I𝒜∩ℬ(q)} ≥ sup{I𝒜∩ℬ(r):  r ∈ p ∘ q} 

           max{F𝒜∩ℬ(p), FA∩B(q)} ≥ sup{F𝒜∩ℬ(r):  r ∈ p ∘ q} 

(ii) ∀ l, p ∈ H, there exists q ∈ H such that p ∈ l ∘ q,  

min{T𝒜∩ℬ(l), T𝒜∩ℬ(p)} = min{T𝒜(l) ∧ Tℬ(l)}, {T𝒜(p) ∧ Tℬ(p)} 

            = min{T𝒜(l), T𝒜(p)} ∧ min{Tℬ(l), TB(p)} 

            ≤ T𝒜(q) ∧ Tℬ(q) = T𝒜∩ℬ(q) 
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 Therefore, 𝒜 ∩ ℬ is a single valued neutrosophic hypergroup over H.  

 

Theorem 3.9 Let 𝒜 and ℬ be single valued neutrosophic hypergroups over H. Then 𝒜 ∪ ℬ is a single 

valued neutrosophic hypergroup over H.  

Proof. By Definition: 2.5. 

                                   𝒜 ∪ ℬ = {< p, T𝒜∪ℬ(p), I𝒜∪ℬ(p), F𝒜∪ℬ(p) > :  p ∈ H} 

where T𝒜∪ℬ(p) = T𝒜(p) ∨ Tℬ(p), I𝒜∪ℬ(p) = I𝒜(p) ∧ Iℬ(p) and F𝒜∪ℬ(p) = F𝒜(p) ∧ Fℬ(p) 

For all p, q ∈ H,  

min{T𝒜∪ℬ(p), T𝒜∪ℬ(q)} = min{T𝒜(p) ∨ Tℬ(p), T𝒜(q) ∨ Tℬ(q)} 

 ≤ min{T𝒜(p), T𝒜(q)} ∨ min{Tℬ(p), Tℬ(q)} 

 ≤ inf{T𝒜(r):  r ∈ p ∘ q} ∨ inf{Tℬ(r):  r ∈ p ∘ q} 

 ≤ inf{T𝒜(r) ∨ Tℬ(r):  r ∈ p ∘ q} 

 = inf{T𝒜∪ℬ(r):  r ∈ p ∘ q} 

 Similarly, the other holds.  

  

Theorem 3.10 Let 𝒜 be a single valued neutrosophic hypergroup over H. Then the falsity- favorite 

of 𝒜 (ie. , ∇𝒜) is also a single valued neutrosophic hypergroup over H.  

 

Proof. By Definition: 2.7. ℬ = ∇𝒜, where the membership values are Tℬ(x) = T𝒜(x), Iℬ(x) = 0 and 

Fℬ(x) = min{F𝒜(x) + I𝒜(x),1} 

Then we have to prove for Fℬ, ∀p, q ∈ H  

max{Fℬ(p), Fℬ(q)} = max{F𝒜(p) + I𝒜(p) ∧ 1, F𝒜(q) + I𝒜(q) ∧ 1} 

 = max{F𝒜(p) + I𝒜(p), F𝒜(q) + I𝒜(q)} ∧ 1 

 ≥ (max{F𝒜(p), F𝒜(q)} + max{I𝒜(p), I𝒜(q)}) ∧ 1 

 ≥ (sup{F𝒜(r)  ∶   r ∈ p ∘ q} + sup{I𝒜(r)  ∶   r ∈ p ∘ q}) ∧ 1 

 = sup{F𝒜(r) + I𝒜(r) ∧ 1 ∶   r ∈ p ∘ q} 

 = sup{Fℬ(r)  ∶   r ∈ p ∘ q}) 

 In similar manner the other conditions holds. 

4. Conclusions  

In this paper, we have developed the theory of hypergroup for the single-valued 

neutrosophic set by introducing several hyperalgebraic structures and some results were verified. 

The future research related to this work involve the development of other hyperalgebraic theory for 

the single-valued neutrosophic sets and interval-valued neutrosophic sets. 
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Abstract: To tackle the real life problems we come across, in various fields like computer sciences, 

medical sciences, social sciences and engineering works where we are facing many ambiguities and 

imprecisions. Here we bring an idea of neutrosophic bipolar fuzzy decision making where hybridized 

multi-attributes are involved, which is a very helpful tool to tackle the ambiguities and imprecisions. 

We present the neutrosophic bipolar fuzzy transformation techniques. The different types of 

attributes are transformed into unified neutrosophic bipolar fuzzy values. It includes the group 

decision making mode based on hybrid decision making problems with exact values, interval values 

and linguistic variables. Calculations of weights by decision makers, composition of aggregated 

weighted neutrosophic bipolar fuzzy decision matrices, determination of entropy weights, finding 

positive ideal solution(PIS),and negative ideal solution(NIS), calculation of grey relational coefficient 

,calculation of degree of weighted grey relational coefficient of each alternative, determination of 

relative relational degree of each alternative from the positive ideal solution (PIS) and negative ideal 

solution (NIS) and ranking of the alternatives are the concepts which are introduced in the case of 

neutrosophic bipolar fuzzy hybrid multi-attribute group decision making. Eventually, we apply 

these concepts and techniques upon hybrid multi-attributes decision making problem of selecting the 

best medicine to cure some particular diseases and develop an algorithm for neutrosophic bipolar 

fuzzy hybrid multi-attribute group decision making. 

Keywords: Neutrosophic bipolar fuzzy sets; multi-attribute group decision making; neutrosophic 

bipolar fuzzy transformation techniques; interval values and linguistic variables. 

 

 

1. Introduction 

The concept of fuzzy set theory was basically given by Zadeh [1]. The idea of fuzzy set theory 

has been extended to vague fuzzy set [2-5], interval-valued fuzzy set, intuitionistic fuzzy set [6], L-

fuzzy set, Q-fuzzy set [7-11], probabilistic fuzzy set and so on, [12-19]. All these versions had 

limitations in different situations. Smarandache [20], gave the idea of neutrosophic set which is the 

mailto:hashimmaths@hu.edu.pk
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generalization of all previous versions of fuzzy sets. Unfortunately, these, models were handling the 

problems involving only positive preferences and opinions, whereas human mind tends to work in 

both directions, positive and negative, in order to come up with a decision. Therefore, to bridge up 

this deficiency Zhang [21], introduced the notion of bipolar fuzzy sets. The features of bipolar fuzzy 

sets were considered and discussed in detail by Naveed at al. [22-24], Dubois et al. [25] and Silva et 

al. [26]. The applications of neutrosophic set theory are found in various fields of life, like computer 

sciences, physical sciences, medical sciences, social sciences, engineering and multi-criteria group 

decision making problems. The uses of neutrosophic theory for sets in decision making problems 

(DMP) have been considered by Basset et al. [27-31]. Qun et al. [32] and many others in many [33-36], 

they gave the idea of linguistic multiple attribute group decision making (LMAGDM). Chen [37] and 

Hung [38], introduced the idea of manipulation of multiple attribute decision making problems 

depends upon fuzzy sets. Later on Zhan et al. [39] applied the neutrosophic cubic sets in multi-criteria 

decision-making issues. Gulistan et al. [40] discussed the notion of neutrosophic cubic graphs and 

gave the real-life applications in industrial areas. Applications of neutrosophic sets in different 

directions can be seen in [41-44] and [45-52]. 

Neutrosophic sets are more general versions to handle the uncertain data problems when 

compared to the different versions of fuzzy sets. When handling uncertain issues where both positive 

and negative characteristics are involved, the bipolar fuzzy sets are found to be helpful. In propensity 

to take decisions considering both positive and negative preferences, we [45], recently defined the 

concept of neutrosophic bipolar fuzzy sets. We also defined neutrosophic bipolar fuzzy weighted 

averaging and neutrosophic bipolar fuzzy ordered weighted averaging operators. 

In this paper, we will extend the neutrosophic bipolar fuzzy set by introducing the idea of 

neutrosophic bipolar fuzzy hybrid multi-attribute group decision making where we use the different 

neutrosophic bipolar fuzzy transformation techniques. We give the new conversion techniques 

between the exact values and neutrosophic bipolar fuzzy numbers. The conversion techniques 

between interval values and neutrosophic bipolar fuzzy numbers have also been considered and 

likewise we also discuss the transformations techniques between linguistic variables and 

neutrosophic bipolar fuzzy numbers. Graphical representations of the notions in this paper have been 

considered as well. Finally, numerical example related to a medicine company which intends to 

prepare three different types of medicines for a certain type of disease. 

 

2. Preliminaries  

In this section we provide some of the precursors in developing our new concept. 

Definition 2.1. [1] A fuzzy set maps the elements of a universe X to the unit interval [0,1] . 

Definition 2.2. [13] Let X be a universe of discourse. An intuitionistic fuzzy set, A in X is an object 

having the following form A = {⟨x, μ(x), ν(x)⟩ :   x ∈ X} 

  where μA(x)  is known as a degree of membership and νA(x)  is known as a degree of non-

membership of the element X to the IFS A with the condition,0 ≤ μ(x) ≤ 1, 

 0 ≤ ν(x) ≤ 1,  0 ≤ μ(x) + ν(x) ≤ 1.  For each IFS  A  in X . The hesitancy indeterminacy degree 

measure as follows, πA(x) = 1 − μ(x) − ν(x).  Then πA(x)  is known as degree of indeterminacy 

membership of x to the set A and ∀ x ∈ X.  
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Definition 2.3. [21] Let X be a non-empty set. Then a bipolar fuzzy set, is an object of the form B =

⟨x, ⟨μ+(x),  μ−(x)⟩ :   x ∈ X⟩,  where μ+(x) :   X → [0,1] and μ−(x) :   X → [−1,0] , μ+(x)  is a positive 

material and μ−(x) is a negative material of x ∈ X . For simplicity, we write the bipolar fuzzy set as 

B = ⟨μ+, μ−⟩ instead of  B = ⟨x, ⟨μ+(x), μ−(x)⟩ :   x ∈ X⟩.  

 

Definition 2.4. [32, 34, 41] A single valued neutrosophic set, is defined as;  

A = {⟨x, TA(x), IA(x), FA(x)⟩ :   x ∈ X}, 

where X be the universe of discourse and A is characterized by a t-membership function TA :   X →

[0,1]  , an i-membership function IA :   X → [0,1]  and a f-membership function  FA  :   X → [0,1], 

where 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.  

 

Definition 2.5. [6] A neutrosophic set, is defined as: 

A = {⟨x, TA(x), IA(x), FA(x)⟩ :   x ∈ X} 

and X is a universe of discourse and A is characterized by a t-membership function  TA  :   X →

]0−, 1+[, an i-membership function IA : X →]0−, 1+[ and a f-membership function FA  :   X →]0−, 1+[. 

There is no condition on the sum of TA(x), IA(x), FA(x), so  0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.  

Definition 2.6. [45] Let X be a non-vacuous set. Then a neutrosophic bipolar fuzzy set, is an object of 

the form NB = (NB+, NB−)where 

NB+ = ⟨y, ⟨TNB+ , INB+ , FNB+⟩: x ∈ X⟩ , , NB− = ⟨y, ⟨TNB− , INB− , FNB−⟩ :   x ∈ X⟩  such that 

TNB+ , INB+ , FNB+  :   X → [0,1] and  TNB− , INB− , FNB−  :   X → [−1,0] . 

 

Definition 2.7. [45] Let NBj = (NBj
+, NBj

−) be the collection of neutrosophic bipolar fuzzy values. 

Then a mapping NBFWAω   :   Ωn → Ω defined by 

NBFWAω(NB1, NB2, . . . , NBn) = ω1NB1 ⊕ ω2NB2 ⊕, . . . ,⊕ ωnNBn 

is called a neutrosophic bipolar fuzzy weighted averaging (NBFWA)   operator of dimension n , 

where w = (w1, w2, . . . , wn)T is the weight vector of NBj(j = 1,2, . . . , n)  , with ωj ∈ [0,1]  and  

Σj=1
n wj = 1 .  

Especially, if ω = (
1

n
,

1

n
, . . . ,

1

n
)

T

, then the NBFWA operator is reduced to a neutrosophic bipolar fuzzy 

averaging (NBFA) operator of dimension n, which is defined as follows: 

NBFA(NB1, NB2, . . . , NBn) =
1

n
(NB1 ⊕ NB2 ⊕, . . . ,⊕ NBn). 

Definition 2.8. [45] Let NBj = (NBj
+, NBj

−) be a collection of neutrosophic bipolar fuzzy values. A 

neutrosophic bipolar fuzzy ordered weighted averaging (NBFOWA)operator of n dimension is a 

mapping NBFOWA   :   Ωn → Ω, that has an associated vector:  

ω = (ω1, ω2, . . . , ωn)T such that ωj ∈ [0,1] and  Σj=1
n ωj = 1. Furthermore  

NBFOWAω(NB1
+, NB2

+, . . . , NBn
+) = ω1NBσ(1)

+ ⊕ ω2NBσ(2)
+ ⊕, . . . ,⊕ ωnNBσ(n)

+  

NBFOWAω(NB1
−, NB2

−, . . . , NBn
−) = ω1NBσ(1)

− ⊕ ω2NBσ(2)
− ⊕, . . . ,⊕ ωnNBσ(n)

−  

where (σ(1), σ(2), . . . , σ(n)) is a permutation of (1,2, . . . , n) such that  NBσ(j−1) ≥ NBσ(j) for all j . 

Especially, if ω = (
1

n
,

1

n
, . . . ,

1

n
)

T

, then the NBFOWA operator is reduced to a bipolar fuzzy averaging 
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(NBFA) operator of dimension n .   

Definition 2.9. [17] A linguistic variable, is a variable whose values are words or sentences in natural 

or artificial language. 

 

3. Neutrosophic Bipolar Fuzzy Transformations Techniques   

In this section we develop the neutrosophic bipolar fuzzy hybrid (MADM) with different types 

of data values. The neutrosophic bipolar fuzzy hybrid (MADM) problem based on four different data 

types, exact values, intervals, NBFNs and linguistic terms. Let NB = {NB1,NB2,, . . . , NBn,} be a finite 

set of alternatives, and let C = {c1, c 2, . . . cn}  be a set of attributes with weight vector w =

(w1, w2, . . . , wm) , where w ≥ 0 (j = 1,2, . . . , m) and  

∑ wj

m

j=1

= 1. 

Let Rk = (aij
(k)

)n×m be a neutrosophic bipolar fuzzy hybrid decision matrix, where (aij
(k)

) will be the 

exact values, intervals, NBFNs, and linguistic terms. We need to transform three other types of 

attributed values in Rk  into unified NBFNs . In the following discussion, we will explore the 

transformation techniques for each of the data types. 

 

3.1. Conversion between exact values and NBFNs 

The values of different attributes have different dimensions. Thus, the real numbers in the 

hybrid decision making need to be standardized in order to eliminate interference in the results. 

Generally, there are two kinds of attributes, the benefit type and the cost. The higher the benefit type 

value is, the better it is. While in the cost type, it is the opposite. For the benefit type, formula is 

 

bij
(k)

=
aij

(k)

√ ∑

i=1
m

(a
ij
(k)

)2

.                                                                                     (1) 

The cost type formula is; 

bij
(k)

=

(
1

a
ij
(k))

√ ∑

i=1
m

(
1

(a
ij
(k)

)
)

2
.                                                                                     (2) 

Standardized precise number can be transformed into neutrosophic bipolar fuzzy numbers as  

aij
(k)

= ((μij
+(k)

, Iij
+(k)

, Fij
+(k)

), (μij
−(k)

, Iij
−(k)

, Fij
−(k)

)) 

μij
+(k)

= bij
(k)

, Fij
(k)

=
μij

(k)

2
, Iij

(k)
=

μij
(k)

3
, μij

−(k)
= −1 + bij

(k)
, 

                Fij
−(k)

=
μij

−(k)

2
, Iij

−(k)
=

μij
−(k)

3
                                                                    (3) 

For intervals and NBFNs, for the benefit type formula is,  
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bij
L(k)

=
aij

L(k)

√ ∑

i=1
m

(a
ij
U(k)

)2

,      bij
U(k)

=
aij

U(k)

√ ∑

i=1
m

(a
ij
L(k)

)2

.                                                                   (4) 

 

For the cost type formula is; 

bij
L(k)

=

(
1

a
ij
U(k))

√ ∑

i=1
m

(
1

(a
ij
L(k)

)
)

2
,   bij

U(k)
=

aij
L(k)

√ ∑

i=1
m

(
1

(a
ij
U(k)

)
)

2
.                                                               (5) 

 

Standardized interval numbers can be transformed into neutrosophic bipolar fuzzy numbers as 

follows; 

aij
(k)

= ((μij
+(k)

, Iij
+(k)

, Fij
+(k)

), (μij
−(k)

, Iij
−(k)

, Fij
−(k)

)) ,   μij
(k)

= bij
L(k)

, Fij
(k)

=
μij

(k)

3
, Iij

(k)
=

μij
(k)

2
 

μij
−(k)

= −1 + bij
U(k)

, Fij
−(k)

=
μij

−(k)

3
, Iij

−(k)
=

μij
−(k)

2
                                                                                          (6) 

Note: The indeterminacy I ≠ 1 − μ − F. We have defined functions F and I as in [3,6] to be used in 

this paper. 

 

3.2. Conversion between linguistic variables and NBFNs 

Linguistic variables are used usually when situations are complex or not well defined. The 

words or sentences given by the decision makers for rating or ranking like very good, good, fine, 

poor, very poor etc., can be converted into, and expressed as a quantities (NBFNs). The linguistic 

variables for the position of the decision makers can be expressed in NBFNs in Table 1 and shown as 

in Figure 1.  

 

𝐓𝐚𝐛𝐥𝐞 𝟏.  Linguistic variable for the important of decision makers 

Linguistic variable    NBFNs 

Very important ((0.85, 0.42, 0.28), (-0.10, -0.05, -0.03)) 

Important ((0.70, 0.35, 0.23), (-0.2, -0.10, -0.06)) 

Medium  ((0.55, 0.27,0.18), (-0.30, -0.15, -0.10)) 

Unimportant ((0.30, 0.15, 0.10), (-0.60, -0.30, -0.20)) 

Very unimportant ((0.10, 0.05, 0.03), (-0.90, -0.45, -0.30)) 
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Figure 1. Graphical representation of importance of linguistic variables 

 

𝐓𝐚𝐛𝐥𝐞 𝟐.  Conversion of linguistic variable into NBFNs 

Linguistic variable    NBFNs 

Extremely high (EH) ((0.95,0.47,0.31), (-0.03,-0.015,-0.01)) 

Very very high (VVH) ((0.83,0.41,0.27), (-0.10,-0.05,-0.03)) 

Very high (VH) ((0.77,0.38,0.25), (-0.12,-0.06,-0.04)) 

High (H) ((0.65,0.32,0.21), (-0.21,-0.10,-0.07)) 

Medium high (MH) ((0.55,0.27,0.18), (-0.32,-0.16,-0.10)) 

Medium (M) ((0.50,0.25,0.16), (-0.38,-0.19,-0.12)) 

Medium low (ML) ((0.35,0.17,0.11), (-0.45,-0.22,-0.15)) 

Low (L) ((0.22,0.11,0.07), (-0.3,-0.15,-0.1)) 

Very low (VL) ((0.12,0.06,0.04), (-0.87,-0.43,-0.29)) 

Very very low (VVL) ((0.06,0.03,0.02), (-0.93,-0.46,-0.31)) 

 

 

Figure 2. The rating of alternatives 

 

The ratings of alternatives with respect to qualitative criteria can be converted into NBFNs as shown 

in Table 2 and shown as in Figure 2.  
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4. Neutrosophic Bipolar Fuzzy Hybrid Multi-Attribute Decision-Making  

Neutrosophic bipolar fuzzy hybrid multi-attribute decision making problems are defined on a 

set of alternatives, from which the decision makers must select the best alternative according to some 

criteria. Suppose that there exists an alternative set NB = {NB1,NB2,, . . . , NBn,} which consists of n 

alternatives, the decision makers will choose the best one from NB according to an attribute set C =

{c1, c2, . . . , cm} in which m  attributes are there. For convenience, we denote the weight vector of 

attribute by w = {w1, w2, . . . , wm}T, where wj ≥ 0 (j = 1,2, . . . , m)  and 

∑ wj

m

j=1

= 1. 

We develop an algorithm for neutrosophic bipolar fuzzy hybrid MADM as follows: 

 

Step 1. Consider the neutrosophic bipolar fuzzy hybrid decision matrix of each decision maker. The 

neutrosophic bipolar fuzzy hybrid decision matrix involves four different data types: exact values, 

intervals, NBFNs, and linguistic terms. 

Step 2. In this step we use the transformation techniques to transform exact values, interval values, 

and linguistic variables, into neutrosophic bipolar fuzzy information. Assume that the rating of 

alternative Ai(j = 1,2, . . . , n)  with respect to attribute cj  given by the kth  experts ek  can be 

expressed in aij
(k)

= ((μij
+(k)

, Iij
+(k)

, Fij
+(k)

), (μij
−(k)

, Iij
−(k)

, Fij
−(k)

)).  Hence a hybrid multiattribute group 

decision-making problem can be concisely expressed in a matrix format as:  

( ) ( ) ( )
11 11 1

( ) ( ) ( )
21 22 2

( ) ( )

( ) ( ) ( )
1 2

  .. ..

  .. ..

. . .
( )  

. . .. .. .

. . .

  .. ..  

k k k
m

k k k
m

k k
ij n m

k k k
nmn n

R

  

  



  



 
 
 
 
 = =
 
 
 
 
 

                         (7) 

where  aij
(k)

= ((μij
+(k)

, Iij
+(k)

, Fij
+(k)

), (μij
−(k)

, Iij
−(k)

, Fij
−(k)

)).  

Step 3. In this step we calculate the weight of each decision maker. Calculate the weight with respect 

to the Kth  decision maker ek  . Determine the weights of decision makers, let Dk =

((μij
+(k)

, Iij
+(k)

, Fij
+(k)

), (μij
−(k)

, Iij
−(k)

, Fij
−(k)

)) be a neutrosophic bipolar fuzzy number for rating of the Kth 

decision maker. Then the weight of the Kth decision maker can be obtained as follows: 

λk =
(μk

++Ik
+(μk

+/(μk
++Fk

+)))+|(μk
−+Ik

−(μk
−/(μk

−+Fk
−)))|

∑

k=1
t

(μk
++Ik

+(μk
+/(μk

++Fk
+)))+|(μk

−+Ik
−(μk

−/(μk
−+Fk

−)))|

     where   ∑ λk
t
k=1 = 1       (8) 

 

Step 4. Compose the aggregated weighted neutrosophic bipolar fuzzy decision matrix. In this step, 

aggregated weighted neutrosophic bipolar fuzzy decision matrix R is formed by considering the 
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aggregated neutrosophic bipolar fuzzy decision matrix and weights vector of decision maker. The 

aggregated neutrosophic bipolar fuzzy decision matrix  (ANBFDM) was formed by applying the 

neutrosophic bipolar fuzzy weighted averaging operator (NBFWAO). By considering weights λk(k =

1,2, . . . , t) of decision makers, elements βij of (ANBFDM) can be calculated by using (NBFWA) as 

follows:  

βij = [(μij
+′

= 1 − ∏(1 − μij
+(k)

)λk

t

k=1

, Iij
+′

=
1 − ∏ (1 − μij

+(k)
)λkt

k=1

2
,    

Fij
+′

=
1 − ∏ (1 − μij

+(k)
)λkt

k=1

3
)λk), (μij

−′
= − ∏(1 − μij

−(k)
)λk

t

k=1

, 

Iij
−′

=
− ∏ (1−μij

−(k)
)λkt

k=1

2
, Fij

−′
=

− ∏ (1−μij
−(k)

)λkt
k=1

3
)].                                                               (9) 

where 

R = (βij)n×m     = ((μij
+′

, Iij
+′

, Fij
+′

), (μij
−′

, Iij
−′

, Fij
−′

))n×m 

 

Step 5. Determine the entropy weights of the selection criteria. In this step, all criteria may not be 

assumed to be of equal importance. w represents a set of grades of importance. Let  wj  be the 

weights of the criteria, the neutrosophic bipolar fuzzy entropy Hj is calculated by equations;  

Hj =
1

n
∑

min((μij
+′

,Iij
+′

,Fij
+′

),(|μij
−′

|,|Iij
−′

|,|Fij
−′

|))

max((μij
+′

,Iij
+′

,Fij
+′

),(|μij
−′

|,|Iij
−′

|,|Fij
−′

|))

n
i=1 .                                                   (10) 

 

The entropy weights of the jth criteria can be calculated as follows:   

wj =
1−Hj

m− ∑

j=1
m

Hj

                                                                                           (11) 

Step 6. Determine the positive ideal solution (PIS) and the negative ideal solution (NIS)  based on 

neutrosophic bipolar fuzzy numbers. Both solutions are vectors of NBFN  elements, and they are 

resulting AWNBFDM matrix as follows: 

 r+ = ((μ1
+′

, I1
+′

, F1
+′

), (μ1
−′

, I1
−′

, F1
−′

))+, ((μ2
+′

, I2
+′

, F2
+′

), (μ2
−′

, I2
−′

, F2
−′

))+, … 

, . . . , ((μm
+′

, Im
+′

, Fm
+′

), (μm
−′

, Im
−′

, Fm
−′

))+.               

r− = ((μ1
+′

, I1
+′

, F1
+′

), (μ1
−′

, I1
−′

, F1
−′

))−, ((μ2
+′

, I2
+′

, F2
+′

), (μ2
−′

, I2
−′

, F2
−′

))−, … 

, . . . , ((μm
+′

, Im
+′

, Fm
+′

), (μm
−′

, Im
−′

, Fm
−′

))−.                                                                     (12) 

where  

((μj
+′

, Ij
+′

, Fj
+′

), (μj
−′

, Ij
−′

, Fj
−′

))+ 

= (max
i

(μij
+′

), min
i

(Iij
+′

), min
i

(Fij
+′

))min
i

(μij
−′

), max
i

(Iij
−′

), max
i

(Fij
−′

))),  j = 1,2, … , m, 

((μj
+′

, Ij
+′

, Fj
+′

), (μj
−′

, Ij
−′

, Fj
−′

))− 

= (min
i

(μij
+′

), max
i

(Iij
+′

), max
i

(Fij
+′

)), max
i

(μij
−′

), min
i

(Iij
−′

), min
i

(Fij
−′

))),   j = 1,2, . . . , m.     (13) 

 

Step 7. Find the grey relational coefficient of each evaluation value from positive ideal solution 
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(PIS) and negative ideal solution (NIS) by using the following equations, respectively. The grey 

relational coefficients of each evaluation value from PIS and NIS are defined as:  

 

 ξij
+=

min
1≤i≤n

min
1≤j≤m

d(γij,rj
+)+τ max

1≤i≤n
max

1≤j≤m
d(γij,rj

+)

d(γij,rj
+)+τ max

1≤i≤n
max

1≤j≤m
d(γij,rj

+)

,

i = 1,2, … , n,  j = 1,2, … , m,

 

ξij
− =

min
1≤i≤n

min
1≤j≤m

d(γij,rj
−)+τ max

1≤i≤n
max

1≤j≤m
d(γij,rj

−)

d(γij,rj
−)+τ max

1≤i≤n
max

1≤j≤m
d(γij,rj

−)

,

i = 1,2, . . . , n,  j = 1,2, . . . , m,

                                                  (14) 

                  

where  τ ∈ [0,1]. Generally,  τ = 0.5  is used. 

 

Step 8. Find out the degree of weighted grey relational coefficient of each alternative as follows:  

ξi
+ = ∑ wjξij

+m
j=1 ,       ξi

− = ∑ wξij
−m

j=1 ,   where 𝑖 = 1,2, . . . , n.                         (15) 

 

Step 9. Find out the relative relational degree of each alternative from the positive ideal solution 

(PIS) and negative ideal solution (NIS) by using the formula as follows: 

ξi =
ξi

+

ξi
++ξi

− , i = 1,2, . . . , n.                                                                            (16) 

Step 10. Rank of alternatives. We rank the alternatives according to the  ξi, i = 1,2, . . . , n,  in 

descending order and choose the alternative with the maximum  ξi.  

 

5. Numerical Applications 

A medicine company intends to prepare three different types of medicines A1, A2  and A3  

(Alternatives) depending upon different compositions, to cure some ailment. Three attributes are 

involved to select the best medicine for the treatment, 

(i). Effectiveness (c1),  (ii). Economy (c2),  (iii). Timings (c3) . 

The positive effects of the medicines on the person who needs medical care, are taken as a positive 

truth membership functions while negative effects of adverse reactions, are the negative truth 

membership functions, less time consumption to cure the ailment is taken as a positive indeterminacy 

function whereas more time consumption is taken as negative indeterminacy functions. likewise, 

positive and negative economic factors are placed as a positive and negative falsity functions. 

This is a hybrid MADM problem involving three different data types: exact values, intervals and 

linguistic terms. To resolve this matter, we apply the developed method for the ranking and selection 

of the more effective, fast acting and more economic medicine (alternative). Three experts (e1, e2, e3) 

are involved in the selection process. Each expert expresses his/her preferences depending upon the 

worth of the alternatives and upon his/her own knowledge over them. The hybrid decision matrices 

R1, R2and R3given by the experts e1, e2 and e3 are shown in Tables 3, 4 and 5.  

 

Step 1. Consider the neutrosophic bipolar fuzzy hybrid decision matrix of each decision maker. The 

neutrosophic bipolar fuzzy hybrid decision matrix involves four different data types: exact values, 
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intervals, NBFNs, and linguistic terms. 

Step 2. Transform the hybrid decision matrix of each decision maker into neutrosophic bipolar fuzzy 

decision matrix. The exact values and intervals in the hybrid decision matrices given by the decision 

makers shown in Tables 3 − 6 are standardized and then transformed into a neutrosophic bipolar 

fuzzy number. The linguistic evaluations shown in Tables 3 − 6  are converted into  NBFNs  by 

using Table 1. Then, the neutrosophic bipolar fuzzy decision matrix R(k)(k = 1,2,3,4)  of each 

decision maker shown in Tables 6, 7, 8 and 9 . 

Step 3. Determine the weights of decision makers. The importance of the decision makers in the group 

decision making process is shown in Table 9. These linguistic variables used can be converted into 

NBFNs by utilizing Table 2. In order to obtain the weights  λk(k = 1,2,3,4) of the decision makers, 

and formula (11) is used: 

Table 3. HDM R1 by e1    Table 4. HDM R2 by e2    Table 5. HDM R3 by e3 

1 2 3

1

2

3

2 [20,30]
 

3 [15,25]

4 [18,24]

C C C

A VH

A H

A M

   

1 2 3

1

2

3

5 [12,24]

3 [18,26]

4 [16,22]

C C C

A VH

A H

A M

    

1 2 3

1

2

3

6 [20,22]

4 [15,18]

3 [12,20]

C C C

A VH

A H

A M

 

 

Table 6. Neutrosophic bipolar fuzzy decision matrix R1 given by the expert e1 

1 2 3

1

2

(0.85,0.42,0.28, 0.1, 0.05, 0.03) (0.78,0.39,0.26, 0.22, 0.11, 0.07) (0.44,0.22,0.15, 0.03, 0.02, 0.01)

(0.70,0.35,0.23, 0.20, 0.10, 0.06) (0.51,0.26,0.17, 0.49, 0.24, 0.16) (0.33,0.16,0.11, 0.19

C C C

A

A

− − − − − − − − −

− − − − − − −

3

, 0.10, 0.06)

(0.45,0.22,0.15, 0.30, 0.15, 0.10) (0.39,0.2,0.13, 0.61, 0.30, 0.20) (0.40,0.2,0.13, 0.12, 0.06, 0.04)A

− −

− − − − − − − − −

 

 

Table 7. Neutrosophic bipolar fuzzy decision matrix R2 given by the expert e2 

1 2 3

1

2

(0.85,0.42,0.28, 0.1, 0.05, 0.03) (0.43,0.22,0.14, 0.57, 0.28, 0.19) (0.29,0.14,0.10, 0.11, 0.06, 0.04)

(0.70,0.35,0.23, 0.20, 0.10, 0.06) (0.71,0.36,0.24, 0.29, 0.14, 0.10) (0.43,0.22,0.14, 0.03

C C C

A

A

− − − − − − − − −

− − − − − − −

3

, 0.02, 0.01)

(0.55,0.27,0.18, 0.30, 0.15, 0.10) (0.54,0.27,0.18, 0.46, 0.23, 0.15) (0.38,0.19,0.13, 0.18, 0.09, 0.06)A

− −

− − − − − − − − −

 

 

Table 8. Neutrosophic bipolar fuzzy decision matrix R3 given by the expert e3 

1 2 3

1

2

(0.85,0.42,0.28, 0.1, 0.05, 0.03) (0.37,0.18,0.12, 0.63, 0,32, 0.21) (0.57,0.28,0.19, 0.21, 0.10, 0.07)

(0.70,0.35,0.23, 0.02, 0.10, 0.06) (0.55,0.28,0.18, 0.45, 0.22, 0.15) (0.43,0.22,0.14, 0.35

C C C

A

A

− − − − − − − − −

− − − − − − −

3

, 0.18, 0.12)

(0.55,0.27,0.18, 0.30, 0.15, 0.10) (0.73,0.36,0.24, 0.27, 0.14, 0.09) (0.34,0.17,0.11, 0.28, 0.14, 0.10)A

− −

− − − − − − − − −

 

 

Table 9. The importance of decision makers 

1

2

3

Linguistic variable

Very important 1

Important 2

Medium 3

d k

d k

d k

=

=

=
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Using (8) we calculate the λk which are λ1 = 0.353, λ2 = 0.334, λ3 = 0.312 as shown in Figure 3.: 

 

 
Figure  3. The weight vector 

 

Step 4. Construct the aggregated neutrosophic bipolar fuzzy decision matrix based on the ideas of 

decision makers. By formula (9), we get the bipolar fuzzy decision matrix R by aggregating all the 

neutrosophic bipolar fuzzy decision matrices R(K)(K = 1,2,3) . The neutrosophic bipolar fuzzy 

decision matrix R is shown in Table 10.  

𝐓𝐚𝐛𝐥𝐞 𝟏𝟎. Neutrosophic bipolar fuzzy decision matrix R, 

1 2 3

1

2

(0.85,0.42,0.28, 0.1, 0.05, 0.03) (0.58,0.29,0.19, 0.41, 0.20, 0.14) (0.44,0.22,0.15, 0.08, 0.04, 0.03)

(0.70,0.35,0.23, 0.20, 0.10, 0.06) (0.60,0.30,0.20, 0.40, 0.20, 0.13) (0.39,0.02,0.13, 0.12

C C C

A

A

− − − − − − − − −

− − − − − − −

3

, 0.06, 0.04)

(0.45,0.22,0.15, 0.30, 0.15, 0.10) (0.57,0.28,0.19, 0.43, 0.22, 0.14) (0.37,0.18,0.12, 0.18, 0.09, 0.06)A

− −

− − − − − − − − −

 

 

Step 5. Calculate the entropy weights of the criteria. Use formula (10) to calculate the neutrosophic 

bipolar fuzzy entropy Hj (j = 1,2,3),  

H1 = 0.72, H2 = 0.78, H3 = 0.86. 

Then, use formula (11) to obtain the entropy weights below which are shown in Figure 4. 

w1 = 0.44, w2 = 0.34, w3 = 0.22. 

 
Figure  4. The entropy weight vector 

Step 6. The neutrosophic bipolar fuzzy positive ideal solution (PIS) and neutrosophic bipolar fuzzy 
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negative ideal solution (NIS) were obtained as;  

r+ = ((0.85,0.22.0.15, −0.30, −0.05, −0.03)), 

((0.60,0.28,0.19, −0.43, −0.20, −0.13)), (0.44,0.18,0.12, −0.18, −0.04, −0.03). 

 

r− = ((0.45,0.42.0.28, −0.10, −0.15, −0.10)), 

((0.57,0.30,0.20, −0.40, −0.22, −0.14)), (0.37,0.22,0.15, −0.08, −0.09, −0.05). 

 

Step 7. Find out the grey relational coefficient of each alternative from PIS and NIS respectively as in 

the positive ideal solution ξ+ and the negative ideal solution ξ−.    

 

Positive ideal solution  ξ+ = (ξij
+)3×3 = [

0.47 0.85 0.77
0.40 1.00 0.71
0.40 1.00 0.77

]  

 

Negative ideal solution ξ− = (ξij
−)3×3 = [

0.40 0.89 0.77
0.40 1.00 0.77
0.42 1.00 0.77

] 

 

Step 8. According to the above step, the attributes weight vector is:  

w = (0.44,0.34,0.22) 

then the degree of grey relational coefficient of each alternative from positive ideal solution  (PIS) 

and negative ideal solution (NIS) can be calculated and are; 

 

ξ1
+ = 0.67, ξ2

+ = 0.68, ξ3
+ = 0.69. 

ξ1
− = 0.65, ξ2

− = 0.69, ξ3
− = 0.70. 

Step 9. Calculate the relative relational degree of each alternative below and shown in Figure 5. 

ξ1 = 0.507, ξ2 = 0.496, ξ3 = 0.500 

 

Figure  5. The relative relational degree of alternatives 

 

Step 10. Rank the alternatives. The relative relational degree of alternatives is determined, and then 

six alternatives are ranked as; A1 > A3 > A2. So the alternative A1  is selected as an appropriate 

alternative. 
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6. Comparison Analysis 

There is no doubt about that fuzzy sets and all models of fuzzy sets, are helping us out in variety 

of fields. Amidst of other applications, the decision-making problems are rendered to all versions of 

fuzzy sets for resolution and can be seen in [27, 29, 30, 34, 45, 47]. Similarity measures have been 

studied in [16, 45, 49]. Bipolarity in human reasoning and affective decision making studied in [26]. 

Hybrid multi-attribute group decision making based on intuitionistic fuzzy information and GRA 

method, discussed in [33]. Recently, [45] defined neutrosophic bipolar fuzzy set and neutrosophic 

bipolar fuzzy weighted averaging (NBFWA) and neutrosophic bipolar fuzzy ordered weighted 

averaging (NBFOWA) operators, similarity measures and gave an algorithm and application of 

neutrosophic bipolar fuzzy sets in decision making in case of multi-attributes. 

 

7. Conclusions 

 Continuing the work on neutrosophic bipolar fuzzy sets we discussed hybrid multi-attributes 

group decision making based on neutrosophic bipolar fuzzy sets with different neutrosophic bipolar 

fuzzy transformation techniques. We apply these concepts and techniques upon hybrid multi-

attributes decision making problem of selecting the best medicine to cure some diseases and develop 

an algorithm for neutrosophic bipolar fuzzy hybrid multi-attribute group decision making. In future 

the developed technique and procedure can be used in different decision-making problems, like 

numerical analysis for root convergence [53-58], signature theory, signal processing and operations 

management [59]. 
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Abstract: Uncertainty, imprecise, incomplete, and inconsistent information can be found in many 

real-life systems and may enter some problems in a much more complex way. Neutrosophic set is 

the effective and useful tool to describe problems with Uncertainty, imprecise, incomplete, and 

inconsistent information. In this regard, the present study is trying to present a neutrosophic 

electrode model through an example to demonstrate the efficiency of the proposed model. In this 

example, 3 alternatives were evaluated on 5 criteria by 4 experts based on the neutrosophic 

linguisting variables. After converting the neutrosophic linguisting variables to neutrosophic 

numbers, it is paid to calculate the integrated matrix and after that, weights of criteria and experts. In 

the next steps, the concordance and disconcordance matrices are calculated and after that the 

calculations are done based on the description of section 3. Finally, are ranked the alternatives in this 

numerical example. The results show that A3, A2 and A1 were ranked first to third respectively.  

Keywords: ELECTRE; Multi-attribute Decision Making; Refined Neutrosophic Environment 

1. Introduction 

In fact, we have partial, approximate or inaccurate information about the phenomena around 

ourselves. Uncertainty may occur due to addressing to this inaccurate or partial information. 

Moreover, Xu and Yager (2006) pointed out that lack of awareness about exact result of a particular 

choice due to lack of time, lack of accessible information, and insufficient attention of decision 

makers to the information caused uncertainty. It seems a framework is required to overcome this 

uncertainty [1]. Liu and lin (2006) classified different uncertainty frameworks into following 

categories: probability, gray system theory, and fuzzy set theory. Fuzzy set theory is one of the 

widely accepted frameworks for uncertainty [2]. The general form of this theory is considered as the 

degree of membership for each set of elements from the reference set, so that there is a large 

distinction between membership and non-membership of the elements. In fact, determining 

membership degree for elements is difficult and is accompanied with a degree of hesitation. 

Considering hesitation, Atanassov (1986) introduced the concept of the intuitive fuzzy set as 

generalization of fuzzy set [3]. The inventive fuzzy set (IFS) will be defined with three continuous 

members: the degree of membership, the degree of non-membership, and the degree of hesitation 

[4], which is the most ideal measure of fuzzy set to describe the information of an uncertain and 

inaccurate decision [3]. 

mailto:e-mail@e-mail.com
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Comparing to fuzzy sets, IFS is more efficient in terms of ambiguity and uncertainty. IFS is 

confusing and unreliable as the intuitive fuzzy set takes into account membership and 

non-membership degree as well as hesitation degree which seems to be one of the elements of 

real-world data. On the other hand, it is difficult to identify “exact values” for membership and 

non-membership degrees of an element due to the complexity and diversity of real-life management 

conditions. Therefore, presentation of membership and non-membership degrees as distance may 

provide appropriate measure for uncertainty, inaccuracy or ambiguity. Atanassov and Gargov 

(1989) introduced the concept of Interval Valued Intuitionistic Fuzzy Sets (IVIFS) with the degree of 

membership and the degree of non-membership, whose values are relative to real numbers as 

interval [5]. IVIFS is the development of a normal distance fuzzy set using the concept of the 

inventive fuzzy set. Intuitional fuzzy set is a new and effective tool for dealing with a variety of 

obscure and inaccurate variables for solving decision problems that deals with more vague and 

uncertain data relative to the intuitive fuzzy set [6].  

 Although fuzzy sets developed and prevailed, in reality, they could not handle problems with 

a variety of uncertainty conditions; particularly problems with indeterminate and inconsistent 

information are not solvable by fuzzy sets. In decision-making problems, fuzzy sets could not 

handle all types of uncertainty, including indeterminate and inconsistent information, in the real 

world [7]. In many situations, decision makers have incomplete, indeterminate, and inconsistent 

options relative to criteria. It has been determined that intuitive fuzzy and fuzzy decision-making 

analyses are inadequate to handle incomplete, indeterminate, and inconsistent information [8]. 

Recently Smarandache (1999) has proposed the concepts of non-rooted logic and the neutrosophic 

set to control these conditions [9]. The set is most appropriate tool for dealing with decision-making 

problems with incomplete, indeterminate, and inconsistent information while the intuitionistic 

fuzzy set cannot represent and handle indeterminacy and inconsistent information [10]. The 

neutrosophic set is a powerful framework that incorporates all the concepts of a definitive set, Fuzzy 

sets and Fuzzy Intuitionistic sets. The neutrosophic set is identified by three independent degrees, 

called the degree of accuracy, lack of reliability, and the degree of inaccuracy. These three elements 

are completely independent. One of the important features of this set is that each of the elements of 

this set not only has a certain degree of membership, but also have a definite degree of inaccuracy 

and lack of reliability [11]. It is important to note that, unlike IFS and IVIFS, the uncertainty gap in a 

neutrosophic set is clearly defined. The neutrosophic set has applications in various fields, including 

image processing ([12-13]), medical artificial ([14-15]), cluster analyses [16] and supplier selection 

[17]. Other collections have arisen since the neutrosophic collection is not easy to use in the empirical 

and practical problems. Wang et al. (2010) introduced a single-value neutrosophic set (SVNS) which 

is a specific example of a non-stereoscopic set used to handle real-life science and engineering 

problems [7]. The increasing growth of the neutrosophic collection as well as the pervasiveness of 

decision-making has led neutrosophic set to be used extensively in decision-making problems. Some 

uses of this collection in the decision-making process are mentioned in the following. 

Ye (2013) examined multi-criteria decision-making problems by using the correlation coefficient 

in neutrosophic sets [18]. Ye (2014) also introduced a non-stereospecific cross-entropy cross-decision 

in multi-criteria decision-making problems [19]. Biswas et al. (2014) proposed a gray-based entropy 

method for solving multiple-decision decision problems in neutrosophic single-value sets. Biswas et 

al (2014) also proposed a new method for solving multi-criteria decision-making problems based on 

single-valued neutrosophic sets with specific weights [11].  

Also In recent years, several studies have been carried out on multi-criteria decision-making 

techniques in the neutroscopic environment, including: 

Sodenkamp et al., (2018) in a research developed a novel method that uses single-valued 

neutrosophic sets (NSs) to handle independent multi-source uncertainty measures affecting the 

reliability of experts’ assessments in group multi-criteria decision-making (GMCDM) problems. In 

the proposed approach, the neutrosophic indicators are defined to explicitly reflect DMs’ credibility 
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(voting power), inconsistencies/errors inherent to the assessing process, and DMs’ confidence in 

their own evaluation abilities [20]. Liu et al., (2019) in their extended the SS TN and TCN to 

single-valued numbers (SVNN) and proposed the SS operational laws for SVNNs. Then, they 

merged the prioritized aggregation (PRA) operator with SS operations, and developed the single 

valued neutrosophic Schweizer Sklar prioritized weighted averaging (SVNSSPRWA) operator, 

single valued neutrosophic Schweizer- Sklar prioritized ordered weighted averaging 

(SVNSSPROWA) operator, single-valued neutrosophic Schweizer-Sklar prioritized weighted 

geometric (SVNSSPRWG) operator, and single-valued neutrosophic Schweizer-Sklar prioritized 

ordered weighted geometric (SVNSSPROWG) operator. Moreover, they study some useful 

characteristics of these proposed aggregation operators (AOs) and proposed two decision making 

models to deal with multiple-attribute decision making (MADM) problems under SVN information 

based on the SVNSSPRWA and SVNSSPRWG operators [21]. Liu & you (2019) in their study defined 

a new distance measure between two linguistic neutrosophic sets (LNSs), and build a model based 

on the maximum deviation to obtain fuzzy measure, further, they developed the bidirectional 

projection-based MCGDM method with LNNs in which a weight model based on fuzzy measure is 

proposed where the weights of evaluation criteria is partial unknown and the interactions among 

criteria are considered[22]. Thong et al., (2019) in their study proposed a new concept called the 

Dynamic Interval-valued Neutrosophic Set (DIVNS) for such the dynamic decision-making 

applications [23]. In the same vein, Abdul Basset et al., have done many studies in the neutrosophic 

environment such as: supplier selection with group TOPSIS technique under type-2 neutrosophic 

number[24], project selection with a hybrid neutrosophic multiple criteria group decision 

making[25], evaluation Hospital medical care systems based on plithogenic sets[26], selecting 

supply chain with a hybrid plithogenic decision-making approach[27], solve transition difficulties 

with Utilizing neutrosophic theory[28], Evaluation of the green supply chain management 

practices[29]. 

ELECTRE method was introduced by Benayoun, Roy and Sussmann in 1966[30], and has been 

successfully and widely used in many decision-making problems including agricultural [31], 

medical science [32], financial [33], economics [34], project selection [35], communication and 

transportation ([35-36]). The origin of ELECTRE method dates back to 1965, when an European 

consulting firm employed a team of researchers to make a decision on real multi-criteria problems 

on innovation in new activities of institutions [37]. ELECTRE method uses the concept of outranking 

comparisons. This idea relates to the concepts of coordination, inconsistency, and non-rank, deriving 

from real world applications [38]. The method uses the consistency and inconsistency indices for 

analyzing non-ranked comparisons between the options [39]. ELECTRE method was developed and 

different types of this method which are proposed to overcome in decision making conditions are 

among these methods ELECTRE I, ELECTRE II, ELECTRE III, ELECTRE IV, ELECTRE TRI-C and 

ELECTRE IS ( [37],[39],[40-41]) . 

Given the extension of this method, it is worth noting that the ELECTRE method as an efficient 

and useful method in management research has not yet been developed in the context of the 

neutrosophic ambiguity. For this purpose, the present paper seeks to develop a neutrosophic 

ELECTRE method based on intuitive fuzzy ELECTRE method. 

2. Refined Neutrosophic Environment 

Neutrosophy has been proposed by Smarandache [42-43] as a new branch of philosophy, with 

ancient roots, dealing with “the origin, nature and scope of neutralities, as well as their interactions 



Neutrosophic Sets and Systems, Vol. 31, 2020     104  

 

 

Sayyadi tooranloo, Zanjirchi and Tavangar, ELECTRE Approach for Multi-attribute Decision-making in Refined 

Neutrosophic Environment     

with different ideational spectra”. The fundamental thesis of neutrosophy is that every idea has not 

only a certain degree of truth, as is generally assumed in many-valued logic contexts, but also a 

falsity degree and an indeterminacy degree that have to be considered independently from each 

other. Smarandache seems to understand such “indeterminacy” both in a subjective and an objective 

sense, i.e. as uncertainty as well as imprecision, vagueness, error, doubtfulness, etc [44]. 

In this section, some basic concepts and definitions of NSs and SNSs are briefly reviewed. 

2.1. NS and SNSs 

In this subsection, the definitions and operations of NSs and SNSs are introduced. 

Definition 1. Let X  is a space of points (objects), with a generic element in X  denoted by x .  A 

neutrosophic set A  in X  is characterized by a truth-membership function ( )xTA , an 

indeterminacy- membership function )(XI A  and a falsity-membership function ( )xFA . The 

functions ( )xTA , )(XI A and ( )xFA  are real standard or nonstandard subsets of  +−1,0 [9, 45]. 

In other words, ( )  +−→ 1,0: XxTA , ( )  +−→ 1,0: XxI A , and ( )  +−→ 1,0: XxFA . We 

have no restriction on the sum of ( )xTA , ( )xI A  and ( )xFA ; thus, 

( ) ( ) ( ) +++− 3supsupsup0 xFxIxT AAA [46]. 

In other form, the neutrosophic set A is an object having the following form 

 XxXFXIXTA AAA = ),(),(),( . 

The set )(XI A  may represent not only indeterminacy, but also vagueness, uncertainty, 

imprecision, error, contradiction, undefined, unknown, incompleteness, redundancy, etc.[44],[47]. In 

order to catch up vague information, an indeterminacy-membership degree can be split into 

subcomponents, such as ‘‘contradiction,’’ ‘‘uncertainty’’, and ‘‘unknown’’[48]. 

Definition 2. A neutrosophic set A is contained in the other neutrosophic set B , denoted by 

BA if and only if ( ) ( )xTxT BA infinf  , ( ) ( )xTxT BA supsup  , ( ) ( )xIxI BA infinf  , 

( ) ( )xIxI BA supsup  , ( ) ( )xFxF BA infinf  , and ( ) ( )xFxF BA supsup   for every x  in 

X [9]. 

Definition 3. The complement of a neutrosophic set A  is denoted by 
cA  and is defined as 

( )   ( )xTxT A

c

A −= +1 , ( )   ( )xIxI A

c

A −= +1 , and ( )   ( )xFxF A

c

A −= +1  for every x  in X [9]. 

Since it is hard to use NSs to solve practical problems, so Wang et al introduced Single-valued 

neutrosophic sets that can be used in real scientific and engineering applications.  

2.2. Single-valued neutrosophic sets 

Single-valued neutrosophic set is a special case of neutrosophic set. In this section, some basic 

definitions, operations, and properties regarding single valued neutrosophic sets are introduced. 

Definition 4. Let X  be a space of points (objects) with generic elements in X  denoted by x . An 

SVNS  A  in X  is characterized by the truth-membership function ( )xTA , 

indeterminacy-membership function ( )xI A , and falsity-membership function ( )xFA . For each 

point x  in X , ( ) ( ) ( )  1,0,, xFxIxT AAA  [7]. 

Therefore, an SVNS  A  can be written as: 

( ) ( ) ( ) XxxFxIxTxA AAA = ,,,  

The following expressions are defined in[7] for SVNSs  BA, : 

1- BA  if and only if ( ) ( )xTxT BA  , ( ) ( )xIxI BA  , ( ) ( )xFxF BA   for any x  in X , 
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2- BA =  if and only if BA , AB  , 

3- ( ) ( ) ( ) XxxTxIxFxA AAA

c −= ,1,, . 

For convenience, an SVNS  A  is denoted by the simplified symbol 

( ) ( ) ( ) xFxIxTA AAA ,,=  for any x  in X . For two SVNSs  A  and B , the operational 

relations are defined by [7]. 

1- ( ) ( )( ) ( ) ( )( ) ( ) ( )( )xFxFxIxIxTxTBA BABABA ,min,,min,,max=  for any x  in X , 

2- ( ) ( )( ) ( ) ( )( ) ( ) ( )( )xFxFxIxIxTxTBA BABABA ,max,,max,,min=  for any x  in X , 

3- ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xFxFxIxIxTxTxTxTBA BABABABA .,.,.−+=  for any x  in X , 

4- ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xFxFxFxFxIxIxIxIxTxTBA BABABABABA .,.,. −+−+=  for any 

x  in X , 

5. ( )( ) ( )( ) ( )( ) 0,,,11 −−= 


xFxIxTA AAA  for any x  in X [35], 

6. ( )( ) ( )( ) ( )( ) 0,11,11, −−−−= 
 xFxIxTA AAA  for any x  in X [35], 

7- ( ) ( )( ) ( )xFxIxTA AAA ,0,1,min +=  for any x  in X , 

8- ( ) ( ) ( )( )1,min,0, xIxFxTA AAA +=  for any x  in X . 

2.3 . Neutrosophic refined set  

Let A  be a neutrosophic refined set. 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) XxxFxFxFxIxIxIxTxTxTxA i

m

AiAiAi

m

AiAiAi

m

AiAiA = :,,,,,,,,,,,, 212121 

 where ( )   ( )   ( )   mjXxFXxIXxT i

j

Ai

j

Ai

j

A ,,2,1,1,0:,1,0:,1,0: =  such that 

( ) ( ) ( ) mjxFxIxT i

j

Ai

j

Ai

j

A ,,2,1,3supsupsup0 =++ for any Xx . Now, 

( ) ( ) ( )( )i

j

Ai

j

Ai

j

A xFxIxT ,,  are the truth-membership sequence, indeterminacy-membership sequence, 

and falsity-membership sequence of the element x, respectively. Also, m is called the dimension of 

neutrosophic refined sets A  [50]. 

2.4. Distance between two SVNSs 

Majumdar and Samanta [51] studied similarity and entropy measure by incorporating 

Euclidean distances of neutrosophic sets. 

2.4.1. Euclidean distance between two SVNSs  

Let ( ) ( ) ( ) nixFxIxTxA iAiAiAi ,,2,1,,,: ==   and 

( ) ( ) ( ) nixFxIxTxB iBiBiBi ,,2,1,,,: ==  be SVNSs . Then the Euclidean distance between 

two SVNSs  A  and B  can be defined as follows[48]: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
=

−+−+−=
n

i

iBiAiBiAiBiA xFxFxIxIxTxTBAE
1

222
,  (1) 

The normalized Euclidean distance between two SVNSs  A  and B  can be defined as follows: 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )
=

−+−+−=
n

i

iBiAiBiAiBiAN xFxFxIxIxTxT
n

BAE
1

222

3

1
,  (2) 
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2.4.2. The Hamming distance between two SVNSs 

the Hamming distance between two SVNSs  A  and B  can be defined as follows[51]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
=

−+−+−=
n

i

iBiAiBiAiBiAHam xFxFxIxIxTxTBAL
1

,  (3) 

The normalized Hamming distance between two SVNSs A  and B  can be defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
=

−+−+−=
n

i

iBiAiBiAiBiANHam xFxFxIxIxTxT
n

BAL
1

)(
3

1
,  (4) 

2.5. Crispfication of a neutrosophic set  

Let ( ) ( ) ( ) njxFxIxTxA iAiAiAi jjj
,,2,1,,,: ==  be n  SVNSs . The equivalent crisp 

number of each jW  can be defined as [11]: 

( )( ) ( )( ) ( )( )( )

( )( ) ( )( ) ( )( )( )





=

=

=















 ++−
−

++−
−

=

p

k

c
j

c
j

n

i

iAiAiA

iAiAiA

c
j

WW

xFxIxT

xFxIxT

W

jjj

jjj

1

1

222

222

1,0

3

1
1

3

1
1

 ( )5  

3. ELECTRE approach 

The ELECTRE approach is employed to identify the best alternative. The ELECTRE approach 

can be presented as follows (including 9 steps): 

Step 1. Determining the decision matrix: Assume that  mAAAA ,,, 21 =  is the set of alternatives 

with the set C  of n  criteria,  nCCCC ,,, 21 = , ( )
nmijdD


= is the decision matrix, and 

 nWWWW ,,, 21 =  is the weight vector of criteria that the sum of weight of all criteria is equal to 

1. 

               Table 1. Single-valued neutrosophic set decision matrix 

( ) ==
nmijdD  

Criteria 

alternatives 1C  
2C   nC  

1A  11d 12d  
nd1 

2A  21d 22d  
nd2 

        

mA  1md 2md  
mnd 

jW  
1w 

2w  
nw 
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Here, ( )njandmid ij ,,2,1,,2,1  ==  are all single-valued neutrosophic numbers. 

Here,   is the vector of experts' weight, based on which the opinion of experts is aggregated. 

Step 2. Aggregate the decision makers (DMs’) opinion to construct an neutrosophic decision matrix 

Let ( )k

ij

k

ij

k

ij

k

ij FITr ,,=  be the neutrosophic number provided by kDM  on the assessment of 

iA with respect to jC . The aggregated neutrosophic rating of alternatives with respect to each 

criterion is calculated based on neutrosophic weighted averaging ( )NWA   operator as: 

( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

===

−−=

=

l

k

k

ij

l

k

k

ij

l

k

k

ij

l

ijijij

k

ij

kkk

FIT

rrrNWAr

111

21

,,11

,,,





 

( )6  

Step 3. Determining the weights of criteria: There are various ways to determine the weights of the 

criteria. 

Let ( )k

j

k

j

k

j

k

j FITw ,,=  be the weight of criterion jC  given by 
thK  decision-maker DM . The 

aggregated neutrosophic weights ( )jw  of criteria are calculated by 

( ) ( ) ( )

( )( ) ( )( ) ( )( )
===

−−=

=

l

k

k

ij

l

k

k

ij

l

k

k

ij

k

jkjjj

kkk

FIT

wwww

111

2

2

1

1

,,11


 

where ( )jjjj FITw ,,= , nj ,,2,1 =  

Step 4. Determining the concordance and discordance sets: In this step the concordance and 

discordance sets are determined. The concordance set can be classified in different types of the 

concordance sets as strong concordance set, moderate concordance set and weak concordance set. It 

is the same for the discordance sets.  

the strong concordance set is determined as follows:  

(7)  ljkjljkjljkjkl IIFFTTjC = ,,  

moderate concordance set is as follows: 

(8)  ljkjljkjljkjkl IIFFTTjC = ,,  

weak concordance set is as follows: 

(9)  ljkjljkjkl FFTTjC = ,  

The strong discordance set can be determined in ELECTRE method as follows:  

(10)  ljkjljkjljkjkl IIFFTTjD = ,,  

moderate discordance set is as follows: 

(11)  ljkjljkjljkjkl IIFFTTjD = ,,  

weak discordance set is as follows: 
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(12)  ljkjljkjkl FFTTjD = ,  

Decision makers give weights in different sets. CW , CW  , CW  , 
DW , 

DW   and 
DW   are the 

weights of the strong concordance, moderate concordance, weak concordance, strong discordance, 

moderate discordance and weak discordance sets, respectively. 

The concepts of concordance sets and discordance sets are used for calculating concordance sets and 

discordance matrixes and then determining the aggregate dominance matrix. 

Step 5. Constructing the concordance and discordance matrixes: The relative value of the 

concordance set is measured through the concordance index. the concordance index shows that the 

relative dominance of certain alternative over a competing alternative. The concordance index klg  

between kA and lA  is defined as: 

(13) 










++=
klklkl Cj

jC

Cj

jC

Cj

jCkl wwwwwwC 

The concordance matrix C  is defined as follows: 

 

( ) ( )

( )






















−

−

−

−

−

=

−

−−

121

111

22321

112

...

......

............

...

......

mmmm

mmm

m

m

ccc

cc

ccc

cc

C 

It is obvious that a higher value of klc  indicates that kA is preferred to lA . The discordance index kld  

between kA and lA  is defined as: 

(14) 

( )

( )ljkj
Jj

ljkjD
Dj

kl
XXdis

XXdisw

d kl

,max

,max








= 

 

( ) ( ) ( ) ( )( )222

2

1
, ljkjljkjljkjljkj FFIITTXXdis −+−+−= 

Dw
 is equal to 

DW , 
DW   and 

DW   depending on the different types of discordance sets. The discordance 

matrix D  is defined as follows: 

 

( ) ( )

( )






















−

−

−

−

−

=

−

−−

121

111

22321

112

...

......

............

...

......

mmmm

mmm

m

m

ddd

dd

ddd

dd

D 

Step 6. Constructing the concordance and discordance dominance matrixes: The concordance 

dominance matrix F can be calculated with aid of a threshold value for the concordance index.  

When concordance index of klc  does not exceed the minimum specified boundary value, or 

cckl  , only kA  has the chance of mastery over lA .  
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(15 ) 

( )
1, 1,

1

m m

kl

k k l l l k

c

c
m m

=  = 
=

 −

 
 

Based on the boundary value of Boolean F matrix, each element of this matrix is as follows:  

1=klf  If cckl   

0=klf  If cckl   

In this matrix, element 1 indicates mastery of an option with respect to other elements.  

The discordance dominance matrix G  can be calculated with aid of a threshold value for the 

discordance index.  

This matrix is built for discordance index of kld  like F matrix with a boundary value of d . klg  

element of discordance dominance matrix G is measured as follows:  

(16 ) 

( )
1, 1,

1

m m

kl

k k l l l k

d

d
m m

=  = 
=

 −

 
 

The following equations are established:  

1=klg  If ddkl   

0=klg  If ddkl   

Each element of matrix G indicates mastery relations between two options.  

Step 7. Determining the aggregate dominance matrix: Thus, step is to calculated the intersection of 

the concordance dominance matrix F  and the discordance dominance matrix G . Each of 

elements of this matrix kle  is defined as follows: 

(17 ) klklkl gfe = 

Step 8. Eliminate the less favorable alternatives: The aggregate dominance matrix E provides orders 

of relative preferences of options. If
 

1=kle , it means that kA  is preferable to lA  for both 

concordance and disharmony criteria, but kA still has a chance of mastery over other options. 

Conditions where kA  cannot be mastered in ELECTERE method are as follows:  

When at least a l is equal to one. lkmlekl == ,,...,2,1,1  

For all of  i likimiekl == ,,,...,2,1,0  

Application of these conditions seems difficult, but mastery options can be easily identified in 

E matrix. If each column of matrix E has at least an element with value 1, this column is mastered 

by its other studied rows. Therefore, columns with element 1 will be easily removed.  

Step 9. Using the ranking process proposed by Wu and Chen: Since ELECTERE method cannot rank 

all options, we use proposed method by Wu and Chen[52] for ranking options. Steps of this method 

are as follows.  

Step 9.1. Determining concordance matrix ,c :This step uses ideal TOPSIS solution method. If 
c  is the largest value of concordance matrix, matrix c   will be obtained by calculation of the 

following equation.  
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(18) klkl ccc −= ,
 

Step 9.2. Determining discordance matrix d  : If 
d  is the largest value of discordance matrix, 

matrix ,d  will be obtained by calculation of the following equation.  

(19 ) klkl ddd −= ,
 

Step 9.3. Determining the aggregate dominance matrix P : 

 

( )

12 1

21 23 2

1 2 1

m

m

m m m m

p p

p p p
P

p p p
−

− 
 

−
 =
 
 

−  

 

Each element of matrix P  is defined according to the following equation.  

(20 ) 

,

, ,

kl
kl

kl kl

d
p

c d
=

+
 

Here, 
,

klc  is the element of concordance dominance matrix, and 
,

kld  is the element of discordance 

dominance matrix.  

Step 9.4. Determining the best alternative: According to results of Step 9-3, we can obtain the 

combinatorial evaluation of options through Equation 21. 

(21 ) 

1,

1
, 1,2,...,

1

m

k kl

l l k

p p k m
m = 

= =
−
 

Then, the best option is specified according to Equation 22, and finally options are ranked 

incrementally.  

(22 )  kpA max=
 

A  is the best alternative. 

 

The process summary of the proposed method is shown in Figure 1. 
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Figure 1: The proposed model of Neutrosophic ELECTRE 

4. Numerical example 

In this section, we solve a problem to show the effectiveness of the proposed approach. There are 

three alternatives 321 ,, AAA  and five criteria 54321 ,,,, CCCCC . Then, the proposed procedure for 

solving the problem is provided using the following steps. 

Step 1. Constructing the decision matrix: The results of the evaluation of alternatives by four experts, 

based on the criteria, are shown in the table below: 
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Table 2. Evaluation of alternatives by neutrosophic numbers 

1D  
1

C  
2

C  
3

C  
4

C  
5

C  

1A  (0.7,0.2,0.1) (0.8,0.3,0.3) (0.4,0.1,0.2) (0.5,0.1,0.1) (0.6,0.4,0.1) 

2A  (0.6,0.2,0.1) (0.7,0.4,0.2) (0.3,0.2,0.1) (0.3,0.1,0.2) (0.8,0.2,0.2) 

3A  (0.7,0.1,0.2) (0.6,0.2,0.2) (0.4,0.4,0.4) (0.6,0.1,0.1) (0.7,0.1,0.1) 

2D  
1

C  
2

C  
3

C  
4

C  
5

C  

1A  (0.8,0.2,0.1) (0.7,0.1,0.2) (0.5,0.1,0.1) (0.6,0.2,0.3) (0.5,0.6,0.1) 

2A  (0.7,0.3,0.2) (0.6,0.1,0.1) (0.6,0.2,0.3) (0.5,0.1,0.2) (0.4,0.5,0.2) 

3A  (0.6,0.2,0.2) (0.8,0.2,0.1) (0.6,0.1,0.2) (0.7,0.1,0.1) (0.5,0.5,0.1) 

3D  
1

C  
2

C  
3

C  
4

C  
5

C  

1A  (0.9,0.1,0.1) (0.5,0.3,0.2) (0.6,0.4,0.1) (0.2,0.5,0.3) (0.4,0.4,0.4) 

2A  (0.8,0.2,0.1) (0.6,0.3,0.1) (0.5,0.4,0.1) (0.4,0.2,0.1) (0.5,0.3,0.2) 

3A  (0.8,0.1,0.2) (0.7,0.1,0.1) (0.6,0.3,0.2) (0.4,0.1,0.1) (0.6,0.1,0.2) 

4D  
1

C  
2

C  
3

C  
4

C  
5

C  

1A  (0.6,0.1,0.1) (0.8,0.2,0.1) (0.9,0.2,0.3) (0.7,0.4,0.3) (0.7,0.3,0.4) 

2A  (0.7,0.2,0.01) (0.7,0.1,0.3) (0.7,0.3,0.1) (0.6,0.5,0.1) (0.6,0.2,0.4) 

3A  (0.7,0.1,0.2) (0.6,0.1,0.2) (0.6,0.2,0.1) (0.7,0.1,0.3) (0.7,0.3,0.2) 

 

Step 2. Aggregate the decision makers (DMs’) opinion to construct a neutrosophic decision matrix: 

The aggregated decision matrix can be determined by applying the aggregated operator ( )6  and is 

calculated as shown below: 

Table 2. The aggregated neutrosophic decision matrix 

 
1

C  
2

C  
3

C  
4

C  
5

C  

1A  (0.738,0.144,0.1) (0.695,0.203,0.187) (0.57,0.162,0.158) (0.465,0.244,0.225) (0.543,0.414,0.193) 

2A  (0.693,0.222,0.067) (0.65,0.184,0.158) (0.499,0.259,0.133) (0.436,0.175,0.144) (0.559,0.278,0.238) 

3A  (0.693,0.12,0.2) (0.67,0.144,0.143) (0.54,0.219,0.201) (0.593,0.1,0.132) (0.619,0.201,0.139) 

 

Step 3. Determining the weights of the criteria: The weight matrix (see Table 3) of the criteria 

described in this problem can be displayed as follows: 

Table 3. Weight matrix of criteria 

 
1

C  
2

C  
3

C  
4

C  
5

C  

1D  (0.9,0.1,0.2) (0.8,0. 2,0.3) (0.5,0.4,0.3) (0.5,0.2,0.15) (0.5,0.4,0.4) 

2D  (0.8,0.2,0.1) (0.7,0.1,0.3) (0.6,0.3,0.3) (0.8,0.25,0.1) (0.6,0.3,0.4) 

3D  (0.6,0.3,0.2) (0.5,0.3,0.2) (0.8,0.2,0.1) (0.7,0.2,0.1) (0.4,0.4,0.4) 

4D  (0.6,0.1,0.2) (0.6,0.1,0.2) (0.6,0.2,0.3) (0.5,0.1,0.2) (0.3,0.2,0.1) 

 

The aggregated weights for all criteria are presented below: 

 



Neutrosophic Sets and Systems, Vol. 31, 2020     113  

 

 

Sayyadi tooranloo, Zanjirchi and Tavangar, ELECTRE Approach for Multi-attribute Decision-making in Refined 

Neutrosophic Environment     

Table 4. The aggregated weights of criteria 

 
1

C  
2

C  
3

C  
4

C  
5

C  

 (0.725,0.15,0.166) (0.653,0.15,0.25) (0.604,0.27,0.241) (0.608,0.178,0.133) (0.444,0.31,0.281) 

 

According to Table.4 and equation 5, the crisp of weights of criteria are presented as following: 

Table 6. The crisp of weights of criteria 

CRITERA 
1

C  
2

C  
3

C  
4

C  
5

C  

Crisp weight 0.204 0.202 0.200 0.202 0.192 

Step 4. Determining the concordance and discordance sets: In this step, assume that the subjective 

importance of attributes, W, is given by the decision maker, the decision maker also gives the 

relative weight ( )W   
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The strong concordance set described in this problem can be displayed as follows: 


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The moderate concordance set described in this problem can be displayed as follows: 
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The weak concordance set described in this problem can be displayed as follows: 
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The strong discordance set described in this problem can be displayed as follows: 
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The moderate discordance set described in this problem can be displayed as follows: 


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The weak discordance set described in this problem can be displayed as follows: 
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
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Step 5. Calculating the concordance and discordance matrixes: The concordance matrix described in 

this problem can be calculated as follows: 

















−

−

−

=

733.0394.0

136.0266.0

403.0202.0

C  

The discordance matrix described in this problem can be calculated as follows: 










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





−

−

−

=

0111.0

650.0289.0

999.0578.0

D  

Step 6. Determining the concordance and discordance dominance matrixes: The concordance 

dominance matrix can be determined. The average concordance index is: 

356.0
23

3

,1

3

,1
=


=

 
= =lkk kll

klc

c  
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The discordance dominance matrix can be determined. The average discordance index is: 

438.0
23

3

,1

3

,1
=


=

 
= =lkk kll

kld

d  
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Step 7. Determining the aggregate dominance matrix: The aggregate dominance matrix can be 

determined. 

















−

−

−

=

11

00

00

E  

Step 8. Eliminating the less favourable alternatives: Using the seventh step, we remove the 

undesirable alternative. Matrix E provides the following ranking Figure. 2. 
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Figure 2. Ranking of Matrix E  

It is obvious that 3A  is preferred to 1A  and 2A . But two alternatives of 1A  and 2A cannot be 

ranked. This condition appears difficult to apply, but the dominated alternatives can be easily 

identified in the E matrix. In this section it used ranking process proposed by wu and chen. This 

process is as following: 

Step 9. Using the ranking process:  

9.1. Determining concordance matrix ,c : The concordance dominance matrix can be calculated as 

follows:( 733.0=c ) 

















−

−

−

=

0339.0

597.0467.0

330.0531.0
,C  

9.2. Determining discordance matrix ,d : The discordance dominance matrix can be calculated as 

follows:( 999.0=d ) 

















−

−

−

=

999.0888.0

349.0710.0

0421.0
,D  

9.3. Determining the aggregate dominance matrix P : The aggregate dominance matrix can be 

calculated as follows:  

















−

−

−

=

1724.0

369.0603.0

0442.0

P  

9.4. Determining the best alternative: According to the values of P  the best alternative is 

determined.  

862.0,486.0,221.0 321 === PPP  

The optimal ranking order of the alternatives is given by 123 AAA  . The best alternative is 3A . 

5. Conclusion 

This paper has proposed an approach for solving MCDM problems using neutrosophic and 

ELECTRE method.  In many cases, it is difficult for decision-makers to precisely express a preference 

when solving Multi-attribute decision making (MADM) problems with uncertain information. 

SVNSES is an effective and useful decision-making tool to describe indeterminate and inconsistent 

3A  

2A  

1A  
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information and it is also possible for a user to view the opinions of all experts in a single model. 

Since SVNNs reflect not only the degrees of truth (membership) and falsity (non-membership), but 

also indeterminacy, the evaluation information was described more comprehensively in the 

proposed approach. This paper is devoted to present a new ELECTERE-based approach for MADM 

under neutrosophic environment. In the evaluation process, the ratings of each alternative with 

respect to each attribute are given as linguistic variables characterized by single-valued 

neutrosophic numbers. After the formation and integration of the decision matrix, the weights of the 

criteria were calculated. After that, were determined concordance and discordance sets and 

matrixes, respectively. Then were formed the concordance and discordance dominance matrixes. In 

the next step, was created the aggregate dominance matrix and then was paid to eliminating the less 

favourable alternatives. Finally, by using concordance and discordance matrixes and the aggregate 

dominance matrix, was donned the ranking of alternatives and it was found the best alternative. The 

results showed that the A3 was the best. The advantage of the proposed method is more suitable for 

solving multiple attribute decision-making problems with neutrosophic information because 

neutrosophic sets can handle indeterminate and inconsistent information and are the extension of 

intuitionistic fuzzy sets. The future work is to develop other aggregated algorithms for some other 

practical decision-making problems, such as supply chain management, personal selection in 

academia, project evaluation, manufacturing systems, and many other areas of management 

systems. Also, in the future, the proposed method can be used for dealing with interval-valued 

neutrosophic soft expert based MCDM problems. Also, this approach can be applied to other 

multi-criteria decision-making methods, including VIKOR, DEMTEL, PROMOTHEE and etc, also 

weight determination techniques; It can also be comparing the results of solving these methods with 

the results of these techniques in fuzzy and intuitionistic fuzzy environments. 
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Abstract: Neutrosophic set is a unique concept endowed with unconnected degree of indeterminacy 

excluded in the non-classical sets it generalizes. This paper communicates shortly on the notions of 𝛼 - 

lower level and 𝛼 - upper level sets of a neutrosophic set and investigates some basic properties.  
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1. Introduction 

Uncertainty is unavoidable in real life situations as classical structure cannot handle them. 

Dealing with vague, uncertain or imperfect information was a huge task for many years. Many 

models were proposed in order to suitably integrate uncertainty into the system description. Zadeh 

[12] noticed typically that the collections of objects encountered in real world do not have exactly 

sharp boundaries of membership as described by a German mathematician, George Cantor 

(1845-1918). Consequently, he introduced fuzzy set concept and delineated it as a collection of objects 

with graded membership. However, Atanassov [6] initiated an extension of fuzzy set called 

intuitionistic fuzzy set. Intuitionistic fuzzy set accommodates additional degrees of freedom 

(non-membership and hesitation margin) into set description and is broadly used as a tool of 

intensive research by scholars and scientists. 

One of the motivating generalizations of fuzzy set theory and intuitionistic fuzzy set theory is 

neutrosophic set theory introduced by Smarandache [11]. A neutrosophic set theory is independently 

characterized by a truth membership function, an indeterminate membership function and a falsity 

membership function. Therefore, the neutrosophic set theory has become a popular subject of 

research in problems associated with uncertainty.  

Very recently, the scholarly world has witnessed growing research interests in the theory of 

neutrosophic sets such as medical diagnosis [1, 4, 5], database [7], topology [10], image processing [8], 

and decision-making problem [2, 3, 9].  

The paper attempts to develop the concepts of 𝛼 - lower level and 𝛼 - upper level sets of a 

neutrosophic set and investigates some basic properties based on the related research of fuzzy sets 

and intuitionistic fuzzy sets with the aim to create a paradigm shift in the aspects of algebra. 

2. Preliminaries 

In this section, we will give some preliminary information that will be useful in the sequel of the paper 

Definition 2.1 [11] A neutrosophic set (NS) 𝐴 in a non-empty set 𝑋 is a structure of the form  

mailto:remsonjay@yahoo.com


Neutrosophic Sets and Systems, Vol. 31, 2020         121  

 

 

Johnson Awolola, A note on the concept of 𝜶 – level sets of neutrosophic set 

 

𝐴 = { 〈𝑥, 𝑇𝐴(𝑥),  𝐼𝐴(𝑥),  𝐹𝐴(𝑥)〉 ∣∣ 𝑥 ∈ 𝑋 }, where 𝑇𝐴,  𝐼𝐴,  𝐹𝐴 ∶ 𝑋 ⟶ ]-0, 1+[ define respectively the degree of 

membership (or Truth), the degree of indeterminacy, and the degree of non-membership (or Falsehood) 

of the element 𝑥 ∈ 𝑋 to the set 𝑥 ∈ 𝐴 with the condition -0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3+. 

Here, 1+ = 1 + 𝑐, where 1 is its standard part and 𝑐 its non-standard part. Analogously, -0 = 0 − 𝑐 is 

expressed in turn. 

The above definition has been used by several authors in literature with sizable number of publications. 

On the contrary, the results presented in this paper are devoid of non-standard and restricted to the 

interval [0, 1] for practical techniques. 

 

As an illustration, let us consider the following example. 

Example 2.1 Assume that 𝑋 = {𝑎, 𝑏, 𝑐}, where 𝑎  characterizes the competence, 𝑏  characterizes the 

reliability and 𝑐 indicates the costs of the objects. It may be further assumed that the values of 𝑎, 𝑏 and 

𝑐 are in [0, 1] and they are obtained from some surveys of some connoisseurs. The connoisseurs may 

impose their view in three components viz. the degree of goodness, the degree of indeterminacy and that 

of poorness to describe the characteristics of the objects. Suppose 𝐴 is a neutrosophic set in 𝑋, such that, 

 

𝐴 = {(𝑎, 〈0.3, 0.4, 0.5〉), (𝑏, 〈0.5, 0.2, 0.3〉), (𝑐, 〈0.7, 0.2, 0.2〉)}, where the degree of goodness of capability is 

0.3, degree of indeterminacy of capability is 0.4 and degree of falsity of capability is 0.5 implying 

𝑇𝐴(𝑎) = 0.3,  𝐼𝐴(𝑏) = 0.4,  𝐹𝐴(𝑐) = 0.5 etc. 

 

For simplicity,𝐴 = { 〈𝑥,  𝑇𝐴(𝑥),  𝐼𝐴(𝑥),  𝐹𝐴(𝑥)〉 ∣∣ 𝑥 ∈ 𝑋 }, can be expressed as 𝐴(𝑥) = ( 𝑇𝐴(𝑥),  𝐼𝐴(𝑥),  𝐹𝐴(𝑥)) 

since the membership functions  𝑇𝐴,  𝐼𝐴 ,  𝐹𝐴 are defined from 𝑋 into the unit interval [0, 1]. 

 

Definition 2.2 [11] Let 𝐴 and 𝐵 be two neutrosophic sets in a non-empty set 𝑋. Then  

 (𝒊) 𝑨 ⊆ 𝑩 ⟺  𝑻𝑨(𝒙) ≤ 𝑻𝑩(𝒙),   𝑰𝑨(𝒙) ≤ 𝑰𝑩(𝒙), 𝑭𝑨(𝒙) ≥ 𝑭𝑩(𝒙). 

 (𝒊𝒊) 𝑨 = 𝑩 ⟺  𝑻𝑨(𝒙) = 𝑻𝑩(𝒙),   𝑰𝑨(𝒙) = 𝑰𝑩(𝒙), 𝑭𝑨(𝒙) = 𝑭𝑩(𝒙). 

 (𝒊𝒊𝒊) 𝑨⋂𝑩 = { 〈𝑥,  ⋀(𝑇𝐴(𝑥),  𝑇𝐵(𝑥)), ⋀( 𝐼𝐴(𝑥),  𝐼𝐵(𝑥)), ⋁( 𝐹𝐴(𝑥), 𝐹𝐵(𝑥))〉 ∣∣ 𝑥 ∈ 𝑋 }. 

 (𝑖𝑣)  𝑨⋃𝑩 = { 〈𝑥,  ⋁(𝑇𝐴(𝑥),  𝑇𝐵(𝑥)), ⋁( 𝐼𝐴(𝑥),  𝐼𝐵(𝑥)), ⋀( 𝐹𝐴(𝑥), 𝐹𝐵(𝑥))〉 ∣∣ 𝑥 ∈ 𝑋 } , where ⋀  and ⋁ 

are minimum and maximum operations. 

 (𝑣) 𝐴𝑐 = { 〈𝑥,  𝐹𝐴(𝑥), 1 −  𝐼𝐴(𝑥), 𝑇𝐴(𝑥))〉 ∣∣ 𝑥 ∈ 𝑋 }. 

 (𝑣𝑖) 𝐴 ∖ 𝐵 = { 〈𝑥,  𝑇𝐴 ⋀𝐹𝐵(𝑥), 𝐼𝐴(𝑥)⋀1 − 𝐼𝐵(𝑥), 𝐹𝐴(𝑥)⋁ 𝑇𝐵(𝑥))〉 ∣∣ 𝑥 ∈ 𝑋 }. 

 

 With reference to Definition 2.2 (𝑣), (𝐴𝑐)𝑐 = 𝐴. 

 

Remark 2.1 If { 𝐴𝑖 ∣∣ 𝑖 ∈ 𝐽 } is a family of neutrosophic sets, then (⋃𝑖 ∈𝐽𝐴𝑖)
𝑐

= ⋂𝑖 ∈𝐽𝐴𝑖
𝑐 and  

(⋂𝑖 ∈𝐽𝐴𝑖)
𝑐

= ⋃𝑖 ∈𝐽𝐴𝑖
𝑐. 

 

Proposition 2.1 Let 𝐴, 𝐵, 𝐶, 𝐷 be any neutrosophic sets in a non-empty set 𝑋, we have 

 (𝑖) if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶, then 𝐴 ⊆ 𝐶. 

 (𝑖𝑖) if 𝐴 ⊆ 𝐵, then 𝐴𝑐 ⊆  𝐵𝑐. 

 (𝑖𝑖𝑖) if 𝐴 ⊆ 𝐵 and 𝐴 ⊆ 𝐶, then 𝐴 ⊆ 𝐵⋂𝐶. 

 (𝑖𝑣) if 𝐴 ⊆ 𝐵 and 𝐶 ⊆ 𝐵, then 𝐴⋃𝐶 ⊆ 𝐵. 

 (𝑣) if 𝐴 ⊆ 𝐵 and 𝐶 ⊆ 𝐷, then 𝐴⋃𝐶 ⊆ 𝐵⋃𝐷 and 𝐴⋂𝐶 ⊆ 𝐵⋂𝐷. 

 

Proof. Immediate from definitions. 

 

Definition 2.3 [11] A neutrosophic set 𝐴 in a non-empty set 𝑋 is said to be universe neutrosophic set if 

𝑇𝐴(𝑥) = 𝐼𝐴(𝑥) = 1, 𝐹𝐴(𝑥) = 0, ∀ 𝑥 ∈ 𝑋. It is denoted by 1𝑁.  
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A neutrosophic set 𝐴 in a non-empty set 𝑋 is said to be null neutrosophic set if 𝑇𝐴(𝑥) = 𝐼𝐴(𝑥) = 0, 

𝐹𝐴(𝑥) = 1, ∀ 𝑥 ∈ 𝑋. It is denoted by 0𝑁.  

3.  Main Results  

Definition 3.1 Let 𝐴 be any neutrosophic set in a non-empty set 𝑋. Then for any 𝛼 ∈ [0, 1], the 𝛼 – 

lower level and the 𝛼  – upper level sets of 𝐴  denoted by 𝐿(𝐴, 𝛼)  and 𝑈(𝐴, 𝛼)  are respectively 

defined as follows: 

 

  𝐿(𝐴, 𝛼) = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 𝛼 } and 

   

  𝑈(𝐴, 𝛼) = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥) ≤ 𝛼, 𝐼𝐴(𝑥) ≤ 𝛼, 𝐹𝐴(𝑥) ≥ 𝛼 }. 

 

Example 3.1 Let 𝐴 = {(𝑎, 〈0.4, 0.3, 0.5〉), (𝑏, 〈0.5, 0.3, 0.1〉), (𝑐, 〈0.2, 0.5, 0.9〉)} and 𝛼 ∈ [0, 1] . Then 

𝐿(𝐴, 0.1) = 𝐿(𝐴, 0.2) = 𝐿(𝐴, 0.3) = {𝑏} , 𝐿(𝐴, 0.4) = {∅},   𝛼 ≥ 0.4.  However, 𝑈(𝐴, 𝛼) = {∅}, 0.1 ≤ 𝛼 ≤

0.3, 𝑈(𝐴, 0.4) = {𝑎}, 𝑈(𝐴, 0.5) = {𝑎, 𝑐}, 𝑈(𝐴, 0.6) = {𝑐}, 𝛼 ≥ 0.6.  

 

 If 𝐴, 𝐵, 𝐶  are neutrosophic sets in a non-empty 𝑋  and 𝛼, 𝛽 ∈ [0, 1] , then the results in the 

following proposition are not difficult to verify from definitions. 

 

Proposition 3.1  

 (𝑖) 𝐴 ⊆ 𝐵 ⟹ 𝐿(𝐴, 𝛼) ⊆ 𝐿(𝐵, 𝛼). 

 (𝑖𝑖) 𝛼 ≥ 𝛽 ⟹ 𝐿(𝐴, 𝛼) ⊇ 𝐿(𝐴, 𝛽). 

 (𝑖𝑖𝑖) 𝐿(⋂𝑖∈𝐽𝐴𝑖, 𝛼) = ⋂𝑖∈𝐽 𝐿(𝐴𝑖, 𝛼). 

 (𝑖𝑣) 𝑈(𝐴, 𝛼) ⊆ 𝐿(𝐴, 𝛼). 

 

Proposition 3.2  

 (𝒊) 𝐿(𝐴⋃𝐵, 𝛼) = 𝐿(𝐴, 𝛼) ⋃ 𝐿(𝐵, 𝛼). 

 (𝑖𝑖) 𝐿(𝐴⋂𝐵, 𝛼) = 𝐿(𝐴, 𝛼) ⋂ 𝐿(𝐵, 𝛼). 

 (𝑖𝑖𝑖) 𝐴 = 𝐵 ⟺ 𝐿(𝐴, 𝛼) = 𝐿(𝐵, 𝛼), ∀ 𝛼 ∈ [0, 1]. 

 

Proof.  

(𝑖) 𝐿(𝐴⋃𝐵, 𝛼) = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴⋃𝐵(𝑥) ≥ 𝛼, 𝐼𝐴⋃𝐵(𝑥) ≥ 𝛼, 𝐹𝐴⋃𝐵(𝑥) ≤ 𝛼 } 

              = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥)⋁𝑇𝐵(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥)⋁𝐼𝐵(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥)⋀𝐹𝐵(𝑥) ≤ 𝛼 } 

              = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥) ≥ 𝛼 ⋃ 𝑇𝐵(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛼 ⋃ 𝐼𝐵(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 𝛼 ⋃ 𝐹𝐵 ≤ 𝛼 } 

                                                   =

{ 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 𝛼 } ⋃ { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐵(𝑥) ≥ 𝛼, 𝐼𝐵(𝑥) ≥ 𝛼, 𝐹𝐵(𝑥) ≤ 𝛼 }  

               = 𝐿(𝐴, 𝛼) ⋃ 𝐿(𝐵, 𝛼) 

 

Hence, 𝐿(𝐴⋃𝐵, 𝛼) = 𝐿(𝐴, 𝛼) ⋃ 𝐿(𝐵, 𝛼). 

 

(𝑖𝑖) Similar to the proof of (𝑖). 

 

(𝑖𝑖𝑖) Clearly, 𝐴 = 𝐵 ⟹  𝑇𝐴(𝑥) = 𝑇𝐵(𝑥),  𝐼𝐴(𝑥) = 𝐼𝐵(𝑥),  𝐹𝐴(𝑥) = 𝐹𝐵(𝑥)  ∀ 𝑥 ∈ 𝑋. 

     Undoubtedly, 𝐿(𝐴, 𝛼) = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 𝛼 } and 

     𝐿(𝐵, 𝛼) = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐵(𝑥) ≥ 𝛼, 𝐼𝐵(𝑥) ≥ 𝛼, 𝐹𝐵(𝑥) ≤ 𝛼 }.  

     But 𝐴 = 𝐵  ∀ 𝑥 ∈ 𝑋. Hence, 𝐿(𝐴, 𝛼) = 𝐿(𝐵, 𝛼), ∀ 𝛼 ∈ [0, 1]. 

     Conversely, suppose that ∀ 𝛼 ∈  [0, 1], 𝐿(𝐴, 𝛼) = 𝐿(𝐵, 𝛼)  but 𝐴 ≠ 𝐵 . Moreover, 𝐴 ≠ 𝐵  if and 

only if 

     there exists some 𝑦 ∈ 𝑋 such that 𝑇𝐴(𝑦) ≠ 𝑇𝐵(𝑦), 𝐼𝐴(𝑦) ≠ 𝐼𝐵(𝑦), 𝐹𝐴(𝑦) ≠ 𝐹𝐵(𝑦). Without loss of 

     generality, assume that 𝑇𝐴(𝑦) ≤ 𝑇𝐵(𝑦), 𝐼𝐴(𝑦) ≤ 𝐼𝐵(𝑦), 𝐹𝐴(𝑦) ≤ 𝐹𝐵(𝑦) and let 𝛾 = 𝑇𝐵(𝑦) = 𝐼𝐵(𝑦) = 
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     𝐹𝐵(𝑦). It must be that 𝑦 ∉ 𝐿(𝐴, 𝛾) but 𝑦 ∈ 𝐿(𝐵, 𝛾). Then 𝐿(𝐴, 𝛼) and 𝐿(𝐵, 𝛼) are identical, and 

this 

     is a contradiction. 

 

 The distributive laws are satisfied for 𝛼 – lower level sets of a neutrosophic set. 

 

Proposition 3.3  

 (𝑖) 𝐿(𝐴⋃(𝐵⋂𝐶), 𝛼) = 𝐿(𝐴⋃𝐵, 𝛼) ⋂ 𝐿(𝐴⋃𝐶, 𝛼). 

 (𝑖𝑖) 𝐿(𝐴⋂(𝐵⋃𝐶), 𝛼) = 𝐿(𝐴⋂𝐵, 𝛼) ⋃ 𝐿(𝐴⋂𝐶, 𝛼). 

 

Proof. Similar to the proof of Proposition 3.2. 

 

Theorem 3.1 Let 𝐴 be a neutrosophic set in a non-empty set 𝑋 and 𝛼, 𝛽 ∈ [0, 1]. If 𝛼 comprises all 

finite values in [0, 1] and 𝛼 ≤ 𝛽, then ⋂ 𝐿(𝐴, 𝛼) = 𝐿(𝐴, 𝛽). 

 

Proof.  

Let 𝑥 ∈ ⋂ 𝐿(𝐴, 𝛼). Then 𝑥 ∈ 𝐿(𝐴, 𝛼)  ∀ 𝛼 ∈ [0, 1]. 

⟹ 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 𝛼  ∀ 𝛼 ∈ [0, 1], 𝑥 ∈ 𝑋. 

Since 𝛼 ≤ 𝛽, then 𝑇𝐴(𝑥) ≥ 𝛼 ≤ 𝛽, 𝐼𝐴(𝑥) ≥ 𝛼 ≤ 𝛽, 𝐹𝐴(𝑥) ≤ 𝛼 ≤ 𝛽  ∀ 𝛼 ∈ [0, 1]. 

⟹ ⋂ 𝐿(𝐴, 𝛼) ⊆ 𝐿(𝐴, 𝛽). 

Conversely, let 𝑥 ∈ 𝐿(𝐴, 𝛽), then 𝑇𝐴(𝑥) ≥ 𝛽, 𝐼𝐴(𝑥) ≥ 𝛽, 𝐹𝐴(𝑥) ≤ 𝛽, ∀  𝑥 ∈ 𝑋. 

⟹ 𝑇𝐴(𝑥) ≥ 𝛽 ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛽 ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 𝛽 ≤ 𝛼, ∀ 𝛼 ∈ [0, 1]. 

⟹ 𝑇𝐴(𝑥) ≥ 𝛼, 𝐼𝐴(𝑥) ≥ 𝛼, 𝐹𝐴(𝑥) ≤ 𝛼, ∀ 𝛼 ∈ [0, 1]. 

⟹ 𝐿(𝐴, 𝛽) ⊆ ⋂ 𝐿(𝐴, 𝛼). 

Hence, ⋂ 𝐿(𝐴, 𝛼) = 𝐿(𝐴, 𝛽).  

 

Proposition 3.4 Let 𝐴 be a universal neutrosophic set in a non-empty set 𝑋 and 𝛼 ∈ [0, 1]. Then  

𝐿(𝐴, 0) = 𝑋. 

 

Proof. Straightforward. 

 

Remark 3.1 If 𝐴 is a universal neutrosophic set in a non-empty set 𝑋 and 𝛼 ∈ [0, 1], then 

𝐿(𝐴, 0) = 𝐿(𝐴, 1). 

 

Theorem 3.2 If 𝐿(𝐴, 𝛼), 𝛼 ∈ [0, 1] be the 𝛼 – lower level sets of a neutrosophic set in a non-empty set 

𝑋 such that ⋂ 𝛼𝑈(𝐹𝐴, 𝛼) is restricted to non-zero values, then 𝐴 = ⋃𝛼∈[0,1]𝛼𝐿(𝐴, 𝛼). 

 

Proof. 

𝐴(𝑥) = (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) = (𝑎, 𝑏, 𝑐) and for each 𝛼 ∈ (𝑎, 1], 𝛼 ∈ (𝑏, 1], 𝛼 ∈ (0, 𝑐), we have 

𝑇𝐴(𝑥) = 𝑎 < 𝛼, 𝐼𝐴(𝑥) = 𝑏 < 𝛼 and 𝐹𝐴(𝑥) = 𝑐 > 𝛼. Thus, 𝐿(𝐴, 𝛼) = (0, 0 ,0). 

However, for each 𝛼 ∈ (0, 𝑎], 𝛼 ∈ (0, 𝑏], 𝛼 ∈ [𝑐, 1), we have 𝑇𝐴(𝑥) = 𝑎 ≥ 𝛼, 𝐼𝐴(𝑥) = 𝑏 ≥ 𝛼 and  

𝐹𝐴(𝑥) = 𝑐 ≤ 𝛼. Thus, 𝐿(𝐴, 𝛼) = (1, 1, 1). 

Hence, ⋃𝛼∈[0,1]𝛼𝐿(𝐴, 𝛼) = (⋁𝛼∈(0,𝑎]𝛼 = 𝑎 = 𝑇𝐴(𝑥),  ⋁𝛼∈(0,𝑏]𝛼 = 𝑏 = 𝐼𝐴(𝑥),  ⋀𝛼∈[𝑐,1)𝛼 = 𝑐 = 𝐹𝐴(𝑥))  with 

the restriction on ⋂ 𝛼𝑈(𝐹𝐴, 𝛼) to be considered non-zero values. This completes the proof.  

 

Example 3.2 Let 𝐴 be any neutrosophic set in a non-empty set 𝑋, given by  

𝐴 = {(𝑎, 〈0.4, 0.3, 0.5〉), (𝑏, 〈0.5, 0.3, 0.1〉), (𝑐, 〈0.2, 0.5, 0.9〉)}. 

 

 For expediency, let us denote 𝐴 as 

 

𝐴 = {(0.4, 0.3, 0.5)/𝑎, (0.5, 0.2, 0.3)/𝑏, (0.7, 0.2, 0.2)/𝑐}. 
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Then 

     

     𝐿(𝐴, 0.1) = {(1, 1, 0)/𝑎, (1, 1, 1)/𝑏, (1, 1, 0)/𝑐} 

     𝐿(𝐴, 0.2) = {(1, 1, 0)/𝑎, (1, 1, 1)/𝑏, (1, 1, 0)/𝑐} 

     𝐿(𝐴, 0.3) = {(1, 1, 0)/𝑎, (1, 1, 1)/𝑏, (0, 1, 0)/𝑐} 

     𝐿(𝐴, 0.4) = {(1, 0, 0)/𝑎, (1, 0, 1)/𝑏, (0, 1, 0)/𝑐} 

     𝐿(𝐴, 0.5) = {(0, 0, 1)/𝑎, (1, 0, 1)/𝑏, (0, 1, 0)/𝑐} 

     𝐿(𝐴, 0.9) = {(0, 0, 1)/𝑎, (0, 0, 1)/𝑏, (0, 0, 1)/𝑐} 

 

 It is not difficult to see that  

   𝐴 =

0.1𝐿(𝐴, 0.1) ⋃ 0.2𝐿(𝐴, 0.2) ⋃ 0.3𝐿(𝐴, 0.3) ⋃ 0.4𝐿(𝐴, 0.4) ⋃ 0.5 𝐿(𝐴, 0.5) ⋃ 0.9𝐿(𝐴, 0.9). 

 

 The following results presented below are for 𝛼 – upper level sets of a neutrosophic set.  

 

Proposition 3.5  

 (𝑖) 𝐴 ⊆ 𝐵 ⟹ 𝑈(𝐵, 𝛼) ⊆ 𝑈(𝐴, 𝛼). 

 (𝑖𝑖) 𝛼 ≤ 𝛽 ⟹ 𝑈(𝐴, 𝛼) ⊆ 𝑈(𝐴, 𝛽). 

 (𝑖𝑖𝑖) ⋂𝑖∈𝐽 𝑈(𝐴𝑖 , 𝛼) ⊆  𝑈(⋂𝑖∈𝐽𝐴𝑖 , 𝛼). 

 

Proof. Straightforward. 

 

Proposition 3.6 If 𝐴 and 𝐵 are two neutrosophic sets in a non-empty set 𝑋 and 𝛼 ∈ [0, 1], then  

 (𝒊) 𝑈(𝐴⋂𝐵, 𝛼) ⊇ 𝑈(𝐴, 𝛼) ⋂ 𝑈(𝐵, 𝛼). 

 (𝑖𝑖) 𝑈(𝐴⋃𝐵, 𝛼) = 𝑈(𝐴, 𝛼) ⋃ 𝑈(𝐵, 𝛼). 

 (𝑖𝑖𝑖) 𝐴 = 𝐵 ⟺ 𝑈(𝐴, 𝛼) = 𝑈(𝐵, 𝛼), ∀ 𝛼 ∈ [0, 1]. 

 

Proof.  

(𝑖) 𝑈(𝐴⋂𝐵, 𝛼) = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴⋂𝐵(𝑥) ≤ 𝛼, 𝐼𝐴⋂𝐵(𝑥) ≤ 𝛼, 𝐹𝐴⋂𝐵(𝑥) ≥ 𝛼 } 

              = { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥)⋀𝑇𝐵(𝑥) ≤ 𝛼, 𝐼𝐴(𝑥)⋀𝐼𝐵(𝑥) ≤ 𝛼, 𝐹𝐴(𝑥)⋁𝐹𝐵(𝑥) ≥ 𝛼 } 

              ≥ { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥) ≤ 𝛼 ⋂ 𝑇𝐵(𝑥) ≤ 𝛼, 𝐼𝐴(𝑥) ≤ 𝛼 ⋂ 𝐼𝐵(𝑥) ≤ 𝛼, 𝐹𝐴(𝑥) ≥ 𝛼 ⋃ 𝐹𝐵 ≥ 𝛼 } 

                                                   =

{ 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐴(𝑥) ≤ 𝛼, 𝐼𝐴(𝑥) ≤ 𝛼, 𝐹𝐴(𝑥) ≥ 𝛼 } ⋂ { 𝑥 ∈ 𝑋 ∣∣ 𝑇𝐵(𝑥) ≤ 𝛼, 𝐼𝐵(𝑥) ≤ 𝛼, 𝐹𝐵(𝑥) ≥ 𝛼 }  

               = 𝑈(𝐴, 𝛼) ⋂ 𝑈(𝐵, 𝛼) 

 

Hence, 𝑈(𝐴⋂𝐵, 𝛼) ⊇ 𝑈(𝐴, 𝛼) ⋂ 𝑈(𝐵, 𝛼). 

 

(𝑖𝑖) It is obtained in a similar way. 

 

(𝑖𝑖𝑖) The proof is similar to the proof of Proposition 3.2(𝑖𝑖𝑖). 

 

Proposition 3.7  

 (𝑖) 𝑈(𝐴⋃(𝐵⋂𝐶), 𝛼) ⊆ 𝑈(𝐴⋃𝐵, 𝛼) ⋂ 𝑈(𝐴⋃𝐶, 𝛼). 

 (𝑖𝑖) 𝑈(𝐴⋂(𝐵⋃𝐶), 𝛼) ⊆ 𝑈(𝐴⋂𝐵, 𝛼) ⋃ 𝑈(𝐴⋂𝐶, 𝛼). 

 

Proof. Similar to the proof of Proposition 3.6(𝑖). 

 

Proposition 3.8 Let 𝐴 be a null neutrosophic set in a non-empty set 𝑋 and 𝛼 ∈ [0, 1]. Then  

𝑈(𝐴, 0) = 𝑋. 
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Proof. Straightforward. 

 

Remark 3.2 If 𝐴 is a null neutrosophic set in a non-empty set 𝑋 and 𝛼 ∈ [0, 1], then 

𝑈(𝐴, 0) = 𝑈(𝐴, 1). 

 

Theorem 3.3 If 𝑈(𝐴, 𝛼), 𝛼 ∈ [0, 1] be the 𝛼 – upper level sets of a neutrosophic set in a non-empty set 

𝑋 such that ⋂ 𝛼𝑈(𝑇𝐴, 𝛼) and ⋂ 𝛼𝑈(𝐼𝐴 , 𝛼) are restricted to non-zero values, then 𝐴 = ⋂𝛼∈[0,1]𝛼𝑈(𝐴, 𝛼). 

 

Proof. 

The proof is analogous to the proof of Theorem 3.2. 

Let 𝐴(𝑥) = (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)) = (𝑎, 𝑏, 𝑐). Then 𝑇𝐴(𝑥) = 𝑎 > 𝛼, 𝐼𝐴(𝑥) = 𝑏 > 𝛼 and 𝐹𝐴(𝑥) = 𝑐 < 𝛼,   

∀ 𝛼 ∈ [0, 𝑎), 𝛼 ∈ [0, 𝑏), 𝛼 ∈ (𝑐, 1]. Thus, 𝑈(𝐴, 𝛼) = (0, 0 ,0). 

On the other hand, 𝑇𝐴(𝑥) = 𝑎 ≤ 𝛼, 𝐼𝐴(𝑥) = 𝑏 ≤ 𝛼 and 𝐹𝐴(𝑥) = 𝑐 ≥ 𝛼, ∀ 𝛼 ∈ [𝑎, 1) 𝛼 ∈ [𝑏, 1)  𝛼 ∈ (0, 𝑐]. 

Thus, 𝑈(𝐴, 𝛼) = (1, 1, 1). 

Hence, ⋂𝛼∈[0,1]𝛼𝑈(𝐴, 𝛼) = (⋀𝛼∈[𝑎,1)𝛼 = 𝑎 = 𝑇𝐴(𝑥),  ⋀𝛼∈[𝑏,1)𝛼 = 𝑏 = 𝐼𝐴(𝑥),  ⋁𝛼∈(0,𝑐]𝛼 = 𝑐 = 𝐹𝐴(𝑥))  with 

the restriction on ⋂ 𝛼𝑈(𝑇𝐴 , 𝛼) and ⋂ 𝛼𝑈(𝐼𝐴 , 𝛼) to be considered non-zero values. Hence the proof.  

 

5.   Conclusions (authors also should add some future directions points related to her/his research)  

The concepts of 𝛼 – lower level and 𝛼 – upper level sets and their properties in neutrosophic sets 

are described. This study is worthy of level sets extension in the hybrid set structures such as 

neutrosophic multisets, neutrosophic soft sets and rough neutrosophic sets.   
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 1   Introduction 

Zadeh [33, 34] introduced the concept of fuzzy set. Jun et al. [7] defined interval-valued fuzzy 

set and discussed its properties. Jun et al. [8] presented the notion of cubic subgroups. Senapati et al. 

[26] generalized the idea of cubic set to subalgebras, ideals and closed ideals of B-algebra. Imai and 

Iseki [5, 6] introduced the two classes of algebra which were BCK algebra and BCI-algebra. Huang 

[4] investigated the BCI-algebra. Jun et al. [10, 11] applied the idea of cubic set to subalgebras, ideals 

and q-ideals in BCK/BCI-algebra. Neggers et al. [13] defined and studied the B-algebra. Cho et al. [3] 

studied the relations of B-algebra with different topics. Park et al. [15] studied quadratic B-algebra 

on field X with a BCI-algebra. Saeid [16] was given the idea of interval valued fuzzy subalgebra in 

B-algebra. Walendziak [32] proved the conditions of B-algebra. Senapati et al. [21, 22, 23, 24, 31] was 

introduced the fuzzy dot subalgebra of BG-algebra, fuzzy dot subalgebra, fuzzy dot ideals, 

interval-valued fuzzy closed ideals and fuzzy subalgebra with respect to t-norm in B-algebra. 

Senapati et. al. [17, 25] was introduced L-fuzzy G-subalgebra of G-algebra and bipolar fuzzy set 

which was related to B-algebra. Khalid et. al. [20] studied the intuitionistic fuzzy translation. Many 

researchers [12, 27, 28, 29, 30] have done a lot of work on BG-algebra which was a generalization of 

B-algebra. Smarandache [18, 19] introduced the concept of neutrosophic set. Jun et al. [9] introduced 

neutrosophic cubic set. Barbhuiya [2] studied the t-intuitionistic fuzzy BG-subalgebra. Takallo et al. 

[37] introduced the MBJ-neutrosophic set, BMBJ-neutrosophic subalgebra, BMBJ-neutrosophic ideal 

and BMBJ-neutrosophic ◦-subalgebra. G. Muhiuddin et al. [38] studied the neutrosophic quadruple 

BCK/BCI-number, neutrosophic quadruple BCK/BCI-algebra, neutrosophic quadruple subalgebra 
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and (positive implicative) neutrosophic quadruple ideal. Park [39] introduced the notion of 

neutrosophic ideal in subtraction algebra and discussed conditions for a neutrosophic set to be a 

neutrosophic ideal. Borzooei et al. [40] introduced the concept of MBJ-neutrosophic set, 

BMBJ-neutrosophic ideal and positive implicative BMBJ-neutrosophic ideal. Jun et al. [41] studied 

the commutative falling neutrosophic ideals in BCK-algebra. Song et al. [42] investigated the interval 

neutrosophic set and applied to ideals in BCK/BCI-algebra. Khalid et al. [43] interestingly 

investigated the neutrosophic soft cubic subalgebra through significant results. Muhiuddin et al. [44] 

was studied neutrosophic quadruple BCK/BCI-number, neutrosophic quadruple BCK/BCI-algebra, 

(regular) neutrosophic quadruple ideal and neutrosophic quadruple q-ideal. Muhiuddin et al. [45] 

investigated the (ϵ, ϵ)-neutrosophic subalgebra, (ϵ, ϵ)-neutrosophic ideal. Akinleye et al. [46] defined 

the neutrosophic quadruple algebraic structures, also studied neutrosophic quadruple rings and 

presented their elementary properties. Basset et al. [47] studied integrated neutrosophic ANP and 

VIKOR method for achieving sustainable supplier selection. Basset et al. [48] studied the type 2 

neutrosophic number, score and accuracy function, multi attribute decision making TOPSIS and 

T2NN-TOPSIS. 

 The purpose of this paper is to introduce the idea of t-neutrosophic cubic set [t-NCS] and to 

investigate this set through the concepts of subalgebra, ideal and closed ideal of BF-algebra. 

Homomorphic image and inverse homomorphic image of t-neutrosophic cubic subalgebra [t-NCSU] 

and t-neutrosophic cubic ideal [t-NCID] are also studied. 

  

2 Preliminaries                                                                 

 In this section, basic definitions are cited that are necessary for this paper. 

Definition 2.1 [32] A nonempty set X  with a constant 0 and a binary operation ∗  is called 

BF-algebra when it fulfills these axioms. 

1. t1 ∗ t1 = 0 

2. t1 ∗ 0 = 0 

3. 0 ∗ (t1 ∗ t2) = t2 ∗ t1 for all t1, t2 ∈ X. 

A BF-algebra is denoted by (X,∗ ,0). 

Definition 2.2 [1] A nonempty subset S of G-algebra X is called a subalgebra of X if t1 ∗ t2 ∈ S ∀ 

t1, t2 ∈ S. 

Definition 2.3 [14] Mapping f|X → Y of B-algebra is called homomorphism if f(t1 ∗ t2) = f(t1) ∗

f(t2) ∀ t1, t2 ∈ X. 

Definition 2.4 [23] A nonempty subset I of B-algebra X is called an ideal if for any t1, t2 ∈ X, (i) 0 

∈ I, (ii) t1 ∗ t2 ∈ I and t2 ∈ I ⇒ t1 ∈ I. 

An ideal I of B-algebra X is called closed if 0 ∗ t2 ∈ I, ∀ t2 ∈ I. 

Definition 2.5 [33] Let X be the set of elements which are denoted generally by t1. Then a fuzzy set 

C in X is defined as C = {< t1, μC(t1) >  |t1 ∈ X}, where μC(t1) is called the existenceship value of 

t1 in C and μC(t1) ∈ [0,1]. 
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 For a family Ci = {< t1, μCi
(t1) >  |t1 ∈ X} of fuzzy sets in X, where i ∈ k and k is index 

set, we define the join (∨) meet (∧) operations as follows:  

 ∨
i∈k

Ci = ( ∨
i∈k

μCi
)(t1) = sup{μCi

|i ∈ k} 

 and  

 ∧
i∈k

Ci = ( ∧
i∈k

μCi
)(t1) = inf{μCi

|i ∈ k} 

 respectively, ∀ t1 ∈ X.  

Definition 2.6 [2] Let two elements D1, D2 ∈ D[0,1]. If D1 = [(t1)1
−, (t1)1

+] and D2 = [(t1)2
−, (t1)2

+], 

then rmax(D1, D2) = [max ((t1)1
−, (t1)2

−), max ((t1)1
+, (t1)2

+)]  which is denoted by D1 ∨r D2  and 

rmin(D1, D2) = [min ((t1)1
−, (t1)2

−), min ((t1)1
+, (t1)2

+)]  which is denoted by D1 ∧r D2 . Thus, if Di =

[((t1)1)i
−, ((t1)2)+] ∈ D[0,1]  for  i = 1,2,3, …,  then we define rsupi(Di) =

[supi(((t1)1)i
−), supi(((t1)1)i

+)], i. e., ∨i
r Di = [∨i ((t1)1)i

−,∨i ( 

(t1)1)i
+]. In the same way we define rinfi(Di) = [infi(((t1)1)i

−), infi(((t1)1)i
+)], i. e., 

∧i
r Di = [∧i ((t1)1)i

−,∧i ((t1)1)i
+]. Now we call D1 ≥ D2 ⇐ (t1)1

− ≥ (t1)2
− and (t1)1

+ ≥ (t1)2
+. Similarly 

the relations D1 ≤ D2 and D1 = D2 are defined.  

Definition 2.7 [1,22] A fuzzy set C = {< t1, μC(t1) > |t1 ∈ X} is called a fuzzy subalgebra of X if 

μC(t1 ∗ t2) ≥ min{μC(t1), μC(t2)} ∀ t1, t2 ∈ X. A fuzzy set C = {< t1, μC(t1) > |t1 ∈ X} in X is called a 

fuzzy ideal of X if it satisfies (i) μC(0) ≥ μC(t1) and (ii) μC(t1) ≥ min{μC(t1 ∗ t2), μA(t2)} ∀ t1, t2 ∈ X.   

Definition 2.8 [33] An IVFS B over X is an object of the form B = {< t1, μB(t1) > |t1 ∈ X} 

Where μB(t1): X → D[0:1], Where D[0,1] is the collection of all subintervals of [0,1]. The interval 

μB(t1) shows the interval of the degree of membership of the element t1  to the set B, Where 

μB(t1) = {μLB(t1), μUB(t1)}, ∀ t1 ∈ X. 

Definition 2.9 [16] A interval valued fuzzy set C = {< t1, μC(t1) > |t1 ∈ X} is called a  interval 

valued fuzzy subalgebra of X if it satisfies μC(t1 ∗ t2) ≥ rmin{μC(t1), μC(t2)} ∀ t1, t2 ∈ X. 

Definition 2.10 [15] A pair 𝒫̃k = (A, Λ) is called NCS where A = {〈t1; AT(t1), AI(t1) , AF(t1)〉 |t1 ∈ Y} 

is an  INS  in Y and Λ = {〈t1; λT(t1), λI(t1), λF(t1)〉| t1 ∈ Y } is a neutrosophic set in Y. 

Definition 2.11 [26] Let C = {〈t1, κ(t1), σ(t1)〉} be a cubic set, where κ(t1) is an interval-valued 

fuzzy set in X, σ(t1) is a fuzzy set in X. Then C is cubic subalgebra under binary operation ∗ if 

following axioms are satisfied: 

C1: κ(t1 ∗ t2) ≥ rmin{κ(t1), κ(t2)}, 

        C2: σ(t1 ∗ t2) ≤ max{σ(t1), σ(t2)} ∀ t1, t2 ∈ X. 

Definition 2.12 [9] Suppose X be a nonempty set. A neutrosophic cubic set in X is pair 𝒞 = (κ, σ) 

where κ = {〈t1; κE(t1), κI(t1), κN(t1)〉 |t1 ∈ X}  is an interval neutrosophic set in X  and σ =

{〈t1; σE(t1), σI(t1), σN(t1)〉 |t1 ∈ X} is a neutrosophic set in X.  

Definition 2.13 [9] For any 𝒞i = (κi, σi) where  

κi = {〈t1; κiE(t1), κiI(t1), κiN(t1)〉 |t1 ∈ X},  

σi = {〈t1; σiE(t1), σiI(t1), σiN(t1)〉 |t1 ∈ X}  for i ∈ k , P-union, P-inersection, R-un  -ion and 

R-intersection are defined respectively by 
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P-union ⋃P
i∈k

𝒞i = (⋃
i∈k

κi, ∨
i∈k

σi), P-intersection ⋂P
i∈k

𝒞i = (⋂
i∈k

κi, ∧
i∈k

σi),  

R-union ⋃R
i∈k

𝒞i = (⋃
i∈k

κi, ∧
i∈k

σi), R-intersection: ⋂R
i∈k

𝒞i = (⋂
i∈k

κi, ∨
i∈k

σi),  

where 

       ⋃
i∈k

κi = {⟨t1; (⋃
i∈k

κiE)(t1), (⋃
i∈k

κiI)(t1), (⋃
i∈k

κiN)(t1)⟩|t1 ∈ X},  

∨
i∈k

σi = {⟨t1; ( ∨
i∈k

σiE)(t1), ( ∨
i∈k

σiI)(t1), ( ∨
i∈k

σiN)(t1)⟩|t1 ∈ X}, 

              ⋂
i∈k

κi = {⟨t1; (⋂
i∈k

κiE)(t1), (⋂
i∈k

κiI)(t1), (⋂
i∈k

κiN)(t1)⟩|t1 ∈ X},  

      ∧
i∈k

σi = {⟨t1; ( ∧
i∈k

σiE)(t1), ( ∧
i∈k

σiI)(t1), ( ∧
i∈k

σiN)(t1)⟩|t1 ∈ X},  

Definition 2.14 [36]  Let C = (μC, νC) be an IFS in BF-algebra X and t ∈ [0,1], then the IFS Ct is 

called the t-intuitionistic fuzzy subset of X w.r.t C and is defined as Ct =

{< t1, μCt(t1), νCt(t1) > |t1 ∈ Y} = < μCt , νCt >  where μCt(t1) = min{μC(t1), t}  and μCt(t1) =

max{νC(t1),1 − t} ∀ t1 ∈ X.    

Definition 2.15 [36] Let Bt = (μBt , νBt) be a t-intuitionistic fuzzy subset of BF-algebra X and t ∈

[0,1] then Bt is called t-intuitionistic fuzzy subalgebra of X if it fulfills these axioms. 

(i) μBt(t1 ∗ t2) ≥ min{μBt(t1), μBt(t2)}, 

(ii) νBt(t1 ∗ t2) ≤ max{νBt(t1), νBt(t2)}, ∀ t1, t2 ∈ X.   

 

3 t-Neutrosophic Cubic Subalgebra of BF-algebra                                          

Let 𝒞 = (κ𝒞, σ𝒞) be a neutrosophic cubic set [NCS] of BF-algebra X, then the NCS 𝒞 is called the 

t-neutrosophic cubic set (t-NCS) of X w.r.t 𝒞 and is defined as 𝒞t = {< t1, κ̂t(t1), σt(t1) > |t1 ∈ X} =

< κ̂t, σt > such that κ̂t(t1) = {< κ̂E
t (t1), κ̂I

t(t1), κ̂N
t (t1) > |t1 ∈ X} and σ(t1) = {< σE

t (t1), σI
t(t1), σN

t (t1) >

|t1 ∈ X}  with two independent components where κ̂t(t1) =

{rmin(κ̂E(t1), t), rmin(κ̂I(t1), t′), rmin(κ̂N(t1),2 − t − t′)}, σt(t1) =

{max(σE(t1), t), max(σI(t1), t′), max(σN(t1), 2 − t − t′)} and ∀ t, t′, 2 − t − t′ ∈ [0,1] and now concept 

of cubic subalgebra can be extended to t-NCSU.  

Definition 3.1 Let 𝒞 = (κ̂, σ) be a cubic set, where X is subalgebra. Then 𝒞 is t-NCSU under binary 

operation ∗ if it satisfies the following conditions:  

N1: 

 κ̂t
E(t1 ∗ t2) ≥ rmin{κ̂E

t (t1), κ̂E
t (t2)}, 

 κ̂t
I(t1 ∗ t2) ≥ rmin{κ̂I

t(t1), κ̂I
t(t2)}, 

 κ̂t
N(t1 ∗ t2) ≥ rmin{κ̂N

t (t1), κ̂N
t (t2)}, 

N2: 

 σt
E(t1 ∗ t2) ≤ max{σE

t (t1), σE
t (t2)} 

 σt
I(t1 ∗ t2) ≤ max{σI

t(t1), σI
t(t2)} 

 σt
N(t1 ∗ t2) ≤ max{σN

t (t1), σN
t (t2)}. 
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Where E means existenceship/membership value, I means indeterminacy existenceship/membership 

value and N means non existenceship/membership value. For our convenience we introduce new 

notation for t-neutrosophic cubic set as  

𝓒 = (𝛋̂𝐄,𝐈,𝐍
𝐭 , 𝛔𝐄,𝐈,𝐍

𝐭 ) = {〈𝐭𝟏, 𝛋̂𝐄,𝐈,𝐍
𝐭 (𝐭𝟏), 𝛔𝐄,𝐈,𝐍

𝐭 (𝐭𝟏)〉} = {〈𝐭𝟏, 𝛋̂𝚵
𝐭 (𝐭𝟏), 𝛔𝚵

𝐭 (𝐭𝟏)〉} 

and for conditions N1, N2 as  

 N1: κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)}, 

 N2: σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)}. 

Example 3.2 Let X = {0, t1, t2, t3, t4, t5} be a BF-algebra with the following Cayley table. 

⋇     0 t1 t2 t3 t4 t5 

     0      0 t5 t4 t3 t2 t1 

t1 t1     0 t5 t4 t3 t2 

t2 t2 t1     0 t5 t4 t3 

t3 t3 t2 t1     0 t5 t4 

t4 t4 t3 t2 t1     0 t5 

t5 t5 t4 t3 t2 t1     0 

 

A t-neutrosophic cubic set 𝒞 = (κ̂t
Ξ, σΞ

t ) of X is defined by   

 0 t1 t2 t3 t4 t5 

κ̂t
E   [0.7,0.9]   [0.6,0.8]   [0.7,0.9]   [0.6,0.8]   [0.7,0.9]   [0.6,0.8] 

κ̂t
I   [0.3,0.2]   [0.2,0.1]   [0.3,0.2]   [0.2,0.1]   [0.3,0.2]   [0.2,0.1] 

κ̂t
N   [0.2,0.4]   [0.1,0.4]   [0.2,0.4]   [0.1,0.4]   [0.2,0.4]   [0.1,0.4] 

 

 0 t1 t2 t3 t4 t5 

σt
E 0.1 0.3 0.1 0.3 0.1 0.3 

σt
I 0.3 0.5 0.3 0.5 0.3 0.5 

σt
N 0.5 0.6 0.5 0.6 0.5 0.6 

 

Both the conditions of definition are satisfied by the set 𝒞. Thus 𝒞 = (κ̂t
Ξ, σΞ

t ) is a t-NCSU of X.   

Proposition 3.3 Let 𝒞 = {〈t1, κ̂Ξ
t (t1), σΞ

t (t1)〉} is a t-NCSU of X, then ∀ t1 ∈ X, κ̂Ξ
t (t1) ≥ κ̂Ξ

t (0) and 

σΞ
t (0) ≤ σΞ

t (t1). Thus, κ̂Ξ
t (0) and σΞ

t (0) are the upper bound and lower bound of κ̂Ξ
t (t1) and σΞ

t (t1) 

respectively.   

Proof. ∀ t1 ∈ X, we have κ̂Ξ
t (0) = κ̂t

Ξ(t1 ∗ t1) ≥ rmin{κ̂Ξ
t (t1), κ̂t

Ξ(t1)} = κ̂Ξ
t (t1) ⇒ κ̂Ξ

t (0) ≥ κ̂Ξ
t (t1) and 

σΞ
t (0) = σΞ

t (t1 ∗ t1) ≤ max{σΞ
t (t1), σΞ

t (t1)} = σΞ
t (t1) ⇒ σΞ

t (0) ≤ σΞ
t (t1).  

Theorem 3.4 Let 𝒞={〈t1, κ̂Ξ
t (t1), σΞ

t (t1)〉} be a t-NCSU of X. If there exists a sequence {(t1)n} of X 

such that limn→∞κ̂t
Ξ((t1)n) = [1,1] and limn→∞σΞ

t ((t1)n) = 0.Then κ̂t
Ξ(0) = [1,1] and σΞ

t (0) = 0.   
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Proof. Using above proposition, κ̂Ξ
t (0) ≥ κ̂Ξ

t (t1) ∀ t1 ∈ X, ∴ κ̂Ξ
t (0) ≥ κ̂Ξ

t ((t1)n) for n ∈ Z+. Consider, 

[1,1] ≥ κ̂Ξ
t (0) ≥ limn→∞κ̂Ξ

t ((t1)n) = [1,1]. Hence κ̂Ξ
t (0) = [1,1]. 

Again, using proposition, σΞ
t (0) ≤ σΞ

t (t1) ∀ t1 ∈ X, ∴ σΞ
t (0) ≤ σΞ

t ((t1)n) for n ∈ Z+. Consider, 0 ≤

σΞ
t (0) ≤ limn→∞σΞ

t ((t1)n) = 0. Hence σΞ
t (0) = 0.  

Theorem 3.5 The R-intersection of any set of t-NCSU of X is t-NCSU of X.   

Proof. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, is family of sets of t-NCSU of X and t1, t2 ∈ X 

and t ∈ [0,1] Then  

 (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) = rinf(κ̂t

i)Ξ(t1 ∗ t2) 

 ≥ rinf{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rinf(κ̂t
i)Ξ(t1), rinf(κ̂t

i)Ξ(t2)} 

 = rmin{(⋂ (κ̂t
i)Ξ)(t1), (⋂ (κ̂t

i)Ξ)(t2)} 

 ⇒ (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) ≥ rmin{(⋂ (κ̂t

i)Ξ)(t1), (⋂ (κ̂t
i)Ξ)(t2)} 

 and  

 (∨ (σi
t)Ξ)(t1 ∗ t2) = sup(σi

t)Ξ(t1 ∗ t2) 

 ≤ sup{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} 

 = max{sup(σi
t)Ξ(t1), sup(σi

t)Ξ(t2)} 

 = max{(∨ (σi
t)Ξ)(t1), (∨ (σi

t)Ξ)(t2)} 

 ⇒ (∨ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∨ (σi

t)Ξ)(t1), (∨ (σi
t)Ξ)(t2)}, 

 which show that R-intersection of 𝒞i
t is t-NCSU of X.  

Remark 3.6 The R-union, P-intersection and P-union of t-NCSU need not to be a t-NCSU which is 

explained through example. 

 let X = {0, t1, t2, t3, t4, t5} be a BF-algebra with the following Caley table.  

  ⋇      0 t1 t2 t3 t4 t5 

0      0 t2 t1 t3 t4 t5 

t1  t1     0 t2 t5 t3 t4 

t2  t2 t1     0 t4 t5 t3 

t3  t3 t4 t5     0 t1 t2 

t4  t4 t5 t3 t2     0 t1 

t5  t5 t3 t4 t1 t2     0 

 

Let 𝒞1
t = ((κ̂t)Ξ

1 , (σt)Ξ
1 ) and 𝒞2

t = ((κ̂t)Ξ
2 , (σt)Ξ

2) are t-neutrosophic cubic sets of X which are defined by 
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     0       t1      t2  t3      t4      t5  

 κ̂1
t E    [0.4,0.5]    [0.2,0.3]    [0.2,0.3]    [0.4,0.5]    [0.2,0.3]    [0.2,0.3]  

 κ̂1
t I    [0.6,0.7]    [0.3,0.4]   [0.3,0.4]    [0.6,0.7]    [0.3,0.4]    [0.3,0.4]  

 κ̂1
t N    [0.7,0.8]    [0.4,0.5]   [0.4,0.5]    [0.7,0.8]    [0.4,0.5]    [0.4,0.5] 

 κ̂2
t E    [0.7,0.8]    [0.3,0.4]    [0.3,0.4]    [0.3,0.4]    [0.7,0.8]    [0.3,0.4]  

 κ̂2
t I    [0.8,0.7]    [0.2,0.3]   [0.2,0.3]    [0.2,0.3]    [0.8,0.7]    [0.2,0.3]  

 κ̂2
t N    [0.7,0.6]    [0.2,0.4]   [0.2,0.4]    [0.2,0.4]    [0.7,0.6]    [0.2,0.4]  

 

  0   t1   t2   t3  t4  t5  

σ1
t E   0.2   0.9  0.9   0.2  0.9  0.9  

σ1
t I   0.3  0.8  0.8  0.3 0.8  0.8  

σ1
t N   0.5  0.7   0.7   0.5   0.7 0.7  

σ2
t E   0.3   0.6  0.6   0.6  0.3  0.6  

σ2
t I   0.4  0.8 0.8  0.8  0.4  0.8  

σ2
t N   0.5  0.8  0.8   0.8   0.3 0.8  

   

(⋃ (κ̂t)Ξ
i )(a3 ∗ a4) = ([0.3,0.4], [0.3,0.4], [0.4,0.5])Ξ ≱ ([0.7,0.8], [0.6,0.7], [0.5,0.6])Ξ =

rmin{(⋃ (κ̂t)Ξ
i )(a3), (⋃ (κ̂t)Ξ

i )(a4)} and (∧ (σt
i)Ξ)(a3 ∗ a4) = (0.5,0.6,0.7)Ξ ≰ (0.3,0.4,0.5)Ξ = max{(∧

(σt
i)Ξ)(a3), (∧ (σi

t)Ξ)(a4)}. 

Theorem 3.7. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} be a collection of sets of t-NCSU of X, where i ∈ k 

and t ∈ [0,1]. If inf {max {(σi
t)Ξ(t1), (σi

t)Ξ(t1)}} = max{inf(σi
t)Ξ(t1) 

, inf(σi
t)Ξ(t1)} ∀ t1 ∈ X, then the P-intersection of 𝒞i

t is also a t-NCSU of X.  

Proof. Suppose that 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of 

X such that inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t1)}} = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t1)} ∀ a ∈ X. Then for t1, t2 ∈

X and t ∈ [0,1]. Then  

 (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) = rinf{(κ̂t

i)Ξ(t1 ∗ t2)} 

 ≥ rinf{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rinf(κ̂t
i)Ξ(t1), rinf(κ̂t

i)Ξ(t2)} 

 = rmin{(⋂ (κ̂t
i)Ξ)(t1), (⋂ (κ̂t

i)Ξ)(t2)} 

 ⇒ (⋂ (κ̂t
i)Ξ)(t1 ∗ t2) ≥ rmin{(⋂ (κ̂t

i)Ξ)(t1), (⋂ (κ̂t
i)Ξ)(t2)} 

 and  

 (∧ (σi
t))Ξ)(t1 ∗ t2) = inf(σi

t)Ξ(t1 ∗ t2) 

 ≤ inf{max{(σi
t)Ξ(t1), (σi

t))Ξ(t2)}} 

 = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)} 

 = max{(∧ (σi
t)Ξ)(t1), (∧ (σi

t))Ξ)(t2)} 
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 ⇒ (∧ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∧ (σi

t)Ξ)(t1), (∧ (σi
t))Ξ)(t2)}, 

 which show that P-intersection of 𝒞i
t is t-NCSU of X.  

Theorem 3.8. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of X. If 

sup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} = rmin{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)}  and 

inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)},  ∀ t1 ∈ X.  Then P -union of 𝒞i
t  is 

t-NCSU of X.  

Proof. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of X such 

that sup {rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}}  = rmin{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)} 

∀ t1 ∈ X. Then for t1, t2 ∈ X, and t ∈ [0,1].  

 (⋃ (κ̂t
i)Ξ)(t1 ∗ t2) = rsup(κ̂t

i)Ξ(t1 ∗ t2) 

 ≥ rsup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rsup(κ̂t
i)Ξ(t1), rsup(κ̂t

i)Ξ(t2)} 

 = rmin{(⋃ (κ̂t
i)Ξ)(t1), (⋃ (κ̂t

i)Ξ)(t2)} 

 ⇒ (⋃ (κ̂t
i)Ξ)(t1 ∗ t2) ≥ rmin{(⋃ (κ̂t

i)Ξ)(t1), (⋃ (κ̂t
i)Ξ)(t2)} 

 and  

 (∨ (σi
t)Ξ)(t1 ∗ t2) = sup(σi

t)Ξ(t1 ∗ t2) 

 ≤ sup{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} 

 = max{sup(σi
t)Ξ(t1), sup(σi

t)Ξ(t2)} 

 = max{(∨ (σi
t)Ξ)(t1), (∨ (σi

t)Ξ)(t2)} 

 ⇒ (∨ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∨ (σi

t)Ξ)(t1), (∨ (σi
t)Ξ)(t2)}, 

 which show that P-union of 𝒞i
t is t-NCSU of X.  

Theorem 3.9 Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, be a collection of sets of t-NCSU of X. If 

inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} =  max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)}  and sup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

= rmin{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)} ∀ t1 ∈ X and t ∈ [0,1]. Then R-union of 𝒞i
t is a t-NCSU of X.  

Proof. Let 𝒞i
t = {〈t1, (κ̂t

i)Ξ, (σi
t)Ξ〉|t1 ∈ X} where i ∈ k, and t ∈ [0,1] be collection of sets of t-NCSU 

of X  such that inf {max {(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} =  max {inf (σi
t)Ξ(t1), inf(σi

t)Ξ(t2)}}  and 

sup {rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} = rmin 

{sup(κ̂t
i)Ξ(t1), sup(κ̂t

i)Ξ(t2)} ∀ t1 ∈ X. Then for t1, t2 ∈ X and t ∈ [0,1]  

 (⋃ (κ̂t
i)Ξ)(t1 ∗ t2) = rsup(κ̂t

i)Ξ(t1 ∗ t2) 

 ≥ rsup{rmin{(κ̂t
i)Ξ(t1), (κ̂t

i)Ξ(t2)}} 

 = rmin{rsup(κ̂t
i)Ξ(t1), rsup(κ̂t

i)Ξ(t2)} 

 = rmin{(⋃ κ̂t
i)Ξ)(t1), (⋃ κ̂t

i)Ξ)(t2)} 

 ⇒ (⋃ (𝜅̂𝑡
𝑖)𝛯)(𝑡1 ∗ 𝑡2) ≥ rmin{(⋃ (𝜅̂𝑡

𝑖)𝛯)(𝑡1), (⋃ (𝜅̂𝑡
𝑖)𝛯)(𝑡2)} 

 and  

 (∧ (σi
t)Ξ)(t1 ∗ t2) = inf(σi

t)Ξ(t1 ∗ t2) 

 ≤ inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t2)}} 
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 = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t2)} 

 = max{(∧ (σi
t)Ξ)(t1), (∧ (σi

t)Ξ)(t2)} 

 ⇒ (∧ (σi
t)Ξ)(t1 ∗ t2) ≤ max{(∧ (σi

t)Ξ)(t1), (∧ (σi
t)Ξ)(t2)}, 

 which show that R-union of 𝒞i
t is t-NCSU of X.  

Theorem 3.10 If t-neutrosophic cubic set 𝒞t = (κ̂t
Ξ, σΞ

t ) of X is subalgebra, then ∀ t1 ∈ X, κ̂t
Ξ(0 ∗

t1) ≥ κ̂t
Ξ(t1) and σΞ

t (0 ∗ t1) ≤ σΞ
t (t1).  

Proof. For all t1 ∈ X , κ̂t
Ξ(0 ∗ t1)  ≥ rmin{κ̂t

Ξ(0), κ̂t
Ξ(t1)}  = rmin{κ̂t

Ξ(t1 ∗ t1), κ̂t
Ξ(t1)}  ≥

rmin{rmin{κ̂t
Ξ(t1), κ̂t

Ξ(t1)}, κ̂t
Ξ(t1)} = κ̂t

Ξ(t1)and similarly σΞ
t (0 ∗ t1) ≤ max{σΞ

t (0), σΞ
t (t1)} = σΞ

t (t1).  

Theorem 3.11  If t-netrosophic cubic set 𝒞t = (κ̂t
Ξ, σΞ

t ) of X is subalgebra then 𝒞t(t1 ∗ t2) = 𝒞t(t1 ∗

(0 ∗ (0 ∗ t2))) ∀ t1, t2 ∈ X.  

Proof. Let X be a BF-algebra and t1, t2 ∈ X. Then we know by above lemma that t2 = 0 ∗ (0 ∗ t2). 

Hence κ̂t
Ξ(t1 ∗ t2) = κ̂t

Ξ(t1 ∗ (0 ∗ (0 ∗ t2)))  and σΞ
t (t1 ∗ t2) = σΞ

t (t1 ∗ (0 ∗ (0 ∗ t2))).  Therefore, 

𝒞Ξ
t (t1 ∗ t2) = 𝒞Ξ

t (t1 ∗ (0 ∗ (0 ∗ t2))). 

Theorem 3.12 If t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X is t-NCSU, then ∀ t1, t2 ∈ , κ̂Ξ
t (t1 ∗

(0 ∗ t2)) ≥ rmin{κ̂Ξ
t (t1), κ̂t

Ξ(t2)} and σΞ
t (t1 ∗ (0 ∗ t2)) ≤ max{σΞ

t (t1), σΞ
t (t2)}.  

Proof. Let t1, t2 ∈ X. Then we have κ̂Ξ
t (t1 ∗ (0 ∗ t2)) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (0 ∗ t2)} ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and σΞ
t (t1 ∗ (0 ∗ t2)) ≤ max{σΞ

t (t1), σΞ
t (0 ∗ t2)} ≤ max {σΞ

t (t1), σΞ
t (t2)} by definition and proposition.  

Theorem 3.13 If a t-neutrosophic cubic set 𝒞t = (κ̂t
Ξ, σΞ

t ) of X satisfies the following conditions, 

then 𝒞 𝓉 refers to a t-NCSU of X:   

    1. κ̂Ξ
t (0 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≤ σΞ

t (t1) ∀ t1 ∈ X  

    2.  κ̂Ξ
t (t1 ∗ (0 ∗ t2))  ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)}  and σΞ

t (t1 ∗ (0 ∗ t2))                                 ≤

max{σΞ
t (t1), σΞ

t (t2)}, ∀ t1, t2 ∈ X and t ∈ [0,1].  

Proof. Assume that the t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X satisfies the above conditions (1 

and 2). Then by lemma, we have κ̂Ξ
t (t1 ∗ t2) = κ̂Ξ

t (t1 ∗ (0 ∗ (0 ∗ t2))) ≥ rmin{κ̂Ξ
t (t1), κ̂Ξ

t (0 ∗ t2)} ≥

rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}  and σΞ
t (t1 ∗ t2) = σΞ

t (t1 ∗ (0 ∗ (0 ∗ t2)))  ≤ max{σΞ
t (t1), σΞ

t (0 ∗ t2)}  ≤

max{σΞ
t (t1), σΞ

t (t2)} ∀ t1, t2 ∈ X. Hence 𝒞t is t-NCSU of X.  

Theorem 3.14 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X is t-NCSU of X ⇐ κ̂Ξ
t−, κ̂Ξ

t+ and σΞ
t  are 

fuzzy subalgebra of X.   

Proof. Let κ̂Ξ
t−, κ̂Ξ

t+  and σΞ
t  are fuzzy subalgebra of X and t1, t2 ∈ X and t ∈ [0,1]. Then κ̂Ξ

t−(t1 ∗

t2) ≥ min{κ̂Ξ
t−(t1), κ̂Ξ

t−(t2)}, κ̂Ξ
t+(t1 ∗ t2) ≥ min{κ̂Ξ

t+(t1), κ̂Ξ
t+(t2)}  and σΞ

t (t1 ∗ t2) ≤

max{σΞ
t (t1), σΞ

t (t2)}. Now, κ̂Ξ
t (t1 ∗ t2) = [κ̂Ξ

t−(t1 ∗ t2), κ̂Ξ
t+(t1 ∗ t2)]  ≥

[min{κ̂Ξ
t−(t1), κ̂Ξ

t−(t2)}, min{κ̂Ξ
t+(t1), κ̂Ξ

t+(t2)}] ≥ rmin{[ κ̂Ξ
t−(t1), κ̂t+

Ξ(t2)], [ κ̂Ξ
t−(t1), κ̂Ξ

t+ 

(t2)]} = rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}. Therefore, 𝒞t is t-NCSU of X. Conversely, assume that 𝒞t is a t-NCSU 

of X . For any t1, t2 ∈ X , [ κ̂Ξ
t−(t1 ∗ t2), κ̂Ξ

t+(t1 ∗ t2)] = κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} =

rmin{[ κ̂Ξ
t−(t1), κ̂t+

Ξ(t1)], [ κ̂Ξ
t−(t2), κ̂Ξ

t+(t2)]} =[min{ κ̂Ξ
t−(t1), κ̂Ξ

t− 

(t2)}, min{κ̂Ξ
t+(t1), κ̂Ξ

t+(t2)}].  Thus, κ̂Ξ
t−(t1 ∗ t2) ≥ min{ κ̂Ξ

t−(t1), κ̂Ξ
t−(t2)} , κ̂Ξ

t+(t1 ∗ t2) ≥ 

min{κ̂Ξ
t+(t1), κ̂Ξ

t+(t2)}  and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)} . Hence κ̂Ξ

t+, κ̂Ξ
t−  and σΞ

t  are fuzzy 

subalgebra of X.  
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Theorem 3.15 Let 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-NCSU of X and n ∈ ℤ+(the set of positive integer). Then   

    1.  κ̂Ξ
t (Лnt1 ∗ t1) ≥ κ̂Ξ

t (t1) for n ∈ 𝕆,  

    2.  σΞ
t (Лnt1 ∗ t1) ≤ σΞ

t (t1) for n ∈ 𝕆,  

    3.  κ̂Ξ
t (Лnt1 ∗ t1) = κ̂Ξ

t (t1) for n ∈ 𝔼,  

    4.  σΞ
t (Лnt1 ∗ t1) = σΞ

t (t1) for n ∈ 𝔼.  

Proof. Let t1 ∈ X and n is odd. Then n = 2q − 1 for some positive integer q. We prove the theorem 

by induction. Now κ̂Ξ
t (t1 ∗ t1) = κ̂Ξ

t (0) ≥ κ̂Ξ
t (t1)  and σΞ

t (t1 ∗ t1) = σΞ
t (0) ≤ σΞ

t (t1) . Suppose that 

κ̂Ξ
t (Л2q−1t1 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (Л2q−1t1 ∗ t1) ≤ σΞ

t (t1). Then by assumption, κ̂Ξ
t (Л2(q+1)−1t1 ∗ t1) = 

κ̂Ξ
t (Л2q+1t1 ∗ t1)  = κ̂Ξ

t (Л2q−1t1 ∗ (t1 ∗ (t1 ∗ t1)))  = κ̂Ξ
t (Л2q−1t1 ∗ t1) ≥ κ̂t

Ξ(t1)  and σΞ
t (Л2(q+1)−1t1 ∗ t1) 

= σΞ
t (Л2q+1t1 ∗ t1) = σΞ

t (Л2q−1t1 ∗ (t1 ∗ (t1 ∗ t1))) = σΞ
t (Л2q−1t1 ∗ t1) ≤ σΞ

t (t1), which prove (1) and 

(2), similarly we can prove the remaining cases (3) and (4).  

Theorem 3.16 The sets denoted by Iκ̂Ξ
t  and IσΞ

t  are also subalgebras of X , which are defined 

as: Iκ̂Ξ
t ={t1 ∈ X|κ̂Ξ

t (t1) = κ̂Ξ
t (0)} , IσΞ

t ={t1 ∈ X|σΞ
t (t1) = σΞ

t (0)}.  Let 𝒞t = (κ̂Ξ
t , σΞ

t )  be a t-NCSU of X . 

Then the sets Iκ̂Ξ
t  and IσΞ

t  are subalgebras of X.   

Proof. Let t1, t2  ∈  Iκ̂Ξ
t . Then κ̂Ξ

t (t1)  = κ̂Ξ
t (0)  = κ̂Ξ

t (t2)  and κ̂Ξ
t (t1 ∗ t2)  ≥  rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)}  =

κ̂t
Ξ(0). By using Proposition 3.3, we know that κ̂Ξ

t (t1 ∗ t2) = κ̂t
Ξ(0) or equivalently t1 ∗ t2 ∈ Iκ̂t

Ξ
. 

Again let t1, t2 ∈ Iκ̂Ξ
t . Then σΞ

t (t1) = σΞ
t (0) = σΞ

t (t2) and σΞ
t (t1 ∗ t2) ≤ max {σΞ

t (t1), σΞ
t (t2)} =σΞ

t (0). 

Again by using Proposition 3.3, we know that σΞ
t (t1 ∗ t2) = σΞ

t (0) or equivalently t1 ∗ t2  ∈ Iκ̂Ξ
t . 

Hence the sets Iκ̂Ξ
t  and IσΞ

t  are subalgebras of X.  

Theorem 3.17  Let A be a nonempty subset of X and 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-neutrosophic cubic set of 

X defined by   

 κ̂Ξ
t (t1) = (

[μΞ1
, μΞ2

], if t1 ∈ A

 [νΞ1
, νΞ2

], otherwise,
σΞ

t (t1) = (
ϕΞ, if t1 ∈ A
δΞ, otherwise

 

 , ∀  [μΞ1
, μΞ2

] ,[νΞ1
, νΞ2

]  ∈  D[0,1]  and ϕΞ , δΞ  ∈  [0,1]  with [μΞ1
, μΞ2

]  ≥ [νΞ1
, νΞ2

]  and ϕΞ  ≤  δΞ . 

Then 𝒞t is a t-NCSU of X ⇔ A is a subalgebra of X. Moreover, Iκ̂Ξ
t  =A = IσΞ

t    

Proof. Let 𝒞t  be a t-NCSU of X  and t1, t2  ∈  X  such that t1, t2  ∈  A . Then κ̂Ξ
t (t1 ∗ t2) ≥ 

rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)} = rmin{[μΞ1
, μΞ2

], [μΞ1
, μΞ2

]} = [μΞ1
, μΞ2

] and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)} =

max{ϕΞ, ϕΞ} = ϕΞ. Therefore t1 ∗ t2 ∈ A. Hence A is a subalgebra of X. 

Conversely, suppose that A is a subalgebra of X and t1, t2 ∈ X. Consider two cases. 

Case 1: If t1, t2 ∈ A then t1 ∗ t2 ∈ A, thus κ̂Ξ
t (t1 ∗ t2) = [μΞ1

, μΞ2
] = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and σΞ
t (t1 ∗ t2) = ϕΞ = max{σΞ

t (t1), σΞ
t (t2)}. 

Case 2: If t1 ∉ A or t2 ∉ A, then κ̂Ξ
t (t1 ∗ t2) ≥ [νΞ1

, νΞ2
] = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} and σΞ

t (t1 ∗ t2) ≤ δΞ 

= max{σΞ
t (t1), σΞ

t (t2)}. Hence 𝒞t is a t-NCSU of X. 

Now, Iκ̂Ξ
t ={t1 ∈ X, κ̂Ξ

t (t1) = κ̂Ξ
t (0)}={t1 ∈ X, κ̂Ξ

t (t1) = [αΞ1
, αΞ2

]} = Aand IσΞ
t ={t1 ∈ X, σΞ

t (t1) = σΞ
t (0)} = 

{t1 ∈ X, σΞ
t (t1) = γΞ} = A.  

Definition 3.18 Let 𝒞t = (κ̂t
Ξ, σΞ

t )  be a t-neutrosophic cubic set of X . For 

[sE1
, sE2

], [sI1
, sI2

], [sN1
, sN2

] ∈ D[0,1] and tE1
, tI1

, tN1
∈ [0,1] , the set  U(κ̂t

Ξ|([sE1
 

, sE2
], [sI1

, sI2
], [sN1

, sN2
])) = {t1 ∈ X|κ̂E

t (t1) ≥ [sE1
, sE2

], κ̂I
t(t1) ≥ [sI1

, sI2
], κ̂N

t (t1) ≥ [sN1
, sN2

]}  is called 

upper ([sE1
, sE2

], [sI1
, sI2

], [sN1
, sN2

]) -level of 𝒞t  and L(σΞ
t |(tE1

, tI1
, tN1

))  = {t1 ∈ X|σt
E(t1) ≤

tE1
, σt

I(t1) ≤ tI1
, σt

N(t1) ≤ tN1
} is called lower (tE1

, tI1
, tN1

)-level of 𝒞t. 
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For comfort, we introduce the new notions for upper level and lower level of 𝒞t  as, 

U(κ̂Ξ
t |[sΞ1

, sΞ2
]={t1 ∈ X|κ̂Ξ

t (t1) ≥ [sΞ1
, sΞ2

]} is called upper ([sΞ1
, sΞ2

])-level of 𝒞t and L(σΞ
t |tΞ1

)={t1 ∈

X|σΞ
t (t1) ≤ tΞ1

} is called lower tΞ1
-level of 𝒞t.    

Theorem 3.19 If 𝒞t = (κ̂Ξ
t , σΞ

t ) is t-NCSU of X, then the upper [sΞ1
, sΞ2

]-level and lower tΞ1
-level of 

𝒞t are subalgebras of X.   

Proof. Let t1, t2  ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]). Then κ̂Ξ

t (t1) ≥ [sΞ1
, sΞ2

] and κ̂Ξ
t (t2) ≥ [sΞ1

, sΞ2
]. It follows that 

κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} ≥ [sΞ1

, sΞ2
] ⇒ t1 ∗ t2 ∈  U(κ̂Ξ

t |[sΞ1
, sΞ2

]) . Hence, U(κ̂Ξ
t |[sΞ1

, sΞ2
]  is a 

subalgebra of X. Let t1, t2 ∈ L(σΞ
t |tΞ1

). Then σΞ
t (t1) ≤ tΞ1

 and σΞ
t (t2) ≤ tΞ1

. It follows that σΞ
t (t1 ∗

t2) ≤ max{σΞ
t (t1), σΞ

t (t2)} ≤ tΞ1
 ⇒ t1 ∗ t2 ∈ L(σΞ

t |tΞ1
). Hence L(σΞ

t |tΞ1
) is a subalgebra of X.  

Corollary 3.20 Let 𝒞t = (κ̂Ξ
t , σΞ

t ) is t-NCSU of X. Then κ̂Ξ
t ([sΞ1

, sΞ2
]; tΞ1

)= U(κ̂Ξ
t |[sΞ1

, sΞ2
]) ⋂ L(σΞ

t |tΞ1
) 

= {t1 ∈ X|κ̂Ξ
t (t1) ≥ [sΞ1

, sΞ2
], σΞ

t (t1) ≤ tΞ1
} is a subalgebra of X.  

Proof. We can prove it by using above proved Theorem. The converse of above corollary is not valid.   

Theorem 3.21 Every subalgebra of X can be realized as both the upper [sΞ1
, sΞ2

]-level and lower 

tΞ1
-level of some t-NCSU of X.   

Proof. Let 𝒜t be a t-NCSU of X, and t-neutrosophic cubic set 𝒞t on X is defined by  

 κ̂Ξ
t = (

[μΞ1
, μΞ2

]  if t1 ∈ 𝒜t

[0,0]  otherwise .
, σΞ

t = (
νΞ1

 if   t1 ∈ 𝒜t

0  otherwise .
 

 ∀ [μΞ1
, μΞ2

] ∈ D[0,1] and νΞ1
∈ [0,1]. We investigate the following cases. 

 𝐂𝐚𝐬𝐞 𝟏  If ∀  t1, t2 ∈ 𝒜t  then κ̂Ξ
t (t1) = [μΞ1

, μΞ2
] , σΞ

t (t1) = νΞ1
 and κ̂Ξ

t (t2) = [μΞ1
, μΞ2

] , σΞ
t (t2) =

νΞ1
.Thus κ̂Ξ

t (t1 ∗ t2) = [μΞ1
, μΞ2

] = rmin{[μΞ1
, μΞ2

], [μΞ1
, μΞ2

]} = rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)} and σΞ
t (t1 ∗ t2) =

νΞ1
= max{νΞ1

, νΞ1
} = max{σΞ

t (t1), σΞ
t  (t2)}. 

𝐂𝐚𝐬𝐞 𝟐 If t1 ∈ 𝒜t  and t2 ∉ 𝒜t, then κ̂Ξ
t (t1) = [μΞ1

, μΞ2
], σΞ

t (t1) = νΞ1
 and κ̂Ξ

t (t2) = [0,0], σΞ
t (t2) =

1. Thus κ̂Ξ
t (t1 ∗ t2) ≥ [0,0] = rmin{[μΞ1

, μΞ2
], [0,0]} = rmin {κ̂Ξ

t (t1)  , κ̂Ξ
t (t2)}  and σΞ

t (t1 ∗ t2) ≤ 1 =

max{νΞ1
, 1} = max{σΞ

t (t1), σΞ
t (t2)}. 

𝐂𝐚𝐬𝐞 𝟑  If t1 ∉ 𝒜t  and t2 ∈ 𝒜t,  then κ̂Ξ
t (t1) = [0,0] , σΞ

t (t1) = 1  and κ̂Ξ
t (t2) = [μΞ1

, μΞ2
] , σΞ

t (t2) =

νΞ1
. Thus κ̂Ξ

t (t1 ∗ t2) ≥ [0,0] = rmin{[0,0], [μΞ1
, νΞ2

]}  = rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}  and σΞ
t (t1 ∗ t2) ≤ 1 =

max{1, νΞ1
} = max{σΞ

t (t1), σΞ
t (t2)}. 

𝐂𝐚𝐬𝐞 𝟒  If t1 ∉ 𝒜t  and t2 ∉ 𝒜t,  then κ̂Ξ
t (t1) = [0,0] , σΞ

t (t1) = 1  and κ̂Ξ
t (t2) = [0,0] , σΞ

t (t2) = 1 . 

Thus κ̂Ξ
t (t1 ∗ t2) ≥ [0,0] = rmin{[0,0], [0,0]} = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} and σΞ

t (t1 ∗ t2) ≤ 1 = max{1,1} =

max{σΞ
t (t1), σΞ

t (t2)}. Therefore, 𝒞t is a t-NCSU of X.  

Theorem 3.22  Let 𝒜t be a subset of X and 𝒞t be a t-neutrosophic cubic set on X which is given in 

the proof of above theorem. If 𝒞t is realized as lower level subalgebra and upper level subalgebra of 

some t-NCSU of X, then ℬt is a t-neutrosophic cubic one of X.   

Proof. Let 𝒞t  be a t-NCSU of X, and t1, t2 ∈ 𝒞t. Then κ̂Ξ
t (t1) = κ̂Ξ

t (t2) = [αΞ1
, αΞ2

]  and σΞ
t (t1) =

σΞ
t (t2) = βΞ1

. Thus κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} = rmin{[αΞ1

, αΞ2
], 

[αΞ1
, αΞ2

]} = [αΞ1
, αΞ2

] and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)} = max{βΞ1

, βΞ1
} = βΞ1

 ⇒  t1 ∗ t2 ∈ 𝒜t. 

Hence proof is completed.  

  

 

4  Image and Pre-image of t-Neutrosophic Cubic Subalgebra 
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In this section, homomorphism of t-neutrosophic cubic subalgebra is defined and some results are 

studied. 

Suppose Γ be a mapping from X into Y and 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-neutrosophic cubic set in X. Then 

the inverse-image of 𝒞t is defined as Γ−1(𝒞t) = {〈t1, Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )〉|t1 ∈ X} and Γ−1(κ̂Ξ
t )(t1) =

κ̂Ξ
t (Γ(t1))and Γ−1(σΞ

t )(t1) = σΞ
t (Γ(t1)). It can be shown that Γ−1(𝒞t) is a t-neutrosophic cubic set.   

Theorem 4.1 Suppose that Γ|X → Y be a homomorphism of BF-algebra. If 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-NCSU 

of Y, then the pre-image Γ−1(𝒞t)={〈t1, Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )〉|t1 ∈ X} of 𝒞t under Γ is a t-NCSU of X.  

Proof. Assume that 𝒞t = (κ̂Ξ
t , σΞ

t )  is a t-NCSU of Y  and t1, t2 ∈ X . Then Γ−1(κ̂Ξ
t )(t1 ∗ t2) =

κ̂Ξ
t (Γ(t1 ∗ t2)) = κ̂Ξ

t (Γ(t1) ∗ Γ(t2)) ≥ rmin{κ̂Ξ
t (Γ(t1)), κ̂Ξ

t (Γ(t2))} = rmin{Γ−1(κ̂Ξ
t )(t1), Γ−1(κ̂Ξ

t )(t2)} and 

Γ−1(σΞ
t )(t1 ∗ t2) = σΞ

t (Γ(t1 ∗ t2)) = σΞ
t (Γ(t1) ∗ Γ(t2)) ≤ max{σΞ

t (Γ(t1)), σΞ
t (Γ(t2))} =

max{Γ−1(σΞ
t )(t1), Γ−1(σΞ

t )(t2)}. ∴ Γ−1(𝒞t) = {〈t1, Γ−1(κ̂t
Ξ), Γ−1(σΞ

t )〉|t1 ∈ X} is t-NCSU of X.  

Theorem 4.2 Consider Γ|X → Y be a homomorphism of BF-algebra and 𝒞j
t = ((κ̂j

t)Ξ, (σj
t)Ξ) be a 

t-NCSU of Y, where j ∈ k. If inf {max {(σj
t)Ξ(t2), (σj

t)Ξ(t2)}} = max {inf (σj
t)Ξ(t2)  , inf (σj

t)Ξ(t2)} , ∀ 

t2 ∈ Y. Then Γ−1(⋂R
j∈k

𝒞j
t) is t-NCSU of X.  

Proof. Let 𝒞j
t = ((κj

t)Ξ, (σj
t)Ξ) be a t-NCSU of Y where j ∈ ksatisfying inf{max{(σj

t)Ξ(t2), (σj
t)Ξ(t2)}} 

= max{inf(σj
t)Ξ(t2), inf(σj

t)Ξ(t2)}, ∀ t2 ∈ Y. Then by Theorem 3.7 we know, ⋂R
j∈k

𝒞j
t is a t-NCSU of Y. 

Hence Γ−1(⋂R
j∈k

𝒞j
t) is t-NCSU of X.  

Theorem 4.3 Let Γ|X → Y be a homomorphism of BF-algebra. Assume that 𝒞j
t = ((κ̂j

t)Ξ, (σj
t)Ξ) be a 

collection of sets of t-NCSU of Y  where j ∈ k. If rsup{rmin{(κ̂j
t)Ξ(t2), (κ̂j

t)Ξ(t2)}}  = 

rmin{rsup(κ̂j
t)Ξ(t2), rsup(κ̂j

t)Ξ(t2)}, ∀ (t2), (t2)′ ∈ Y. Then Γ−1(⋃R
j∈k

𝒞j
t) is t-NCSU of X.  

Proof. Let 𝒞j
t = ((κ̂j

t)Ξ, (σj
t)Ξ)  be a t-NCSU of Y  where j ∈ k  satisfying 

rsup{rmin{(κ̂j
t)Ξ(t2), (κ̂j

t)Ξ(t2′)} = rmin{rsup(κ̂j
t)Ξ(t2), rsup(κ̂j

t)Ξ(t2′)} ∀ t2, t2′ ∈ Y. Then by Theorem 

3.8 we know, ⋃R
j∈k

𝒞j
t is a t-NCSU of Y. Hence Γ−1(⋃R

j∈k
𝒞j

t) is t-NCSU of X.  

Definition 4.4 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t )  in BF -algebra X  is said to have 

rsup-property and inf-property for any subset P of X, ∃ p0 ∈ T such that κ̂Ξ
t (p0) = rsup

p0∈S
κ̂Ξ

t (p0) and 

σΞ
t (s0) = inf

t0∈T
σΞ

t (t0) respectively.  

Definition 4.5  Let Γ be mapping from X to Y. If 𝒞t = (κ̂Ξ
t , σΞ

t ) is neutrosphic cubic set of X, then 

the image of 𝒞t under Γ is denoted by Γ(𝒞t) and is defined as Γ(𝒞t)={〈t1, Γrsup(κ̂Ξ
t ), Γinf(κ̂Ξ

t )〉|t1 ∈

X}, where  

 Γrsup(κ̂Ξ
t )(t2) = (  

rsup
t1∈Γ−1(t2)

(κ̂Ξ
t )(t1),  if   Γ−1(t2) ≠ ϕ

      [0,0],  otherwise ,
 

 and   

 Γinf(σΞ
t )(t2) = (

inf
t1∈Γ−1(t2)

σΞ
t (t1),  if   Γ−1(t2) ≠ ϕ

             1,  otherwise .
 

 Theorem 4.6 Suppose Γ|X → Y be a homomorphism from a BF-algebra X onto a BF-algebra Y. If 

𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-NCSU of X, then the image Γ(𝒞t) = {〈t1, Γrsup(κ̂Ξ
t ), Γinf(σΞ

t )〉|t1 ∈ X} of 𝒜 under 

Γ is t-NCSU of Y.  
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Proof. Let 𝒞t = (κ̂Ξ
t , σΞ

t ) be a t-NCSU of X and t2, t2
′ ∈ Y. We know that {t1 ∗ t1

′|t1 ∈ Γ−1(t2)     and 

    t1
′ ∈ Γ−1t2

′} ⊆ {t1 ∈ X|t1 ∈ Γ−1(t2 ∗ t2
′)}. Now Γrsup(κ̂Ξ

t )(t2 ∗ t2
′)=rsup{κ̂Ξ

t (t1)|t1 ∈ Γ−1(t2 ∗ t2
′)} ≥ 

rsup{κ̂Ξ
t (t1 ∗ t1

′)|t1 ∈ Γ−1(t2)     and     t1
′ ∈ Γ−1(t2

′)}  ≥  rsup{rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t1
′)}|t1 ∈ Γ−1(t2)     

and     t1
′ ∈ Γ−1(t2

′)} =  rmin{rsup{κ̂Ξ
t (t1)|t1 ∈ Γ−1(t2)}, rsup{κ̂Ξ

t (t1
′)|t1

′ ∈ Γ−1(t2
′)}} = 

rmin{Γrsup(κ̂Ξ
t )(t2), 

Γrsup(κ̂Ξ
t )(t2

′)}  and Γinf(σΞ
t )(t2 ∗ t2

′) = inf {σΞ
t (t1)|t1 ∈ Γ−1(t2 ∗ t2

′)} ≤ inf {σΞ
t (t1 ∗ t1

′)|t1 ∈

Γ−1(t2)    and  t1
′ ∈ Γ−1(t2

′)} ≤ inf {max {σΞ
t (t1), σΞ

t (t1
′)}|t1  ∈ Γ−1(t2) and   t1

′ ∈ Γ−1(t2
′)} =

max {inf {σΞ
t (t1)|t1 ∈ Γ−1(t2)}, inf {σΞ

t (t1
′)|t1

′ ∈ Γ−1(t2
′)}} = max {Γinf(σΞ

t )(t2), Γinf(σΞ
t )(t2

′)}.  Hence 

Γ(𝒞t)={〈t1, Γrsup(κ̂t
Ξ), Γinf(σt

Ξ) 〉|t1 ∈ X} 

is a t-NCSU of Y.  

Theorem 4.7 Assume that Γ|X → Y is a homomorphism of BF-algebra and 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ} is a 

t-NCSU of X, where i ∈ k. If inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t1)}} = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t1)}, ∀ t1 ∈ X. 

Then Γ(⋂P
i∈k

𝒞i
t) is a t-NCSU of Y.   

Proof. Let 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ}  be a collection of sets of t-NCSU of X,  where i ∈ k  satisfies 

inf{max{(σi
t)Ξ(t1), (σi

t)Ξ(t1)}}  = max{inf(σi
t)Ξ(t1), inf(σi

t)Ξ(t1)}  ∀  t1 ∈ X . Then by above stated 

theorem, ⋂P
i∈k

𝒞i
t is a t-NCSU of X. Hence Γ(⋂P

i∈k
𝒞j

t) is t-NCSU of Y.  

Theorem 4.8 Suppose Γ|X → Y  be a homomorphism of BF-algebra and 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ}  be a 

t-NCSU of X  where i ∈ k.If rsup{rmin{(κi
t)Ξ(t1), (κ̂i

t)Ξ(t1)}}  = rmin{rsup (κ̂i
t)Ξ(t1), rsup(κ̂i

t)Ξ(t1
′)}, 

∀  t1, t1
′ ∈ Y. Then Γ(⋃P

i∈k
𝒞i

t) is also a t-NCSU of Y.  

Proof. Let 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ}  be a collection of sets of t-NCSU of X  where i ∈ k  satisfies 

rsup{rmin{(κ̂i
t)Ξ(t1), (κ̂i

t)Ξ(t1
′)}} = rmin{rsup(κ̂i

t)Ξ(t1), rsup(κ̂i
t)Ξ(t1

′)},  ∀ t1, t1
′ ∈ X.  Then by above 

stated theorem we know that ⋃P
i∈k

𝒞i
t is a t-NCSU of X. Hence Γ(⋃P

i∈k
𝒞i

t) is t-NCSU of Y.  

Theorem 4.9 For a homomorphism Γ|X → Y of BF-algebra, the following results hold:   

    1.  If ∀    i ∈ k, 𝒞i
t is t-NCSU of X, then Γ(⋂R

i∈k
𝒞i

t) is t-NCSU of Y,  

    2.  If ∀ i ∈ k, 𝒟i
t is t-NCSU of Y, then Γ−1(⋂R

i∈k
𝒟i

t) is t-NCSU of X.    

Proof. Straightforward.  

Theorem 4.10 Let Γ be an isomorphism from a BF-algebra X onto a BF-algebra Y. If 𝒞t is a t-NCSU 
of X. Then Γ−1(Γ(𝒞t)) = 𝒞t.   

Proof. For any t1 ∈ X , let Γ(t1) = t2 . Since Γ  is an isomorphism, Γ−1(t2) = {t1} . Thus 

Γ(𝒞t)(Γ(t1)) = Γ(𝒞t)(t2) = ⋃
t1∈Γ−1(t2)

𝒞t(t1) = 𝒞t(t1).For any t2 ∈ Y, Γ is an isomorphism, Γ−1(t2) =

{t1} so that Γ(t1) = t2. Thus Γ−1(𝒞t)(t1) = 𝒞t(Γ(t1)) = 𝒞t(t2). Hence, Γ−1(Γ(𝒞t)) = 𝒞t.  

Corollary 4.11 Consider Γ is an Isomorphism from a BF-algebra X onto a BF-algebra Y. If 𝒞t is a 

t-NCSU of Y. Then Γ(Γ−1(𝒞t)) = 𝒞t.   

Proof. Straightforward.  

Corollary 4.12  Let Γ|X → X be an automorphism. If 𝒞t  is a t-NCSU of X. Then Γ(𝒞t) = 𝒞t  ⇐

Γ−1(𝒞t) = 𝒞t.   
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5 t-Neutrosophic Cubic Closed Ideal of BF-algebra 

In this section, t-neutrosophic cubic ideal and t-neutrosophic cubic closed ideal of BF-algebra are 

defined and investigated through related results. 

Definition 5.1 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) of X is called a t-NCID of X if it satisfies 

following axoims: 

N3. κ̂t
Ξ(0) ≥ κ̂Ξ

t (t1) and σΞ
t (0) ≤ σΞ

t (t1), 

N4. κ̂Ξ
t (t1) ≥ rmin{κ̂Ξ

t (t1 ∗ t2), κ̂Ξ
t (t2)}, 

N5. σΞ
t (t1) ≤ max{σΞ

t (t1 ∗ t2), σΞ
t (t2)}, ∀ t1, t2 ∈ X.    

Example 5.2 Consider a BF-algebra X = {0, t1, t2, t3} and binary operation * is defined on X as 

  ⋇   0              𝑡1   𝑡2   𝑡3  

  0         𝑡1   𝑡2   𝑡3  

𝑡1   𝑡1       0  𝑡3   𝑡2  

𝑡2   𝑡2  𝑡3  0   𝑡1  

𝑡3   𝑡3  𝑡2  𝑡1   0  

 

Let 𝒞t = {κ̂t
Ξ, σΞ

t } be a t-neutrosophic cubic set in X is defined as,   

  0   𝑡1   𝑡2   𝑡3  

𝜅̂𝑡
𝐸  [1,1]    [0.8,0.7]     [1,1]    [0.4,0.6] 

𝜅̂𝑡
𝐼     [0.8,0.8]    [0.5,0.7]    [0.8,0.8]    [0.6,0.4] 

𝜅̂𝑡
𝑁     [0.7,0.8]    [0.4,0.5]    [0.7,0.8]    [0.8,0.4] 

and 

   0    𝑡1 𝑡2    𝑡3 

𝜎𝑡
𝐸   0  0.7 0 0.6 

𝜎𝑡
𝐼   0.1  0.5 0.1 0.6 

𝜎𝑡
𝑁   0.2  0.3 0.2 0.4 

Then it can be easy verify that 𝒞t satisfies the conditions N3, N4 and N5. Hence 𝒞t is t-NCID of X.    

Definition 5.3 Let 𝒞t = {κ̂Ξ
t , σΞ

t } be a t-neutrosophic cubic set X then it is called t-neutrosophic cubic 

closed ideal of X if it satisfies N4, N5 and N6. κ̂Ξ
t (0 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≤ σΞ

t (t1), ∀ t1 ∈ X.    

Example 5.4 Let X = {0, t1, t2, t3, t4, t5} be a BF-algebra as in Example 3.2 and 𝒞t = {κ̂Ξ
t , σΞ

t } be a 

t-neutrosophic cubic set in X is defined as  

     0  𝑡1   𝑡2   𝑡3  𝑡4  𝑡5  

κ̂t
E    [0.4,0.7]   [0.3,0.6]    [0.3,0.6]    [0.2,0.4]    [0.2,0.4]    [0.2,0.4]  

κ̂t
I    [0.5,0.8]   [0.4,0.7]   [0.4,0.7]    [0.3,0.6]    [0.3,0.6]    [0.3,0.6]  

κ̂t
N    [0.6,0.9]   [0.5,0.8]   [0.5,0.8]    [0.3,0.4]    [0.3,0.4]    [0.3,0.4]  



Neutrosophic Sets and Systems, Vol. 31, 2020     141  

 

 

Mohsin khalid,Neha Andaleeb khalid and Said Broumi, t-Neutrosophic Cubic Set on BF-Algebra 

  

   0   𝑡1           𝑡2         𝑡3          𝑡4 𝑡5  

σt
E   0.3        0.6  0.6 0.8 0.8 0.8  

σt
I   0.4  0.5 0.5 0.7 0.7 0.7  

σt
N   0.5  0.6 0.6 0.9 0.9 0.9  

By calculations it is clear that 𝒞t is a t-neutrosophic cubic closed ideal of X.   

Proposition 5.5 Every t-neutrosophic cubic closed ideal is a t-NCID.  

Proof The converse of proposition 5.5 is not true in general as shown in the given example.  

Example 5.6 Let X = {0, t1, t2, t3, t4, t5} be a BF-algebra as in Example 3.2 and 𝒞t = {κ̂Ξ
t , σΞ

t } be a 

t-neutrosophic cubic set in X is defined as   

   0   𝑡1   𝑡2   𝑡3  𝑡4  𝑡5  

κ̂t
E    [0.5,0.7]    [0.4,0.6]    [0.4,0.6]    [0.3,0.4]    [0.3,0.4]    [0.3,0.4]  

κ̂t
I    [0.6,0.8]    [0.5,0.7]   [0.5,0.7]    [0.4,0.6]    [0.4,0.6]    [0.4,0.6]  

κ̂t
N    [0.7,0.9]    [0.6,0.8]   [0.6,0.8]    [0.5,0.4]    [0.5,0.4]    [0.5,0.4]  

 

   0   𝑡1   𝑡2   𝑡3  𝑡4  𝑡5  

σt
E   0.2   0.5  0.5   0.6  0.6  0.6  

σt
I   0.3  0.4 0.4  0.7  0.7  0.7  

σt
N   0.3  0.5  0.5   0.8   0.8 0.8  

 

By calculations verify that 𝒞t is a t-NCID of X. But it is not a t-neutrosophic cubic closed ideal of X 

since κ̂t
Ξ(0 ∗ t1) ≱ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≰ σΞ

t (t1), ∀  t1 ∈ X. 

Corollary 5.7 Every t-NCSU which satisfies N4 and N5 becomes a t-neutrosophic cubic closed ideal.  

Theorem 5.8  Every t-neutrosophic cubic closed ideal of a BF-algebra X is also a t-NCSU of X.   

Proof. Suppose 𝒞t = {κ̂Ξ
t , σΞ

t } be a t-neutrosophic cubic closed ideal of X, then for any t1 ∈ X we 

have κ̂Ξ
t (0 ∗ t1) ≥ κ̂Ξ

t (t1) and σΞ
t (0 ∗ t1) ≤ σΞ

t (t1). Now by N4, N6, Proposition 3.3, we know that 

κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t ((t1 ∗ t2) ∗ (0 ∗ t2)), κ̂Ξ
t (0 ∗ t2)}  = rmin{κ̂Ξ

t (t1), κ̂Ξ
t (0 ∗ t2)}  ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and σΞ
t (t1 ∗ t2) ≤ max{σΞ

t ((t1 ∗ t2) ∗ (0 ∗ t2)), σΞ
t (0 ∗ t2)}  = max{σΞ

t (t1), σΞ
t (0 ∗ t2)}  ≤

max{σΞ
t (t1), σΞ

t (t2)}. Hence 𝒞t is a t-neutrosophic cubic subalgeba of X.  

Theorem 5.9  The R-intersection of any set of t-NCIDs of X is a t-NCID of X.   

Proof. Let 𝒞i
t = {(κ̂i

t)Ξ, (σi
t)Ξ} where i ∈ k, be a collection of sets of t-NCID of X and t1, t2 ∈ X. Then  

 (⋂ (κ̂i
t)Ξ)(0) = rinf(κ̂i

t)Ξ(0) 

 ≥ rinf(κ̂i
t)Ξ(t1) 

 = (⋂ (κ̂i
t)Ξ)(t1) 

 ⇒ (⋂ (κ̂i
t)Ξ)(0) ≥ (⋂ (κ̂i

t)Ξ)(t1), 
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 (∨ (σi
t)Ξ)(0) = sup(σi

t)Ξ(0) 

 ≤ (σi
t)Ξ(t1) 

 = (∨ (σi
t)Ξ)(t1) 

 ⇒ (∨ (σi
t)Ξ)(0) ≤ (∨ (σi

t)Ξ)(t1), 

 (⋂ (κ̂i
t)Ξ)(t1) = rinf(κ̂i

t)Ξ(t1) 

 ≥ rinf{rmin{(κ̂i
t)Ξ(t1 ∗ t2), (κ̂i

t)Ξ(t2)}} 

 = rmin{rinf(κ̂i
t)Ξ(t1 ∗ t2), rinf(κ̂i

t)Ξ(t2)} 

 = rmin{(⋂ (κ̂i
t)Ξ)(t1 ∗ t2), (⋂ (κ̂i

t)Ξ)(t2)} 

 ⇒ (⋂ (κ̂i
t)Ξ)(t1) ≥ rmin{(⋂ (κ̂i

t)Ξ)(t1 ∗ t2), (⋂ (κ̂i
t)Ξ)(t2)} 

 and  

 (∨ (σi
t)Ξ)(t1) = sup(σi

t)Ξ(t1) 

 ≤ sup{max{(σi
t)Ξ(t1 ∗ t2), (σi

t)Ξ(t2)}} 

 = max{sup(σi
t)Ξ(t1 ∗ t2), sup(σi

t)Ξ(t2)} 

 = max{(∨ (σi
t)Ξ)(t1 ∗ t2), (∨ (σi

t)Ξ)(t2)} 

 ⇒ (∨ (σi
t)Ξ)(t1) ≤ max{(∨ (σi

t)Ξ)(t1 ∗ t2), (∨ (σi
t)Ξ)(t2)}, 

 which show that R-intersection is a t-NCID of X.  

Theorem 5.10 The R-intersection of any set of t-neutrosophic cubic closed ideals of X is also a 

t-neutrosophic cubic closed ideal of X.   

Proof. It is similar to the proof of Theorem 5.9.  

Theorem 5.11 For a t-neutrosophic cubic ideal 𝒞t = {κ̂Ξ
t , σΞ

t } of X, the following assertions are valid:   

1. if t1 ∗ t2 ≤ z, then κ̂Ξ
t (t1) ≥ rmin{κ̂Ξ

t (t2), κ̂Ξ
t (t3)} and σΞ

t (t1) ≤ max{σΞ
t (t2), σΞ

t (t3)},  

2. if t1 ≤ t2, then κ̂Ξ
t (t1) ≥ κ̂Ξ

t (t2) and σΞ
t (t1) ≤ σΞ

t (t2), ∀ t1, t2, t3 ∈ X.  

Proof. 1. Assume that t1, t2, t3 ∈ X such that t1 ∗ t2 ≤ t3. Then (t1 ∗ t2) ∗ t3 = 0 and thus κ̂Ξ
t (t1) ≥

rmin{κ̂Ξ
t (t1 ∗ t2), κ̂Ξ

t (t2)} ≥ rmin{rmin{κ̂Ξ
t ((t1 ∗ t2) ∗ t3), κ̂Ξ

t (t3)}, κ̂Ξ
t (t2)}  = 

rmin{rmin{κ̂Ξ
t (0), κ̂Ξ

t (t3)}, κ̂Ξ
t (t2)}  = rmin{κ̂Ξ

t (t2), κ̂Ξ
t (t3)}  and σΞ

t (t1)  ≤  max{σΞ
t (t1 ∗ t2), σΞ

t (t2)} ≤

max{max{σΞ
t ((t1 ∗ t2) ∗ t3), σΞ

t (t3)} , σΞ
t (t2)} = max {max {σΞ

t (0), σΞ
t (t3)}, 

σΞ
t (t2)} = max{σΞ

t (b), σΞ
t (t3)}. 

2. Again, take t1, t2 ∈ X  such that t1 ≤ t2 . Then t1 ∗ t2 = 0  and thus κ̂Ξ
t (t1) ≥ rmin{κ̂Ξ

t (t1 ∗

t2), κ̂Ξ
t (t2)}  = rmin{κ̂Ξ

t (0), κ̂Ξ
t (t2)}  = κ̂Ξ

t (t2)  and σΞ
t (t1) ≤ rmin{σΞ

t (t1 ∗ t2), σΞ
t (t2)}  = 

rmin{σΞ
t (0), σΞ

t (t2)} = σΞ
t (t2).  

Theorem 5.12 Let 𝒞t = {κ̂Ξ
t , σΞ

t } is a neutrosophic cubic ideal of X. If t1 ∗ t2 ≤ t1, ∀ t1, t2 ∈ X. Then 

𝒞t is a t-NCSU of X.  

Proof. Assume that 𝒞t = {κ̂Ξ
t , σΞ

t } is a t-neutrosophic cubic ideal of X. Suppose that t1 ∗ t2 ≤ t1 ∀ 

t1, t2 ∈ X. Then  

 κ̂Ξ
t (t1 ∗ t2) ≥ κ̂Ξ

t (t1)    (∵ By    Theorem    5.11) 



Neutrosophic Sets and Systems, Vol. 31, 2020     143  

 

 

Mohsin khalid,Neha Andaleeb khalid and Said Broumi, t-Neutrosophic Cubic Set on BF-Algebra 

 ≥ rmin{κ̂Ξ
t (t1 ∗ t2), κ̂Ξ

t (t2)}    (∵ By    N4) 

 ≥ rmin{κ̂Ξ
t (t1), κ̂Ξ

t (t2)}    (∵ By    Theorem    5.11) 

 ⇒ κ̂Ξ
t (t1 ∗ t2) ≥ rmin{κ̂Ξ

t (t1), κ̂Ξ
t (t2)} 

and  

 σΞ
t (t1 ∗ t2) ≤ σΞ

t (t1)    (∵ By    Theorem    5.11) 

 ≤ max{σΞ
t (t1 ∗ t2), σΞ

t (t2)}    (∵ By    N5) 

 ≤ max{σΞ
t (t1), σΞ

t (t2)}    (∵ By    Theorem    5.11) 

 ⇒ σΞ
t (t1 ∗ t2) ≤ max{σΞ

t (t1), σΞ
t (t2)}. 

 Hence 𝒞t = {κ̂Ξ
t , σΞ

t } is a t-NCSU of X.  

Theorem 5.13 If 𝒞t = {κ̂Ξ
t , σΞ

t } is a t-neutrosophic cubic ideal of X, then (… ((t1 ∗ x1) ∗ x2) ∗ … ) ∗

xn = 0 for any t1, x1, x2, … , xn ∈ X ⇒ κ̂t
Ξ(t1) ≥ rmin{κ̂Ξ

t (x1), κ̂Ξ
t (x2), …, 

κ̂Ξ
t (xn)} and σΞ

t (t1) ≤ max{σΞ
t (x1), σΞ

t (x2), . . . , σΞ
t (xn)}.   

Proof. We can prove this theorem by using induction on n and Theorem 5.11.  

Theorem 5.14 A t-neutrosophic cubic set 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-neutrosophic cubic closed ideal of X ⇐ 

U(κ̂Ξ
t |[sΞ1

, sΞ2
]) and L(σΞ

t |tΞ1
) are closed ideals of X for every [sΞ1

, sΞ2
] ∈ D[0,1] and tΞ1

∈ [0,1].   

Proof. Assume that 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-neutrosophic cubic closed ideal of X. For [sΞ1
, sΞ2

] ∈ D[0,1], 

clearly, 0 ∗ t1 ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]),  where t1 ∈ X.  Let t1, t2 ∈ X  be such that t1 ∗ t2 ∈ U(κ̂Ξ

t |[sΞ1
, sΞ2

]) 

and t2 ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]).  Then κ̂Ξ

t (t1) ≥ rmin{κ̂Ξ
t (t1 ∗ t2), κ̂Ξ

t (t2)} ≥ [sΞ1
, sΞ2

] ⇒ t1 ∈

U(κ̂Ξ
t |[sΞ1

, sΞ2
].  Hence U(κ̂Ξ

t |[sΞ1
, sΞ2

]) is a closed ideal of X. 

For tΞ1
∈ [0,1].  Clearly, 0 ∗ t1 ∈ L(σΞ

t |tΞ1
).  Let t1, t2 ∈ X  be such that t1 ∗ t2 ∈ L(σΞ

t |tΞ1
)  and t2 ∈

L(σΞ
t |tΞ1

).  Then σΞ
t (t1) ≤ max{σΞ

t (t1 ∗ t2), σΞ
t (t2)} ≤ tΞ1

⇒ t1 ∈ L(σΞ
t |tΞ1

).  Hence L(σΞ
t |tΞ1

)  is a 

t-neutrosophic cubic closed ideal of X. 

Conversely, suppose that each nonempty level subset U(κ̂Ξ
t |[sΞ1

, sΞ2
]) and L(σΞ

t |tΞ1
)  are closed 

ideals of X. For any t1 ∈ X, let κ̂Ξ
t (t1) = [sΞ1

, sΞ2
] and σΞ

t (t1) = tΞ1
. Then t1 ∈ U(κ̂Ξ

t |[sΞ1
, sΞ2

]) and 

t1 ∈ L(σΞ
t |tΞ1

).  Since 0 ∗ t1 ∈ U(κ̂Ξ
t |[sΞ1

, sΞ2
]) ⋂ L(σΞ

t |tΞ1
),  it follows that κ̂Ξ

t (0 ∗ t1) ≥ [sΞ1
, sΞ2

] =

κ̂Ξ
t (t1)  and σΞ

t (0 ∗ t1) ≤ tΞ1
= σΞ

t (t1)  ∀  t1 ∈ X.  If there exists αΞ1
, βΞ1

∈ X  such that κ̂Ξ
t (αΞ1

) ≤

rmin{κ̂Ξ
t (αΞ1

∗ βΞ1
), βΞ1

}, then by taking [sΞ1

′ , sΞ2

′ ] =
1

2
[κ̂Ξ

t (αΞ1
∗ βΞ1

) + rmin{κ̂Ξ
t (αΞ1

), κ̂Ξ
t (βΞ1

)}].  

It follows that αΞ1
∗ βΞ1

∈ U(κ̂Ξ
t |[sΞ1

′ , sΞ2

′ ])  and βΞ1
∈ U(κ̂Ξ

t |[sΞ1

′ , sΞ2

′ ]), but αΞ1
∉ U(κ̂Ξ

t |[sΞ1

′ , sΞ2

′ ]), 

which is contradiction. Hence, U(κ̂Ξ
t |[sΞ1

′ , sΞ2

′ ]) is not closed ideal of X. 

Again, if there exists αΞ1
, βΞ1

∈ X such that σΞ
t (αΞ1

) ≥ max{σΞ
t (αΞ1

∗ βΞ1
), σΞ

t (βΞ1
)}, then by taking 

tΞ1

′ =
1

2
[σΞ

t (αΞ1
∗ βΞ1

) + max{σΞ
t (αΞ1

), σΞ
t (βΞ1

)}].  

It follows that αΞ1
∗ βΞ1

∈ L(σΞ
t |tΞ1

′ )  and βΞ1
∈ L(σΞ

t |tΞ1

′ ) , but αΞ1
∉ L(σΞ

t |tΞ1

′ ),  which is 

contradiction. So L(σΞ
t |tΞ1

′ ) is not closed ideal of X. Hence 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-neutrosophic cubic 

ideal of X because it satisfies N3 and N4. 

 
6 Neutrosophic Cubic Ideals under Homomorphism 

In this section, t-neutrosophic cubic ideals are investigated under homomorphism through some 

results. 
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Theorem 6.1 Suppose that Γ|X → Y is a homomorphism of BF-algebra. If 𝒞t = (κ̂Ξ
t , σΞ

t ) is a t-NCID 

of Y. Then pre-image Γ−1(𝒞t) = (Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )) of 𝒞t under Γ of X is a t-NCID of X.   

Proof. For all t1 ∈ X, Γ−1(κ̂Ξ
t )(t1) = κ̂Ξ

t (Γ(t1)) ≤ κ̂Ξ
t (0) = κ̂Ξ

t (Γ(0)) = Γ−1(κ̂Ξ
t )(0) and Γ−1(σΞ

t )(t1) =

σΞ
t (Γ(t1)) ≥ σΞ

t (0) = σΞ
t (Γ(0)) = Γ−1(σΞ

t )(0). Let t1, t2 ∈ X, Γ−1(κ̂Ξ
t )  (t1) = κ̂Ξ

t (Γ(t1)) ≥

rmin{κ̂Ξ
t (Γ(t1) ∗ Γ(t2)), κ̂Ξ

t (Γ(t2))} =  rmin{κ̂Ξ
t (Γ(t1 ∗ t2)), κ̂Ξ

t (Γ(t2))} = rmin{Γ−1(κ̂Ξ
t )(t1 ∗

t2), Γ−1(κ̂Ξ
t )(t2)}  and Γ−1(σΞ

t )(a) = σΞ
t (Γ(t1)) ≤ max{σΞ

t (Γ(t1) ∗ Γ(t2)), σΞ
t (Γ(t2))} = max{σΞ

t (Γ(t1 ∗

t2)), σΞ
t (Γ(t2))} = max{Γ−1(σΞ

t )(t1 ∗ t2), Γ−1(σΞ
t )(t2)}.  Hence Γ−1(𝒞t) = (Γ−1(κ̂Ξ

t ), Γ−1(σΞ
t ))  is a 

t-NCID of X.  

Corollary 6.2 A homomorphic pre-image of a t-neutrosophic cubic closed ideal is a t-NCID.   

Proof. Using Proposition 5.5 and Theorem 6.1, we can prove this corollary .  

Corollary 6.3 A homomorphic preimage of a t-neutrosophic cubic closed ideal is also a t-NCSU.   

Proof. Using Theorem 5.8 and Theorem 6.1, we can prove this corollary.  

Corollary 6.4  Let Γ|X → Y be a homomorphism of BF-algebra. If 𝒞i
t = ((κ̂i

t)Ξ, (σi
t)Ξ) is a t-NCID of 

Y where i ∈ k then the pre image Γ−1(⋂
i∈kR

(𝒞i
t)Ξ) = (Γ−1(⋂

i∈kR
(κ̂i

t)Ξ), 

Γ−1(⋂
i∈kR

(σi
t)Ξ)) is a t-NCID of X.   

Proof. Using Theorem 5.9 and Theorem 6.1, we can prove this corollary.  

Corollary 6.5  Let Γ|X → Y  be a homomorphism of BF -algebra. If 𝒞i
t = ((κ̂i

t)Ξ, (σi
t)Ξ)  is a 

t-neutrosophic cubic closed ideals of Y  where i ∈ k  then the pre-image Γ−1(⋂
i∈kR

(𝒞i
t)Ξ)  =

(Γ−1(⋂
i∈kR

(κ̂i
t)Ξ), Γ−1(⋂

i∈kR
(σi

t)Ξ)) is a t-neutrosophic cubic closed ideal of X.   

Proof. Straightforward, using Theorem 5.10 and Theorem 6.1.  

Theorem 6.6 Suppose that Γ|X → Y  is an epimorphism of BF -algebra. Then 𝒞t = (κ̂Ξ
t , σΞ

t )  is a 

t-NCID of Y, if Γ−1(𝒞t) = (Γ−1(κ̂Ξ
t ), Γ−1(σΞ

t )) of 𝒞t under Γ of X is a t-NCID of X.   

Proof. For any t2 ∈ Y, ∃  t1 ∈ X  such that t2 = Γ(t1) . Then κ̂Ξ
t (t2) = κ̂Ξ

t (Γ(t1))  = Γ−1(κ̂Ξ
t )(t1) ≤

Γ−1(κ̂Ξ
t )(0) = κ̂Ξ

t (Γ(0)) = κ̂t
Ξ(0) and σΞ

t (t2) = σΞ
t (Γ(t1)) = Γ−1(σΞ

t ) 

(t1) ≥ Γ−1(σΞ
t )(0) = σΞ

t (Γ(0)) = σΞ
t (0). 

Suppose (t2)1, (t2)2 ∈ Y. Then Γ((t1)1) = (t2)1  and Γ((t1)2) = (t2)2  for some (t1)1, (t1)2 ∈

 X.  Thus κ̂Ξ
t ((t2)1) = κ̂Ξ

t (Γ((t1)1)) = Γ−1(κ̂Ξ
t )((t1)1) ≥ rmin{Γ−1(κ̂Ξ

t ) 

((t1)1 ∗ (t1)2), Γ−1(κ̂Ξ
t )((t1)2)} = rmin{κ̂Ξ

t (Γ((t1)1 ∗ (t1)2)), κ̂Ξ
t (Γ((t1)2))} =  rmin{κ̂Ξ

t  

(Γ((t1)1) ∗ Γ((t1)2)), κ̂Ξ
t (Γ((t1)2))} = rmin{κ̂Ξ

t ((t2)1 ∗ (t2)2), κ̂Ξ
t ((t2)2)} and 

σΞ
t ((t2)1) = σΞ

t (Γ((t1)1)) = Γ−1(σΞ
t )((t1)1) ≤ max{Γ−1(σΞ

t )((t1)1 ∗ (t1)2), Γ−1(σΞ
t )((t1)2)}

= max{σΞ
t (Γ((t1)1 ∗ (t1)2)), σΞ

t (Γ((t1)2))} = max{σΞ
t (Γ((t1)1) ∗ Γ((t1)2)), σΞ

t (Γ((t1)2))}
= max{σΞ

t ((t2)1 ∗ (t2)2), σΞ
t ((t2)2)}. 

Hence 𝒞t = (κ̂t
Ξ, σΞ

t ) is a t-NCID of Y. 

 

7 Conclusion  

In this paper, the concept of t-neutrosophic cubic set was defined and investigated it on BF-algebra 

through several useful results. For future work this study will provide base for t-neutrosophic soft 

cubic set, t-neutrosophic soft cubic (M-subalgebra, normal ideals) and different algebras like 

G-algebra and B-algebra. 
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Abstract: A company may have backorders if they run out of the stock in their stores, in which case, 

it can just place a new order to restock its shelves. A customer who is willing to wait for some time 

until the company has restocked the products would have to place a backorder. A backorder only 

exists if customers are willing to wait for the order. In this paper, a neutrosophic inventory backorder 

problem using a triangular neutrosophic numbers is introduced. First, we fuzzify the carrying cost and 

shortage cost as triangular neutrosophic numbers and the signed distance method is used to defuzzify 

them. From these, we can obtain the neutrosophic optimal shortage quantity and the neutrosophic 

total cost. A numerical example is provided to illustrate the proposed model in neutrosophic 

environment.  

Keywords: Neutrosophic EOQ; Neutrosophic set; Signed distance method; Triangular neutrosophic 

numbers.   

 

 

1. Introduction  

Backorders represents any quantity of inventory an enterprise customer have ordered but have not yet 

received as it presently isn’t to be had in stock. An enterprise’s backorders are an essential factor in its 

inventory control evaluation. The quantity of items on backorder and how long it takes to fulfill these 

customer orders can offer perception into how properly the company manages its stock. 

Sen and Malakar [13] considered an EOQ model with shortage, considering the various parameters as 

triangular, trapezoidal fuzzy number and parabolic fuzzy number. Intuitionistic fuzzy set - a 

generalization of fuzzy set was introduced by Atanassov [1]. Yao and Lee [15] developed a fuzzy 

inventory with or without backorder for fuzzy order quantity with trapezoidal fuzzy number. 

Bulancak and Kirkavak [3] applied trapezoidal fuzzy number for EOQ with backorder.  

Fuzzy inventory model without shortages was proposed by Dutta and Kumar[4]. Carrying cost and 

set up cost are expressed as fuzzy trapezoidal numbers and for defuzzification signed distance method 

is used by them. Mahuya Deb and Prabjot Kaur[6] developed an intuitionistic fuzzy inventory 

backorder problem using triangular intuitionistic fuzzy numbers. D. Banerjee and S. Pramanik[2] 

developed a single-objective linear goal programming problem with neutrosophic numbers. F. 
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Smarandache[14] introduced neutrosophic set and neutrosophic logic by considering the 

non-standard analysis. F. Smarandache[16] introduced the plithogenic set -as generalization of crisp, 

fuzzy, intuitionistic fuzzy, and neutrosophic sets 

Neutrosophic set is the take a look at of neutralities origin, nature and scope and additionally their 

interactions with exceptional ideational spectra. To deal with unsure information processing, the 

brand new emerging tool known as neutrosophic set is used. Neutrosophic set is a powerful and 

popular formal framework that has the potential to address uncertainty analysis in information sets. 

However, the neutrosophic set desires to be specified detail. So that, we define an example of 

neutrosophic set called as single-valued neutrosophic set (SVNS). Single valued neutrosophic set is an 

instance of neutrosophic set. The SVNS is a set of generalization of a classic set, fuzzy set, interval 

value fuzzy set, intuitionistic fuzzy set and para consistent set. The single-valued neutrosophic set is 

used in lots of locations like professional machine, information fusion gadget, query answering device, 

bioinformatics and scientific informatics and many others. 

Pranab Biswas, Surapati Pramanik, Bibhas C. Giri [12] introduced multi-attribute group decision 

making based on expected value of neutrosophic trapezoidal numbers. An exact formula of expected 

value for neutrosophic trapezoidal number is established. Irfan Deli and Yusuf subas[5] discussed two 

special forms of single valued neutrosophic numbers such as single valued trapezoidal neutrosophic 

numbers and single valued triangular neutrosophic numbers. M.Mullai and S.Broumi[7] proposed 

neutrosophic inventory model without shortages. Also neutrosophic inventory model with price break 

for finding the optimal solution of the model for the optimal order quantity was established by 

M.Mullai and R. Surya[8]. 

In this paper, neutrosophic inventory backorder model is established by taking the parameters as 

triangular neutrosophic numbers. The neutrosophic optimal shortage quantity and the neutrosophic 

optimal total cost are derived in this model and signed distance method is used for defuzzification. A 

neutrosophic set may help in solving membership function when it is not defined accurately. Without 

difficulty, the work can also manage the inventory system of any company in neutrosophic backorder 

model. The novelty of this model is to give more accurate results than existing methods whenever 

uncertain and unexpected situations arise in back order inventory system. To illustrate the results of 

this model, sensitivity analysis is presented for crisp, fuzzy, intuitionistic fuzzy and neutrosophic sets 

and the results are discussed briefly.  

 

2. Preliminaries  

The basic definitions involving neutrosophic set, single valued neutrosophic sets and triangular 

neutrosophic numbers which are very useful for the proposed model are outlined here.  

 

Definition 2.1 (Irfan Deli and Yusuf Subas., 2014) (Neutrosophic set) 

Let E be a universe. A neutrosophic set A in E is characterized by a truth-membership function T A, an 

indeterminacy-membership function IA  and a falsity-membership function F  A . T  A (x), IA(x)  and 

F A(x) are real standard elements of [0,1]. It can be written as 

 A={〈 x, T A(x), IA(x), F A(x) 〉:x ϵ E,T A(x), IA(x), F A(x) ϵ ]0 −, 1 +[ }.  

There is no restriction on the sum of T A(x), IA(x) and F A(x), so 0 − ≤ T A(x)+IA(x) + FA(x) ≤ 3+.   
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Definition 2.2 (Irfan Deli and Yusuf Subas., 2014) (Single-valued neutrosophic set) 

Let E be a universe. A single valued neutrosophic set A, which can be used in real scientific and 

engineering applications, in E is characterized by a truth-membership function T  A , an 

indeterminacy-membership function IA  and a falsity-membership function F  A . T  A (x), IA(x)  and 

F A(x) are real standard elements of [0,1]. It can be written as  

A={〈 x, T A(x), IA(x), F A(x) 〉:x ϵ E,T A(x), IA(x), F A(x) ϵ [0, 1] }.  

There is no restriction on the sum of T A(x), IA(x) and F A(x), so 0 ≤ T A(x)+IA(x) + FA(x) ≤ 3. 

 

Definition 2.3 (Irfan Deli and Yusuf Subas., 2014) (Triangular neutrosophic numbers) 

Let the triangular neutrosophic number ã = 〈(a1, b1, c1); wã, uã, yã〉 is a special neutrosophic set on the 

real line set R, whose truth-membership, indeterminacy-membership, and falsity-membership 

functions are defined as follows: 

μ𝑎̃(𝑥) = {

(𝑥 − 𝑎1)w𝑎̃/(𝑏1 − 𝑎1)     if 𝑎1 ≤ 𝑥 ≤ 𝑏1

w𝑎̃                                if 𝑥 = 𝑏1

(𝑐1 − 𝑥)w𝑎̃/(𝑐1 − 𝑏1)       if 𝑏1 ≤ 𝑥 ≤ 𝑐1

0                                         if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

                   𝜈𝑎̃(𝑥) = {

(𝑏1 − 𝑥 + (𝑥 − 𝑎1)u𝑎̃)/(𝑏1 − 𝑎1)     if 𝑎1 ≤ 𝑥 ≤ 𝑏1

u𝑎̃                                                     if 𝑥 = 𝑏1

(𝑥 − 𝑏1 + (𝑐1 − 𝑥)u𝑎̃)/(𝑐1 − 𝑏1)       if 𝑏1 ≤ 𝑥 ≤ 𝑐1

1                                                               if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  

                                                                                            𝜆𝑎̃(𝑥) =

{

(𝑏1 − 𝑥 + (𝑥 − 𝑎1)y𝑎̃)/(𝑏1 − 𝑎1)     if 𝑎1 ≤ 𝑥 ≤ 𝑏1

y𝑎̃                                                    if 𝑥 = 𝑏1

(𝑥 − 𝑏1 + (𝑐1 − 𝑥)y𝑎̃)/(𝑐1 − 𝑏1)       if 𝑏1 ≤ 𝑥 ≤ 𝑐1

1                                                              if 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     respectively. 

If a1 ≥  0 and at least c1 >  0 then ã = 〈(a1, b1, c1); wã, uã, yã〉  is called a positive triangular 

neutrosophic number, denoted by ã > 0 . Likewise, if c1 ≤  0 and at least a1 < 0, then ã =

〈(a1, b1, c1); wã, uã, yã〉  is called a negative triangular neutrosophic number, denoted by ã < 0. A 

triangular neutrosophic number ã = 〈(a1, b1, c1); wã, uã, yã〉 may express an ill-known quantity about 

a, which is approximately equal to a. 

 

Definition 2.4 (Sushil Kumar. U and Rajput .S., 2006)(Signed distance method) 

Let D̃ϵF. We define the signed distance of D̃ measured from 0̃ as  

 d(D̃, 0̃) =
1

2
∫

1

0
[DL(α) + DR(α)]dα 

Definition 2.5 (Mahuya Deb and Prabjot Kaur., 2016) (Defuzzification) 

(i) Defuzzification for Triangular Fuzzy Number 

The defuzzification value for a triangular fuzzy number(a1, a2, a3) is given by  

 A =
a1+2a2+a3

4
 

 (ii) Defuzzification for Triangular Intuitionistic Fuzzy Number  

Let Â = (a1, a2, a3)(a′1, a2, a′3) be a triangular intuitionistic fuzzy number. Then the signed 

distance of Â can be calculated as follows  
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Ds(Â, 0̂) =
1

4
[∫

1

0

Lμ(α) + ∫
1

0

Lμ(α) + ∫
1

0

Lμ(α) + ∫
1

0

Lμ(α)] 

=
1

4
[∫

1

0

{a1 − α(a2 − a1)}δα + ∫
1

0

{a3 − α(a3 − a2)}δα + ∫
1

0

{a2 − (1 − α)(a2 − a′1)}δα 

 + ∫
1

0
{a2 + (1 − α)(a′3 − a2)}δα] 

 =
𝑎1+2𝑎2+𝑎3+𝑎′1+2𝑎2+𝑎′3

8
 

3. Notations 

 Ch
N - Neutrosophic carrying cost per unit quantity per unit time 

 Cs
N - Neutrosophic shortage cost per unit quantity per unit time 

 DN - Neutrosophic total demand 

 (TC)N - Neutrosophic total cost 

 QN - Neutrosophic order quantity 

 Q∗N
 - Neutrosophic optimal order quantity 

 F(q)N - Defuzzified total neutrosophic cost  

4. Assumptions 

• At the opening of every cycle, only a single order is produced and the entire lot is delivered in one 

batch. 

• Q N is the neutrosophic lot-size per cycle whereas S1
N is the neutrosophic initial inventory level after  

fulfilling the back-logged quantity of previous cycle and QN − S1
N is the maximum shortage level. 

• T N is the cycle length where t1
N is the period with no shortage. 

5. Neutrosophic model with shortages 

This section describes the inventory model with backorder in neutrosophic environment. Since the 

inventory carrying cost and shortage cost are in neutrosophic numbers, we represent them by 

triangular neutrosophic numbers as follows: 

 Let Ch
N = (Ch1

N , Ch2

N , Ch3

N )(Ch1
′N, Ch2

N , Ch3
′N)(Ch1

′′N , Ch2

N , Ch3
′′N) 

 

 Cs
N = (Cs1

N , Cs2
N , Cs3

N )(Cs1
′N, Cs2

N , Cs3
′N)(Cs1

′′N, Cs2
N , Cs3

′′N)  

 

To defuzzify the triangular neutrosophic numbers, the signed distance method is defined as follows: 

Let A N = (a1, a2, a3)(a′1, a2, a′3)(a′′1, a2, a′′3) be a triangular neutrosophic number. Then the 

signed distance of A N is written as 

  Ds(AN, 0) =
a1+2a2+a3+a′′1+2a2+a′′3

8
 

The neutrosophic total cost is given by 

(TC) N =
1

T
[

Ch
Ns1

2N

2DN +
1

2DN Cs
N(QN − s1

N)2] 

=(Ch1

N , Ch2

N , Ch3

N )(Ch1
′′N , Ch2

N , Ch3
′′N)

s1
2N

2DN +
(QN−s1

N)2

2DN (Cs1
N , Cs2

N , Cs3
N )(Cs1

′′N, Cs2
N , Cs3

′′N)  
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=  (Ch1

N s1
2N

2DN +
(QN−s1

N)2

2DN Cs1
N , Ch2

N s1
2N

2DN +
(QN−s1

N)2

2DN Cs2
N , Ch3

N s1
2N

2DN +
(QN−s1

N)2

2DN Cs3
N )(Ch1

′′N s1
2N

2DN +

(QN−s1
N)2

2DN Cs1
′′N, Ch2

N s1
2N

2DN +
(QN−s1

N)2

2DN Cs2
N , Ch3

′′N s1
2N

2DN +
(QN−s1

N)2

2DN Cs3
′′N) 

 

The defuzzified neutrosophic total cost using above signed distance method is given by  

 

F(q)N =
1

8
[(Ch1

N
s1

2N

2DN
+

(QN − s1
N)2

2DN
Cs1

N ) + 2(Ch2

N
s1

2N

2DN
+

(QN − s1
N)2

2DN
Cs2

N ) + (Ch3

N
s1

2N

2DN
+

(QN − s1
N)2

2DN
Cs3

N )

+ (Ch1
′′N

s1
2N

2DN
+

(QN − s1
N)2

2DN
Cs1

′′N) + 2(Ch2

N
s1

2N

2DN
+

(QN − s1
N)2

2DN
Cs2

N ) + (Ch3
′′N

s1
2N

2DN

+
(QN − s1

N)2

2DN
Cs3

′′N)] 

To find the minimum of D(F(q)N) by taking the derivative D(F(q)N) and equating it to zero, 

(i.e)
1

8
{

s1
N

DN [(Ch1

N + Cs1
N ) + 4(Ch2

N + Cs2
N ) + (Ch3

N + Cs3
N ) + (Ch1

′′N + Cs1
′′N) + (Ch3

′′N + Cs3
′′N)] −

QN

DN [Cs1
N +

4Cs2
N + Cs3

N + Cs1
′′N + Cs3

′′N]} = 0, we get 

 

s1
N =

Cs1
N + 4Cs2

N + Cs3
N + Cs1

′′N + Cs3
′′N

(Ch1

N + Cs1
N ) + 4(Ch2

N + Cs2
N ) + (Ch3

N + Cs3
N ) + (Ch1

′′N + Cs1
′′N) + (Ch3

′′N + Cs3
′′N)

QN 

 

 s1
N =

Cs1
N +4Cs2

N +Cs3
N +Cs1′′N+Cs3′′N

(Ch1
N +Cs1

N )+4(Ch2
N +Cs2

N )+(Ch3
N +Cs3

N )+(Ch1′′N+Cs1′′N)+(Ch3′′N+Cs3′′N)
DNTN ⋯ ⋯ ⋯ ⋯ ⋯ (1) 

 

Also at s1
N = s1

N∗
, we get D2(F(s1

N)) > 0 

 

Hence, the minimum neutrosophic total cost is given by 

 

F(qN)∗ =
1

8
[(Ch1

N s1
2N∗

2DN +
(QN−s1

N∗
)2

2DN Cs1
N ) + 2 (Ch2

N s1
2N∗

2DN +
(QN−s1

N∗
)2

2DN Cs2
N ) + (Ch3

N s1
2N∗

2DN +
(QN−s1

N∗
)2

2DN Cs3
N ) +

(Ch1
′′N s1

2N∗

2DN +
(QN−s1

N∗
)2

2DN Cs1
′′N) + 2 (Ch2

N s1
2N∗

2DN +
(QN−s1

N∗
)2

2DN Cs2
N ) + (Ch3

′′N s1
2N∗

2DN +
(QN−s1

N∗
)2

2DN Cs3
′′N)] ⋯ ⋯ ⋯ (2)  

6. Numerical Example 

A commodity is to be furnished at a constant rate of 20 units per day. A penalty cost will be charged at 

a rate of Rs 8 per day, if it is past due for missing the scheduled shipping date. The cost of carrying the 

commodity in inventory is Rs 14 per unit per month. The production process is such that each month 

(30 days) a batch of items is started and is available for delivery any time after the end of the month. 

Find the optimal level of inventory at the beginning of each month. Find the optimal level of inventory 

at the beginning of each month. 

Solution: 

Given D = 20, T = 30 , Ch = 14/30 = 0.47 and Cs = 8 
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Using [4], the shortage quantity and minimum total cost for crisp set, fuzzy set and intuitionistic fuzzy 

sets are calculated. Also, they are compared with neutrosophic optimal shortage quantity and 

minimum neutrosophic total cost [by equation (1) and (2)] and tabulated as follows: 

 

 
Crisp Set   Fuzzy Set   Intuitionistic 

Fuzzy Set  

 Neutrosophic Set 

D  20  20   20   20  

T  30  30   30   30  

𝑪𝒉  14/30 = 0.47  (0.46,0.49,0.51)   (0.44,0.47,0.49) 

 (0.42, 0.47, 0.51) 

(0.44, 0.47, 0.49) (0.42, 

0.47, 0.51) (0.4, 0.47, 

0.53) 

𝑪𝒔     8   (6, 7, 9)   (6, 7, 9) 

 (4, 7, 10)  

 (6, 7, 9) 

 (4, 7, 10) 

 (5, 7, 9)  

Shortage 

quantity  

 567.376    563.654    563   563.06  

Minimum 

total cost 

 260.993    264.917    266.612   266.513  

7. Analytical Observations 

In this section, the analysis of shortage quantity and minimum total cost for crisp set, fuzzy set, 

intuitionistic fuzzy set and neutrosophic set for table:1 is shown graphically.  

 

 

Figure 1: Neutrosophic backorder problem 

Also, from the above analytical observations, we conclude that,   

  • The analysis of the problem under the optimal shortage quantity in neutrosophic environment is 

closer to crisp, fuzzy and intuitionistic fuzzy environments.  
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  • The optimal shortage quantity in neutrosophic set increases when the optimal shortage quantity in 

intuitionistic fuzzy set decreases.  

  • The minimum total cost in neutrosophic set decreases when the minimum total cost in 

intuitionistic fuzzy set increases.  

8. Conclusions  

In this proposed model, the neutrosophic total cost and neutrosophic optimal shortage quantity in 

triangular neutrosophic numbers are obtained. In neutrosophic environment, the shortage quantity is 

as close to the inuitionistic fuzzy set. The benefit of the neutrosophic inventory model gives better 

result than fuzzy and intuitionistic fuzzy inventory models. A comprehensive sensitivity analysis has 

been performed to illustrate the impact of demand on the ordering policy comparing with existing 

methods. The present proposed work is helpful for business organizations where customer’s demands 

are not fulfilled instantly. In future, the various neutrosophic inventory models will be developed with 

various limitations such as lead time, backlogging and deteriorating items, etc. 
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Abstract: The generalized neutrosophic graph is a generalization of the neutrosophic graph that 

represents a system perfectly. In this study, the concept of a neutrosophic digraph, generalized 

neutrosophic digraph and out-neighbourhood of a vertex of a generalized neutrosophic digraph is 

studied. The generalized neutrosophic competition graph and matrix representation are analyzed. 

Also, the minimal graph and competition number corresponding to generalized neutrosophic 

competition graph are defined with some properties. At last, an application in real life is discussed.  

 

Keywords: Competition graph, neutrosophic graph, generalized neutrosophic competition graph, 

competition number.  

 

 

1. Introduction  

Graph theory is a significant part of applied mathematics, and it is applied as a tool for solving many 

problems in geometry, algebra, computer science, social networks [1] and optimization etc. Cohen 

(1968) introduced the concept of competition graph [2] with application in an ecosystem which was 

related to the competition among species in a food web. If two species have at least one common 

prey, then there is a competition between them. Let 𝐺⃗ = (𝑉, 𝐸⃗⃗) be a digraph, which corresponds to 

a food web. A vertex 𝑥 ∈ 𝑉 represents a species in the food web and an arc (𝑥, 𝑠⃗⃗⃗⃗⃗⃗⃗) ∈  𝐸⃗⃗ means 𝑥 

preys on the species 𝑠. The competition graph 𝐶(𝐺⃗) of a digraph 𝐺⃗ is an undirected graph 𝐺 =

(𝑉, 𝐸) which has same vertex set and has an edge between two distinct vertices 𝑥, 𝑦 ∈ 𝑉 if there 

exists a vertex 𝑠 ∈ 𝑉 and arcs (𝑥, 𝑠⃗⃗⃗⃗⃗⃗⃗), (𝑦, 𝑠⃗⃗⃗⃗⃗⃗⃗) ∈ 𝐸⃗⃗.  

Roberts et al. (1976,1978) studied that for any graph with isolated vertices is the competition graph 

[3, 4] and the minimum number of such vertices is called competition number. Opsut (1982) discussed 

the computation of competition number [5] of a graph. Kim et al. (1993,1995) introduced the p-

competition graph [6] and also p-competition number [7]. Brigham et al. (1995) introduced ∅ −

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 graph as a generalization of p-competition [8]. Cho and Kim (2005) studied competition 

number [9] of a graph having one hole. Li and Chang (2009) proposed about competition graph [10]  

mailto:kde.sosci@wbnsou.ac.in
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with ℎ holes. Factor and Merz introduced (1,2) step competition graph [11] of a tournament and 

extended to (1,2) −step competition graph. 

In real life, it is full of imprecise data which motivated to define fuzzy graph [12] by Kaufman (1973) 

where all the vertices and edges of the graph have some degree of memberships. There are lots of 

research works on fuzzy graphs [13]. In 2006, Parvathi and Karunambigal introduced intuitionistic 

fuzzy graph [14] where all the vertices and edges of the graph have some degree of memberships and 

degree of non-memberships. The concepts of interval-valued fuzzy graphs [15] were introduced by 

Akram and Dubek (2011) where the membership values of vertices and edges are interval numbers. 

Even the representation of competition by competition does not show the characteristic properly. 

Considering in food web, species and prey are all fuzzy in nature, Samanta and Pal (2013) represent 

competition [16] in a more realistic way in fuzzy environment. After that, as a generalization of the 

fuzzy graph, Samanta and Sarkar (2016, 2018) proposed the generalized fuzzy graph [17] and 

generalized fuzzy competition graph [18] where the membership values of edges are functions of 

membership values of vertices. Pramanik et al. introduced fuzzy ∅ − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 competition graphs 

with the idea of fuzzy tolerance graphs [19].  

Smarandache (1998) proposed the concept of a neutrosophic set [20] which has three components: 

the degree of truth membership, degree of falsity membership and degree of indeterminacy 

membership. The neutrosophic set is the generalization of fuzzy set [21] and intuitionistic fuzzy set 

[22].  

The neutrosophic environment has several applications in real life including evaluation of the 

green supply chain management practices [23], evaluation Hospital medical care systems based on 

plithogenic sets [24], decision-making approach with quality function deployment for selecting 

supply chain sustainability metrics [25], intelligent medical decision support model based on soft 

computing and IoT [26], utilizing neutrosophic theory to solve transition difficulties of IoT-based 

enterprises [27], etc.  

 As a generalization of the fuzzy graph and intuitionistic fuzzy graph, Broumi et al. (2015) defined 

the single-valued neutrosophic graph [28]. The definition of a neutrosophic graph by Broumi et al. is 

different in the definition of neutrosophic graph [29] by Akram. Also, the presentation of competition 

[30] by neutrosophic graph was introduced by Akram and Siddique (2017).  In that paper, the 

authors did not follow the same definition of Broumi. In these papers, there were restrictions on T, I, 

F values. To remove the restrictions on T, I, F values, Broumi et al. (2018) introduced the generalized 

neutrosophic graph [31] using the concept of generalized fuzzy graph. The concepts of generalized 

neutrosophic graph motivate us to introduce the generalized neutrosophic competition graph. There 

are few papers available for readers on neutrosophic graph theory [32-34]. 

The rest of the study is organized as follows. In the second section, the main problem definition is 

described. In section 3, the basic concepts related to the neutrosophic graph, neutrosophic directed 

graph, generalized neutrosophic graph, a generalized neutrosophic directed graph is discussed with 

example. In this section, the generalized neutrosophic competition graph is proposed and 

corresponding minimal graphs, competition number is studied. In section 4, a matrix representation 

of the generalized neutrosophic competition graph is proposed with a suitable example. In section 5, 
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an application in economic growth is studied. In the last section, the conclusion of the proposed study 

and future directions is depicted.  

A gist of contribution (Table 1) of authors is presented below. 

 

Table 1. Contribution of authors to competition graphs 

Authors Year Contributions 

Cohen 1968 Introduced competition graph. 
Kauffman 1973 Introduced fuzzy graphs 

Smarandache 1998 Introduced the concepts of neutrosophic set 
Parvathi and Karunambigal 2006 Introduced intuitionistic fuzzy graph 

Samanta and Pal 2013 Introduced fuzzy competition graph 
Broumi et al. 

Samanta and Sarkar 
2015 
2016 

Introduced neutrosophic graph 
Introduced the generalized fuzzy graph 

Akram and Siddique 2017 Introduced neutrosophic competition graph 
Samanta and Sarkar 

 
Broumi et al. 

2018 
 

2018 

Introduced representation of competition by a 
generalized fuzzy graph 
Introduced Generalized neutrosophic graph 

                Das et al. This paper Introduced generalized neutrosophic 
competition graph 

 

2. Generalized neutrosophic competition graph 

Definition 1.[28] A graph 𝐺 = (V,𝐸) where 𝐸 ⊆ 𝑉 × 𝑉 is said to be neutrosophic graph if 

i) there exist functions 𝜌𝑇: 𝑉 → [0,1], 𝜌𝐹: 𝑉 → [0,1]𝑎𝑛𝑑𝜌𝐼: 𝑉 → [0,1] such that  

0 ≤ 𝜌𝑇(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) + 𝜌𝐼(𝑣𝑖) ≤ 3 for all 𝑣𝑖 ∈ 𝑉 (𝑖 = 1,2,3, … . , 𝑛) 

where 𝜌𝑇(𝑣𝑖),  𝜌𝐹(𝑣𝑖), 𝜌𝐼(𝑣𝑖) denote the degree of true membership, degree of falsity membership 

and degree of indeterminacy membership of the vertex 𝑣𝑖 ∈ 𝑉  respectively.   

 

ii)  there exist functions 𝜇𝑇: 𝐸 → [0,1], 𝜇𝐹: 𝐸 → [0,1] 𝑎𝑛𝑑 𝜇𝐼: 𝐸 → [0,1]such that  

𝜇𝑇(𝑣𝑖 , 𝑣𝑗) ≤ min  [ 𝜌𝑇(𝑣𝑖),  𝜌𝑇(𝑣𝑗)] 

𝜇𝐹(𝑣𝑖 , 𝑣𝑗) ≥ 𝑚𝑎𝑥[𝜌𝐹(𝑣𝑖),  𝜌𝐹(𝑣𝑗)] 

𝜇𝐼(𝑣𝑖 , 𝑣𝑗) ≥ 𝑚𝑎𝑥[𝜌𝐼(𝑣𝑖),  𝜌𝐼(𝑣𝑗)] 

and 0 ≤ 𝜇𝑇(𝑣𝑖 , 𝑣𝑗) + 𝜇𝐹(𝑣𝑖 , 𝑣𝑗) +  𝜇𝐼(𝑣𝑖 , 𝑣𝑗) ≤ 3 for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸  

where 𝜇𝑇(𝑣𝑖 , 𝑣𝑗), 𝜇𝐹(𝑣𝑖 , 𝑣𝑗), 𝜇𝐼(𝑣𝑖 , 𝑣𝑗) denote the degree of true membership, degree of falsity 

membership and degree of indeterminacy membership of the edge (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 respectively.  

Definition 2.[31] A graph 𝐺 = (V,𝐸) where 𝐸 ⊆ 𝑉 × 𝑉 is said to be generalized neutrosophic graph 

if there exist functions 

𝜌𝑇: 𝑉 → [0,1], 𝜌𝐹 : 𝑉 → [0,1]𝑎𝑛𝑑𝜌𝐼: 𝑉 → [0,1],  

 

𝜇𝑇: 𝐸 → [0,1], 𝜇𝐹: 𝐸 → [0,1] 𝑎𝑛𝑑 𝜇𝐼: 𝐸 → [0,1] 

𝜙𝑇: 𝐸𝑇 → [0,1], 𝜙𝐹: 𝐸𝐹 → [0,1] 𝑎𝑛𝑑 𝜙𝐼: 𝐸𝐼 → [0,1] 

such that 

0 ≤ 𝜌𝑇(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) + 𝜌𝐼(𝑣𝑖) ≤ 3 for all 𝑣𝑖 ∈ 𝑉 (𝑖 = 1,2,3, … . , 𝑛) 
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and  

𝜇𝑇(𝑣𝑖 , 𝑣𝑗) = 𝜙𝑇(𝜌𝑇(𝑣𝑖),  𝜌𝑇(𝑣𝑗)) 

𝜇𝐹(𝑣𝑖 , 𝑣𝑗) = 𝜙𝐹(𝜌𝐹(𝑣𝑖),  𝜌𝐹(𝑣𝑗)) 

𝜇𝐼(𝑣𝑖 , 𝑣𝑗) = 𝜙𝐼(𝜌𝐼(𝑣𝑖),  𝜌𝐼(𝑣𝑗)) 

where 𝐸𝑇 = {(𝜌𝑇(𝑣𝑖),  𝜌𝑇(𝑣𝑗)): 𝜇𝑇(𝑣𝑖 , 𝑣𝑗) ≥ 0} , 𝐸𝐹 = {(𝜌𝐹(𝑣𝑖),  𝜌𝐹(𝑣𝑗)): 𝜇𝐹(𝑣𝑖 , 𝑣𝑗) ≥ 0} , 𝐸𝐼 =

 {(𝜌𝐼(𝑣𝑖),  𝜌𝐼(𝑣𝑗)): 𝜇𝐼(𝑣𝑖 , 𝑣𝑗) ≥ 0} and 𝜌𝑇(𝑣𝑖),  𝜌𝐹(𝑣𝑖), 𝜌𝐼(𝑣𝑖) denote the degree of true membership, 

the degree of falsity membership, the indeterminacy membership of vertex 𝑣𝑖 ∈ 𝑉 respectively and 

𝜇𝑇(𝑣𝑖 , 𝑣𝑗), 𝜇𝐹(𝑣𝑖 , 𝑣𝑗), 𝜇𝐼(𝑣𝑖 , 𝑣𝑗)  denote the degree of true membership, the degree of falsity 

membership and the degree of indeterminacy membership of edge(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 respectively. 

Definition 3. A graph 𝐺⃗ = (V,𝐸⃗⃗) where 𝐸⃗⃗ ⊆ 𝑉 × 𝑉 is said to be neutrosophic digraph if 

i) there exist functions 𝜌𝑇: 𝑉 → [0,1], 𝜌𝐹: 𝑉 → [0,1] and 𝜌𝐼: 𝑉 → [0,1] such that  

0 ≤ 𝜌𝑇(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) + 𝜌𝐼(𝑣𝑖) ≤ 3 for all 𝑣𝑖 ∈ 𝑉 (𝑖 = 1,2,3, … . , 𝑛) 

where 𝜌𝑇(𝑣𝑖),  𝜌𝐹(𝑣𝑖), 𝜌𝐼(𝑣𝑖) denote the degree of true membership, degree of falsity membership 

and degree of indeterminacy membership of the vertex 𝑣𝑖 respectively.   

  

ii)  there exist functions 𝜇𝑇: 𝐸⃗⃗  → [0,1], 𝜇𝐹: 𝐸⃗⃗ → [0,1] 𝑎𝑛𝑑 𝜇𝐼: 𝐸⃗⃗ → [0,1]such that  

𝜇𝑇(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ≤ min  [ 𝜌𝑇(𝑣𝑖),  𝜌𝑇(𝑣𝑗)] 

𝜇𝐹(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ≥ 𝑚𝑎𝑥[𝜌𝐹(𝑣𝑖),  𝜌𝐹(𝑣𝑗)] 

𝜇𝐼(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ≥ 𝑚𝑎𝑥[ 𝜌𝐼(𝑣𝑖),  𝜌𝐼(𝑣𝑗)] 

and 0 ≤ 𝜇𝑇(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) + 𝜇𝐹(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) +  𝜇𝐼(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ≤ 3 for all (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸  

where 𝜇𝑇(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐹(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐼(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) denote the degree of true membership, degree of falsity 

membership and degree of indeterminacy membership of the edge (𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ∈ 𝐸⃗⃗ respectively. 

 

Example 1. Consider a graph (Fig.1) 𝐺⃗ = (𝑉, 𝐸⃗⃗) where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and                   

𝐸⃗⃗ = {(𝑣1, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣1, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣2, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), (𝑣3, 𝑣4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)}. The membership values of vertices (Table 2) and edges (Table 

3) and the corresponding graph are given following.  

Table 2. Membership values of vertices of a graph (Fig.1) 

 𝑣1 𝑣2 𝑣3 𝑣4 

𝜌𝑇 0.4 0.3 0.5 0.3 

 𝜌𝐹  0.3 0.1 0.6 0.4 

𝜌𝐼 0.2 0.4 0.4 0.6 

    

Table 3. membership values of edges of a graph (Fig.1) 

 

 

 

 

 

 

 (𝑣1, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (𝑣1, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (𝑣2, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) (𝑣3, 𝑣4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) 

𝜇𝑇 0.3 0.3 0.2 0.3 

𝜇𝐹 0.4 0.6 0.6 0.6 

𝜇𝐼 0.4 0.5 0.5 0.6 
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                                        Figure.1. A neutrosophic digraph 

 

Definition 4. A graph 𝐺′⃗⃗⃗⃗⃗ = (V,𝐸⃗⃗) where 𝐸⃗⃗ ⊆ 𝑉 × 𝑉 is said to be generalized neutrosophic digraph 

if there exist functions 

𝜌𝑇: 𝑉 → [0,1], 𝜌𝐹 : 𝑉 → [0,1]𝑎𝑛𝑑𝜌𝐼: 𝑉 → [0,1],  

 

𝜇𝑇: 𝐸⃗⃗  → [0,1], 𝜇𝐹: 𝐸⃗⃗ → [0,1] 𝑎𝑛𝑑 𝜇𝐼: 𝐸⃗⃗ → [0,1] 

𝜙𝑇: 𝐸𝑇 → [0,1], 𝜙𝐹: 𝐸𝐹 → [0,1] 𝑎𝑛𝑑 𝜙𝐼: 𝐸𝐼 → [0,1] 

such that 

0 ≤ 𝜌𝑇(𝑣𝑖) + 𝜌𝐹(𝑣𝑖) + 𝜌𝐼(𝑣𝑖) ≤ 3 for all 𝑣𝑖 ∈ 𝑉 (𝑖 = 1,2,3, … . , 𝑛) 

and  

𝜇𝑇(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) = 𝜙𝑇(𝜌𝑇(𝑣𝑖),  𝜌𝑇(𝑣𝑗)) 

𝜇𝐹(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) = 𝜙𝐹(𝜌𝐹(𝑣𝑖),  𝜌𝐹(𝑣𝑗)) 

𝜇𝐼(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) = 𝜙𝐼(𝜌𝐼(𝑣𝑖),  𝜌𝐼(𝑣𝑗)) 

where 𝐸𝑇 = {(𝜌𝑇(𝑣𝑖),  𝜌𝑇(𝑣𝑗)): 𝜇𝑇(𝑣𝑖 , 𝑣𝑗) ≥ 0} , 𝐸𝐹 = {(𝜌𝐹(𝑣𝑖),  𝜌𝐹(𝑣𝑗)): 𝜇𝐹(𝑣𝑖 , 𝑣𝑗) ≥ 0} , 𝐸𝐼 =

 {(𝜌𝐼(𝑣𝑖),  𝜌𝐼(𝑣𝑗)): 𝜇𝐼(𝑣𝑖 , 𝑣𝑗) ≥ 0} and 𝜌𝑇(𝑣𝑖),  𝜌𝐹(𝑣𝑖), 𝜌𝐼(𝑣𝑖) denote the degree of true membership, 

the degree of falsity membership, the indeterminacy membership of vertex 𝑣𝑖 ∈ 𝑉 respectively and 

𝜇𝑇(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐹(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐼(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)  denote the degree of true membership, the degree of falsity 

membership and the degree of indeterminacy membership of edge(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) ∈ 𝐸⃗⃗ respectively. 

Example 2. Consider a graph (Fig.2)𝐺⃗ = (𝑉, 𝐸⃗⃗) where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and                   

𝐸⃗⃗ = {(𝑣1, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣1, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣4, 𝑣1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣3, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )}.   

                         Consider the membership values of vertices (Table 4) are given below:  

Table 4. Membership values of vertices of a graph (Fig.2) 

 𝑣1 𝑣2 𝑣3 𝑣4 

𝜌𝑇 0.5 0.6 0.2 0.7 

𝜌𝐹 0.4 0.5 0.4 0.3 

𝜌𝐼 0.3 0.6 0.7 0.4 
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 Consider the membership values of edges (Table 5) as  

𝜇𝑇(𝑚, 𝑛) = max{𝑚, 𝑛} = 𝜇𝐹(𝑚, 𝑛) = 𝜇𝐼(𝑚, 𝑛) 

 

Table 5. Membership values of edges of a graph (Fig.2) 

 

 

 

 

 

 

                                   Figure 2. A generalized neutrosophic digraph 

 

Definition 5. Let 𝐺′⃗⃗⃗⃗⃗ = (𝑉, 𝐸⃗⃗)  be a generalized neutrosophic digraph. Then out-neighbourhood 

N+(vi) of a vertex vi ∈ V is given by 

𝑁+(𝑣𝑖) = {𝑣𝑗 , (𝜇𝑇(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐹(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐼(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)): (𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ∈ 𝐸⃗⃗} 

where 𝜇𝑇(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐹(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐼(𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)  denote the degree of true membership, the degree of falsity 

membership and indeterminacy membership of edge (𝑣𝑖, 𝑣𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ∈ 𝐸⃗⃗. 

Example 3. Consider a GN digraph (Fig.3) 𝐺⃗ = (𝑉, 𝐸⃗⃗) where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and                   

𝐸⃗⃗ = {(𝑣1, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣1, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣1, 𝑣4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣2, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), (𝑣3, 𝑣4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)}. 

 

 

𝑁+(𝑣1) = {(𝑣2, (0.5, 0.6, 0.4)), (𝑣3, (0.7, 0.3, 0.4)), (𝑣4, (0.4, 0.4, 0.5))} 

 

𝑁+(𝑣2) = {(𝑣3, (0.7,0.6,0.5))} , 𝑁+(𝑣3) = {(𝑣4, (0.7,0.4,0.5))},  𝑁+(𝑣4) = ∅. 

 (𝑣1, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (𝑣1, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (𝑣4, 𝑣1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (𝑣3, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) 

𝜇𝑇 0.3 0.3 0.2 0.3 

𝜇𝐹 0.4 0.6 0.6 0.6 

𝜇𝐼 0.4 0.5 0.5 0.6 



Neutrosophic Sets and Systems, Vol. 31, 2020     162  

 

 

Kousik Das, Sovan Samanta and Kajal De; Generalized neutrosophic competition graph 

Definition 6. Let 𝐺′⃗⃗⃗⃗⃗ = (𝑉, 𝐸⃗⃗)  be a generalized neutrosophic digraph. Then the generalized 

neutrosophic competition graph𝐶(𝐺⃗′) of 𝐺⃗ = (𝑉, 𝐸⃗⃗) is a generalized neutrosophic graph which has 

the same vertex set 𝑉 and has a neutrosophic edge between 𝑢, 𝑣 if and only if 𝑁+(𝑢) ∩ 𝑁+(𝑣) ≠ ∅ 

and there exist sets 𝑆1 = {𝛾𝑢
𝑇 , 𝑢 ∈ 𝑉}, 𝑆2 = {𝛾𝑢

𝐹 , 𝑢 ∈ 𝑉}, 𝑆3 = {𝛾𝑢
𝐼 , 𝑢 ∈ 𝑉} and functions 𝜙1: 𝑆1 × 𝑆1 →

[0,1], 𝜙2: 𝑆2 × 𝑆2 → [0,1], 𝜙3: 𝑆3 × 𝑆3 → [0,1] such that edge-membership value of an edge (𝑢, 𝑣) ∈

𝐸′ is (𝜇𝑇(𝑢, 𝑣), 𝜇𝐹(𝑢, 𝑣), 𝜇𝐼(𝑢, 𝑣)) where   

𝜇𝑇(𝑢, 𝑣) = 𝜙1(𝛾𝑢
𝑇 , 𝛾𝑣

𝑇) 

𝜇𝐹(𝑢, 𝑣) = 𝜙2(𝛾𝑢
𝐹 , 𝛾𝑣

𝐹) 

𝜇𝐼(𝑢, 𝑣) = 𝜙3(𝛾𝑢
𝐼 , 𝛾𝑣

𝐼) 

𝛾𝑢
𝑇 = min {𝜇𝑇(𝑢, 𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), ∀𝑤 ∈ 𝑁

+(𝑢) ∩ 𝑁+(𝑣)},𝛾𝑣
𝑇 = min {𝜇𝑇(𝑢, 𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), ∀𝑤 ∈ 𝑁

+(𝑢) ∩ 𝑁+(𝑣)}, 

𝛾𝑢
𝐹 = max {𝜇𝐹(𝑢, 𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), ∀𝑤 ∈ 𝑁

+(𝑢) ∩ 𝑁+(𝑣)}, 𝛾𝑣
𝐹 = max {𝜇𝐹(𝑢, 𝑤⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), ∀𝑤 ∈ 𝑁

+(𝑢) ∩ 𝑁+(𝑣)}, 

𝛾𝑢
𝐼 = max {𝜇𝐼(𝑢, 𝑤), ∀𝑤 ∈ 𝑁

+(𝑢) ∩ 𝑁+(𝑣)}, 𝛾𝑢
𝐼 = min {𝜇𝐼(𝑣, 𝑤), ∀𝑤 ∈ 𝑁

+(𝑢) ∩ 𝑁+(𝑣)}.  

Example 4. Consider a GN digraph( Fig.3) 𝐺 = (𝑉, 𝐸⃗⃗) where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and                   

𝐸⃗⃗ = {(𝑣1, 𝑣2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣1, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣1, 𝑣4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), (𝑣2, 𝑣3⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), (𝑣3, 𝑣4⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)} . 

 

Then the corresponding competition graph (Fig.4) with membership values of edges (Table 6) is  

Table 6. Membership values of edges a graph (Fig.4) 

 (𝑣1, 𝑣2) (𝑣1, 𝑣3) 

𝜇𝑇 0.7 0.4 

𝜇𝐹 0.3 0.3 

𝜇𝐼 0.4 0.2 

 

 

Figure 4. A generalized neutrosophic competition graph of a graph (Fig.3) 

 

Theorem 1. Let G be a generalized neutrosophic graph. Then there exists a generalized neutrosophic 

digraph 𝐺′⃗⃗⃗⃗⃗ such that C(𝐺′⃗⃗⃗⃗⃗) = 𝐺.  

Proof. Let 𝐺 = (𝑉, 𝐸) be a generalized neutrosophic graph and (x,y) be an edge in 𝐺. Now, a 

generalized neutrosophic digraph 𝐺′⃗⃗⃗⃗⃗  is to be constructed such that C(𝐺′⃗⃗⃗⃗⃗) = 𝐺. 
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Let 𝑥′, 𝑦′ ∈ 𝐺′⃗⃗⃗⃗⃗  be the corresponding vertices of 𝑥, 𝑦 ∈ 𝐺. Then we can draw two directed edges from 

vertices 𝑥′, 𝑦 to a vertex 𝑧′ ∈ 𝐺′⃗⃗⃗⃗⃗ such that 𝑧′ ∈ 𝑁+(𝑥′) ∩ 𝑁+(𝑦′). Similarly, we can do for all vertices 

and edges of 𝐺 and hence C(𝐺′⃗⃗⃗⃗⃗) = 𝐺.  

Definition 7.  Let G be a generalized neutrosophic graph. Minimal graph, 𝐺′⃗⃗⃗⃗⃗ of G is a generalized 

neutrosophic digraph such that C(𝐺′⃗⃗⃗⃗⃗) = 𝐺 and 𝐺′⃗⃗⃗⃗⃗ has the minimum number of edges i.e. if there 

exists another graph 𝐺′′ with C(𝐺′′⃗⃗ ⃗⃗ ⃗⃗ ) = 𝐺, then number of edges of  𝐺′′⃗⃗ ⃗⃗ ⃗⃗  is greater than or equal to 

the number of edges of 𝐺′⃗⃗⃗⃗⃗. 

Consider a generalized neutrosophic graph. If it is assumed as a generalized neutrosophic 

competition graph, then our task is to find the corresponding generalized neutrosophic digraph. 

Then there are a lot of graphs for a single generalized neutrosophic competition graph. We will 

consider the graph with a minimum number of edges.  

Theorem 2. Let G be a generalised neutrosophic connected graph whose underlying graph is a 

complete graph with n vertices. Then the number of edges in a minimal graph of G is equal to 2n, 

n ≥ 3. 

Proof. Let 𝐺 = (𝑉, 𝐸) be a connected generalized neutrosophic graph whose underlying graph is a 

complete graph of 𝑛 vertices so that each vertex of 𝐺 is connected with each other. Let 𝑢, 𝑣 be two 

adjacent vertices in 𝐺 and 𝑢1, 𝑣1 be the corresponding vertices in the minimal graph 𝐺⃗⃗⃗⃗ ′. Consider a 

generalised neutrosophic directed graph 𝐺⃗1
′ in such a way that every vertex of 𝐺⃗ other than 𝑢1 has 

only out-neighbourhood as 𝑢1. Thus 𝐺⃗1
′  has (𝑛 − 1) edges. Similarly, a generalised neutrosophic 

directed graph 𝐺⃗2
′  is considered for 𝑣1  and hence 𝐺⃗2

′  has (𝑛 − 1)  edges. Now, consider a 

generalised neutrosophic directed graph 𝐺⃗3
′  with only edges (𝑢1, 𝑤1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), (𝑣1, 𝑤1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ). Thus  𝐺⃗⃗⃗⃗ ′ = 𝐺⃗1

′ ∪ 𝐺⃗2
′ ∪

𝐺⃗3
′ . The number of edges in  𝐺⃗⃗⃗⃗ ′ is (𝑛 − 1) + (𝑛 − 1) + 2 = 2𝑛. 

Definition 8. Score𝑠of an edge (𝑢, 𝑣) between two vertices in a generalized neutrosophic graph is 

given by 𝑠(𝑢, 𝑣) = [2𝜇𝑇(1 − 𝜇𝐹) + 𝜇𝐼]/3 where 𝜇𝑇, 𝜇𝐹 and 𝜇𝐼 are the degree of truth membership, 

degree of falsity membership and degree of indeterminacy membership of the edge (𝑢, 𝑣) 

respectively.  

Example 5. Consider a GN graph (Fig.5) 𝐺 = (𝑉, 𝐸) where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and                   

𝐸 = {(𝑣1, 𝑣2), (𝑣1, 𝑣4), (𝑣2, 𝑣3), (𝑣3, 𝑣4), (𝑣2, 𝑣4)}. 

 

Figure 5. An example of a generalized neutrosophic graph                              

The score of the edge (𝑣3, 𝑣4) is 0.42. Similarly, the scores of all edges should be found. 
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Definition 9. In a generalized neutrosophic graph, a vertex 𝑢 with adjacent vertices 𝑣1, 𝑣2, … . , 𝑣𝑘 is 

said to be isolated if 𝑠(𝑢, 𝑣𝑖) = 0  for 𝑖 = 1,2,3… . . , 𝑘. 

Note1. If 𝜇𝐹 = 1, 𝜇𝐼 = 0, then score = 0 and if 𝜇𝑇 = 0 = 𝜇𝐼 then score = 0. 

Example 6. Consider a GN graph (Fig.6) 𝐺 = (𝑉, 𝐸) where 𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and                   

𝐸 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣2, 𝑣4)} 

 

Figure 6. An example of a generalized neutrosophic graph with isolated vertex 

The adjacent vertex of 𝑣4 is 𝑣2 and the score of the edge(𝑣2, 𝑣4) is 0, so 𝑣4 is an isolated vertex.  

Definition 10. A cycle of length ≥ 4 in a generalized neutrosophic graph is called a hole if all the 

edges of this cycle have a non-zero score.  

Example 7. Consider the graph in example 5, 𝑣1 − 𝑣2 − 𝑣3 − 𝑣4 − 𝑣1is a cycle of length 4 and all the 

of the cycle have non-zero score and hence it is a hole. 

Definition 11. The smallest number of the isolated vertex in a generalized neighbourhood graph is 

called competition number. It is denoted by 𝑘𝑁(𝐺). 

Lemma 1. If a crisp graph has one hole, then its completion number is at most 2. But the Competition 

number of a generalized neutrosophic graph with exactly one hole may be greater than two. Let us 

consider a graph (Fig.7) with exactly one hole with competition number 2.  

 

Figure 7. Generalized neutrosophic graph with competition number 2. 

It may be noted that scores of edges (𝑎, 𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗),(𝑏, 𝑐⃗⃗⃗⃗⃗⃗⃗), (𝑐, 𝑑⃗⃗⃗⃗ ⃗⃗⃗)and (𝑑, 𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗) are non-zero as per definition of the 

hole. But the score of  (𝑑, 𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗) and (𝑐, 𝑒⃗⃗⃗⃗⃗⃗⃗)  may be zero. Hence 𝑒  is an isolated vertex.  Thus 

competition number is 3.  
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Definition 12. A neutrosophic graph is said to be a neutrosophic chordal graph if all the holes have 

a chord with score > 0.  

Example 10. Consider the graph in example 5, 𝑣1 − 𝑣2 − 𝑣3 − 𝑣4 − 𝑣1are only a hole and the edge 

(𝑣2, 𝑣4) is a chord with a non-zero score, then the graph is a neutrosophic chordal graph. 

Lemma 2. The competition number of a neutrosophic chordal graph with pendant vertex be greater 

than 1. In the neutrosophic chordal graph (Fig.8) given below, since the vertex e is isolated, then the 

competition number is greater than 2.  

 

Figure 8. Neutrosophic chordal graph  

3. Matrix representation of GNCG 

It is one kind of adjacency matrix of the GNCG. The entries of the matrix are calculated as follows: 

Step-1:  Let us consider a generalized neutrosophic digraph (GNDG). 

Step-2: Find the pair of vertices 𝑢𝑖 , 𝑣𝑖(𝑖 = 1,2, … . ,𝑚) such that there exist edges (𝑢𝑖, 𝑥𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) , (𝑣𝑖, 𝑥𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) for 

(𝑘, 𝑙 = 1,2, … . . , 𝑝) with 𝑁+(𝑢𝑖) and 𝑁+(𝑣𝑖). 

Step-3: Find the set 𝑁+(𝑢𝑖) ∩ 𝑁
+(𝑣𝑖) = {𝑥𝑛 , 𝑛 = 1,2, … . , 𝑞}, 𝑠𝑎𝑦. 

Step-4: let 𝛾𝑢
𝑇 = min {𝜇𝑇(𝑢𝑖, 𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝑇(𝑢𝑖, 𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), … . , 𝜇𝑇(𝑢𝑖, 𝑥𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)} 

𝛾𝑣
𝑇 = min {𝜇𝑇(𝑣𝑖, 𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), 𝜇𝑇(𝑣𝑖, 𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), … . , 𝜇𝑇(𝑣𝑖, 𝑥𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)} 

𝛾𝑢
𝐹 = max {𝜇𝐹(𝑢𝑖, 𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐹(𝑢𝑖, 𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), … . , 𝜇𝐹(𝑢𝑖, 𝑥𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)} 

𝛾𝑣
𝐹 = max {𝜇𝐹(𝑣𝑖, 𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), 𝜇𝐹(𝑣𝑖, 𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), … . , 𝜇𝐹(𝑣𝑖, 𝑥𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)} 

𝛾𝑢
𝐼 = min {𝜇𝐼(𝑢𝑖, 𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), 𝜇𝐼(𝑢𝑖, 𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗), … . , 𝜇𝐼(𝑢𝑖, 𝑥𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)} 

                 𝛾𝑣
𝐼 = max {𝜇𝐼(𝑣𝑖, 𝑥1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), 𝜇𝐼(𝑣𝑖, 𝑥2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), … . , 𝜇𝐼(𝑣𝑖, 𝑥𝑞⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)}. 

Step-5: Find the degree of true membership, degree of falsity membership and degree of 

indeterminacy membership by the following formula 

𝜇𝑇(𝑢, 𝑣) = 𝜑1(𝛾𝑢
𝑇 , 𝛾𝑣

𝑇), 

𝜇𝐹(𝑢, 𝑣) = 𝜑2(𝛾𝑢
𝐹 , 𝛾𝑣

𝐹), 

𝜇𝐼(𝑢, 𝑣) = 𝜑3(𝛾𝑢
𝐼 ,  𝛾𝑣

𝐼) 

For simplification, one function 𝜑 may be used in place of 𝜑1, 𝜑2, 𝜑3. 
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Step-6: the competition matrix is a square matrix. Its order equal to the number of vertices. Its entries 

are given below. 

𝑎𝑖𝑗 = {
(𝜑1(𝛾𝑖

𝑇 , 𝛾𝑗
𝑇), 𝜑2(𝛾𝑖

𝐹 , 𝛾𝑗
𝐹), 𝜑3(𝛾𝑖

𝐼 ,  𝛾𝑗
𝐼)) 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑎𝑛𝑑 𝑗 

(0,0,0),                                                     𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑒𝑟𝑡𝑒𝑥 𝑖 𝑎𝑛𝑑 𝑗.
 

 

Example 11. An example of matrix representation is presented with all steps. 

Step -1: Consider a GNDG (Fig.9)𝐺′⃗⃗⃗⃗⃗ = (𝑉, 𝐸⃗⃗). The membership values of vertices and edges are given 

in the graph (Fig.) 

 

Figure 9. A generalized neutrosophic graph with seven vertices 

 

Step-2:𝑁+(𝑣1) = {𝑣2}𝑁
+(𝑣2) = {𝑣5} 𝑁

+(𝑣3) = {𝑣2, 𝑣1} 

𝑁+(𝑣4) = {𝑣1, 𝑣3}𝑁
+(𝑣5) = {𝑣3}𝑁

+(𝑣6) = {𝑣5}𝑁
+(𝑣7) = {𝑣5}.  

Step-3:  𝑁+(𝑣1) ∩ 𝑁
+(𝑣2) = ∅,      𝑁+(𝑣1) ∩ 𝑁

+(𝑣3) = {𝑣2}, 𝑁
+(𝑣1) ∩ 𝑁

+(𝑣4) = {𝑣2}, 

𝑁+(𝑣1) ∩ 𝑁
+(𝑣5) = ∅,      𝑁+(𝑣1) ∩ 𝑁

+(𝑣6) = ∅, 𝑁+(𝑣1) ∩ 𝑁
+(𝑣7) = ∅, 

    𝑁+(𝑣2) ∩ 𝑁
+(𝑣3) = ∅,  𝑁+(𝑣2) ∩ 𝑁

+(𝑣4) = ∅,𝑁+(𝑣2) ∩ 𝑁
+(𝑣5) = ∅, 

   𝑁+(𝑣2) ∩ 𝑁
+(𝑣6) = {𝑣5},𝑁

+(𝑣2) ∩ 𝑁
+(𝑣7) = {𝑣5}, , 𝑁

+(𝑣3) ∩ 𝑁
+(𝑣4) = {𝑣1}, 

   𝑁+(𝑣3) ∩ 𝑁
+(𝑣5) = ∅,𝑁+(𝑣3) ∩ 𝑁

+(𝑣6) = ∅,  𝑁+(𝑣3) ∩ 𝑁
+(𝑣7) = ∅, 

𝑁+(𝑣4) ∩ 𝑁
+(𝑣5) = {𝑣3},𝑁

+(𝑣4) ∩ 𝑁
+(𝑣6) = ∅,    𝑁+(𝑣4) ∩ 𝑁

+(𝑣7) = ∅, 

   𝑁+(𝑣5) ∩ 𝑁
+(𝑣6) = ∅,   𝑁+(𝑣5) ∩ 𝑁

+(𝑣7) = ∅,   𝑁+(𝑣6) ∩ 𝑁
+(𝑣7) = {𝑣5}, 

Step-4:  

𝛾12
𝑇 = 0.55, 𝛾12

𝐹 = 0.4,  𝛾12
𝐼 = 0.3 

𝛾32
𝑇 = 0.55, 𝛾32

𝐹 = 0.3, 𝛾32
𝐼 = 0.35 

𝛾42
𝑇 = 0.65, 𝛾42

𝐹 = 0.35, 𝛾42
𝐼 = 0.25 

𝛾25
𝑇 = 0.45, 𝛾25

𝐹 = 0.45, 𝛾25
𝐼 = 0.4 

𝛾65
𝑇 = 0.4, 𝛾65

𝐹 = 0.3,            𝛾65
𝑇 = 0.4 

𝛾75
𝑇 = 0.35, 𝛾75

𝐹 = 0.25,  𝛾75
𝐼 = 0.35 

𝛾31
𝑇 = 0.5, 𝛾31

𝐹 = 0.2, 𝛾31
𝐼 = 0.25 
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𝛾41
𝑇 = 0.6, 𝛾41

𝐹 = 0.25, 𝛾41
𝐼 = 0.15 

𝛾43
𝑇 = 0.6, 𝛾43

𝐹 = 0.15, 𝛾43
𝐼 = 0.2 

𝛾53
𝑇 = 0.4, 𝛾53

𝐹 = 0.25, 𝛾53
𝐼 = 0.35 

 

Step-5: 

𝜇13
𝑇 = 0,   𝜇13

𝐹 = 0.1, 𝜇13
𝐼 = 0.05 

𝜇14
𝑇 = 0.1,   𝜇14

𝐹 = 0.05, 𝜇13
𝐼 = 0.05 

𝜇34
𝑇 = 0.1,   𝜇34

𝐹 = 0.05, 𝜇34
𝐼 = 0.1 

𝜇45
𝑇 = 0.2,   𝜇45

𝐹 = 0.1, 𝜇45
𝐼 = 0.15 

𝜇26
𝑇 = 0.05,   𝜇26

𝐹 = 0.15, 𝜇26
𝐼 = 0 

𝜇27
𝑇 = 0.1,   𝜇27

𝐹 = 0.2, 𝜇27
𝐼 = 0.05 

𝜇67
𝑇 = 0.05,   𝜇67

𝐹 = 0.05, 𝜇67
𝐼 = 0.05 

Step-6: the corresponding matrix is  

(

 
 
 
 

−
(0,0,0)

(0,0.1,0.05)

(0.1,0.05,0.05)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)
−

(0,0,0)
(0,0,0)

(0,0,0)

(0.05,0.15,0)

(0.1,0.2,0.05)

(0,0.1,0.05)

(0,0,0)
−

(0.1,0.05,0.1)

(0,0,0)

(0,0,0)

(0,0,0)

(0.1,0.05,0.05)

(0,0,0)

(0.1,0.05,0.1)
−

(0.2,0.1,0.15)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)

(0,0,0)
(0.2,0.1,0.15)

−
(0,0,0)

(0,0,0)

(0,0,0)

(0.05,0.15,0)

(0,0,0)
(0,0,0)

(0,0,0)
−

(0.05,0.05,0.05)

(0,0,0)

(0.1,0.2,0.05)

(0,0,0)

(0,0,0)
(0,0,0)

(0.05,0.05,0.05)
− )

 
 
 
 

 

 

4. An application in economic competition  

Like competitions in the ecosystem, there are many competitions running in real life. In this study, 

the competition in economic growth among the countries (Fig.10) are presented in the neutrosophic 

environment. We consider two factors: GDP and GPI. Gross Domestic Product (GDP) of a country is 

the total market value of all goods and services produced in a specific time period in the country. The 

Global Peaceful Index (GPI) of a country is the value of peacefulness in the country relative to global.  

 

                                         Figure 10. Competition among countries  
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The GDP growth is taken as the degree of truth membership, GPI is taken as the degree of falsity 

memberships. The uncertainty causes like flood, elections etc. may be taken as the degree of 

indeterminacy membership. The data of GDP growth and GPI are collected from internet. The 

country of India with neighbours countries are competing with each other to become more strong. 

Since all countries are competing, so the corresponding competition graph is a complete graph. 

The membership values of countries (nodes) are given in the tabular form (Table 7, Table 8) and the 

membership values of edges are calculated by the following formula and are represented by a matrix. 

𝜇𝑇(𝑢, 𝑣) = 1 − |𝜎𝑇
𝑢 − 𝜎𝑇

𝑣|, 

𝜇𝐹(𝑢, 𝑣) = 1 − |𝜎𝐹
𝑢 − 𝜎𝐹

𝑣|, 

𝜇𝐼(𝑢, 𝑣) = 0 

Table 7. Countries with GDP and GPI values 

SL. No. Country GDP GPI 

1 India 7.257 2.605 

2 Pakistan 2.905 3.072 

3 China 6.267 2.217 

4 Nepal 6.536 2.003 

5 Bangladesh 7.289 2.128 

6 Bhutan 4.816 1.506 

7 Myanmar 6.448 2.393 

8 Afganistan 3 3.574 

9 Srilanka 3.5 1.986 

 

Table 8. Countries with their normalized values of  GDP and GPI. 

Sl. No. Country N GDP 1/GPI N GPI N GDP~ N GPI 

1 India 0.996 0.38 0.576 0.42 

2 Pakistan 0.399 0.33 0.5 0.101 

3 China 0.86 0.45 0.682 0.178 

4 Nepal 0.897 0.5 0.758 0.139 

5 Bangaladesh 1 0.47 0.712 0.288 

6 Bhutan 0.661 0.66 1 0.339 

7 Mayanmar 0.885 0.42 0.636 0.249 

8 Afganistan 0.412 0.28 0.424 0.012 

9 Srilanka 0.48 0.5 0.758 0.278 

 

 

 

 

 

 

 

 

 

The competition among countries is given above by the matrix form.  
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Conclusion  

This study presents the generalization of neutrosophic competition graph where edge restrictions are 

withdrawn. A representation of GNCG is presented by a square matrix. Also, the minimal graph and 

competition number are introduced. A real-life application is presented and discussed by the GNCG. 

In this application, true membership value is taken as GDP, the gross domestic product of countries, 

and falsity is taken as complement of of GPI, Global Peace Index of such countries. These parameters 

may be taken differently to capture the competitions among countries.  This representation will be 

helpful to perceive real-life competitions. This study assumed only one step competition. In future, 

n-step neutrosophic competition graph and several other related notions will be studied. This study 

will be the backbone of that.    

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

References 

1. Das K., Samanta S. and Pal M., Study on centrality measures in social networks: a survey, Social network 

analysis and mining, 8, 13, 2018. 

2. Cohen J.E., Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND 

Corporation, Santa Monica, CA, 1968. 

3. Roberts F. S., Discrete Mathematical Models, with Applications to Social, Biological, and Environmental 

Problems, Prentice-Hall, Englewood Cliffs, NJ, 1976. 

4. Roberts F. S., Food webs, competition graphs, and the boxicity of ecological phase space, in Theory and 

Applications of Graphs, (Y. Alavi and D. Lick, eds.), Springer-Verlag, New York, 477–490,1978. 

5. Opsut R. J., On the computation of the competition number of a graph,  SIAM Journal on Algebraic Discrete 

Mathematics, 3, 420-428, 1982. 

6. Kim S. R., McKee T. A., McMorris R. R.  and Roberts F. S., p-competition graph, Linear Algebra and its 

Applications, 217, 167-178, 1995. 

7. Kim S. R., McKee T. A., McMorris R. R. and Roberts F. S., p-competition number, Discrete Applied 

Mathematics, 46, 89-92, 1993. 

8. Brigham R. C., McMorris F. R.  and Vitray R.P., Tolerance competition graphs, Linear Algebra and its 

Applications, 217, 41- 52, 1995. 

9. Cho H. H. and Kim S. R., The competition number of a graph having exactly one hole, Discrete Mathematics, 

303, 32-41, 2005. 

10. Li B. J. and  Chang G. J., The competition number of a graph with exactly one hole, all of a which are 

independent, Discrete Applied Mathematics, 157, 1337-1341, 2009. 

11. Factor K. A. S.  and Merz S. K., The (1,2) –step competition graph of a tournament, Discrete Applied 

mathematics, 159, 100-103, 2011. 

12. Kauffman A., Introduction a la Theorie des Sous-emsemblesFlous, Paris: Masson et CieEditeurs, 1973. 

13. Mordeson J. N. and Nair P. S., Fuzzy Graphs and Hypergraphs, Physica Verlag, 2000. 

14. Parvathi R. and Karunambigai M.G., Intuitionistic fuzzy graphs, Computational Intelligence, Theory and 

Applications , 38, 139-150, 2006. 

15. Akram M. and Dubek W. A., Interval-valued fuzzy graphs, Computer and Mathematics with Applications, 

61, 289-299, 2011. 

16. Samanta S. and Pal M., Fuzzy k-competition graphs and p-competition fuzzy graphs, Fuzzy Information 

and Engineering, 5, 191-204, 2013. 

17. Samanta S., Sarkar B., Shin D. and Pal M., Completeness and regularity of generalized fuzzy graphs, 

Springer Plus, 5, 1-14, 2016. 

18. Samanta S. and  Sarkar B., Representation of competitions by generalized fuzzy graphs, International 

Journal of Computational Intelligence System, 11, 1005-1015, 2018. 

19. Pramanik T., Samanta S., Sarkar B. and Pal M., Fuzzy φ-tolerance competition graphs, Soft Computing, 21, 

3723-3734, 2016. 

20. Smarandache F., Neutrosophyneutrosophic probability, Set and Logic, Amer Res Press, Rehoboth, USA, 

1998. 



Neutrosophic Sets and Systems, Vol. 31, 2020     171  

 

 

Kousik Das, Sovan Samanta and Kajal De; Generalized neutrosophic competition graph 

21. Zadeh L.A., Fuzzy sets, Information and Control, 8, 338–353, 1965. 

22. Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Set and Systems, 20 ,87–96, 1986. 

23. Abdel-Baset M., Chang V. and Gamal A., Evaluation of the green supply chain management practices: A 

novel neutrosophic approach. Computers in Industry, 108, 210-220, 2019. 

24. Abdel-Basset M., El-hoseny M., Gamal A. and Smarandache F., A novel model for evaluation Hospital 

medical care systems based on plithogenic sets. Artificial intelligence in medicine, 100, 101710, 2019. 

25. Abdel-Basset M., Mohamed R., Zaied A. E. N. H. and Smarandache F., A hybrid plithogenic decision-

making approach with quality function deployment for selecting supply chain sustainability metrics. 

Symmetry, 11(7), 903, 2019. 

26. Abdel-Basset M., Manogaran G., Gamal A. and Chang V., A Novel Intelligent Medical Decision Support 

Model Based on Soft Computing and IoT. IEEE Internet of Things Journal,  2019. 

27. Abdel-Basset M., Nabeeh N. A., El-Ghareeb H. A. and Aboelfetouh, A., Utilising neutrosophic theory to 

solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 1-21, 2019. 

28. Broumi S., Talea M., Bakali A. and Smarandache F., Single valued neutrosophic graphs, Journal of New 

Theory, 10, 86-101, 2016. 

29. Akram M. and Shahzadi G., Operations on single-valued neutrosophic graphs, Journal of Uncertain 

Systems,11(1), 1-26, 2017.  

30. Akram M. and Siddique S., Neutrosophic competition graphs with applications, Journal Intelligence and 

Applications, 33, 921-935,2017. 

31. Broumi S., Bakali A., Talea M., Smarandache F. and Hassan A., Generalized single-valued neutrosophic 

graphs of first type, Acta Electrotechica, 59, 23-31, 2018. 

32. Broumi S., Talea M., Bakali A., Singh P. K., Smarandache F., Energy and Spectrum Analysis of Interval 

Valued Neutrosophic Graph using MATLAB, Neutrosophic Sets and Systems,  24, 46-60, 2019.  

33. Nagarajan D., Lathamaheswari M., Broumi S., Kavikumar J., Dombi Interval Valued Neutrosophic Graph 

and its Role in Traffic Control Management, Neutrosophic Sets and Systems, 24, 114-133, 2019. 

34. Sinha K., Majumdar P., Entropy based Single Valued Neutrosophic Digraph and its applications, 

Neutrosophic Sets and Systems,  19, 119-126, 2018. 

 

 

 

 

Received: Nov 05, 2019.  Accepted: Feb 04, 2020 

http://fs.unm.edu/NSS/EnergyandSpectrumAnalysis.pdf
http://fs.unm.edu/NSS/EnergyandSpectrumAnalysis.pdf
http://fs.unm.edu/NSS/DombiIntervalValuedNeutro.pdf
http://fs.unm.edu/NSS/DombiIntervalValuedNeutro.pdf
http://fs.unm.edu/NSS/EntropyBasedSingleValued.pdf


                                    Neutrosophic Sets and Systems, Vol. 31, 2020 
University of New Mexico  

 

Rohini, Venkatachalam, Dafik, Broumi and Smarandache, Operations of Single Valued Neutrosophic Coloring     

 

 

Operations of Single Valued Neutrosophic Coloring 

A. Rohini1, M. Venkatachalam2, *, Dafik3, Said Broumi4 and Florentin Smarandache5 

1,2 PG & Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore 641 029, Tamil Nadu, 

India; rohinia_phd@ kongunaducollege.ac.in 
3 University of Jember, CGANT-Research Group, Department of Mathematics Education, Jember 68121, Indonesia; 

d.dafik@unej.ac.id 
4 Laboratory of Information Processing, Faculty of Science Ben M’Sik, University Hassan II, B.P 7955, Sidi Othman 

Casablanca, Morocco; broumisaid78@gmail.com 
5
 Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM, 87301, USA; 

fsmarandache@gmail.com, smarand@unn.edu. 
* Correspondence: M. Venkatachalam; venkatmaths@kongunaducollege.ac.in 

Abstract: Smarandache introduced the concept of Neutrosophic which deals with membership, 

non-membership and indeterminacy values. Wang discussed the Single Valued Neutrosophic sets in 

2010. Single Valued Neutrosophic graph was introduced by Broumi and in 2019 Single Valued 

Neutrosophic coloring was introduced. In this paper, some properties of the Single Valued 

Neutrosophic Coloring of Strong Single Valued Neutrosophic graph, Complete Single Valued 

Neutrosophic graph and Complement of Single Valued Neutrosophic graphs are discussed. 

 

Keywords: single-valued neutrosophic graphs; single-valued neutrosophic vertex coloring; strong 

single-valued neutrosophic graph; complete single-valued neutrosophic graph. 

 

 

1. Introduction 

Francis Guthrie’s four-color conjecture was reasoned for the development of the new branch of 

graph coloring in graph theory. Graph coloring is assigning labels to the vertices or edges or both 

vertices and edges. Distinct vertices received different colors are called proper coloring. Graph 

coloring technique used in many areas like telecommunication, scheduling, computer networks etc. 

   Most of the problems are not only deals the accurate values, sometimes handle vague values. 

Fuzzy sets were introduced by Zadeh [29] in 1965, dealt imprecise values in his work. Fuzzy graph 

theory concept was developed by Rosenfeld [25] in 1975. Munoz et al. [27] in 2004 and Eslahchi, 

Onagh [19] in 2006 discussed the fuzzy chromatic number and its properties. 

Kassimir T. Atanassov [11] introduced the concept of intuitionistic fuzzy sets in 1986 and 

intuitionistic fuzzy graph in 1999. The intuitionistic graphs are handled membership and 

non-membership values. Vague set concept introduced by Gau and Buehrer [21] in 1993. In 2014, 

Akram et al. [9] discussed vague graphs and further work extended by Borzooei et al. [12, 13]. Vertex 

and Edge coloring of Vague graphs were introduced by Arindam Dey et al. [10] in 2018. 

Neutrosophic set was introduced by F. Smarandache [25] in 1998, it’s a generalization of the 

intuitionistic fuzzy set. It consists of membership value, indeterminacy value and non-membership 

value. Neutrosophic logic play a vital role in several of the real valued problems like law, medicine, 
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industry, finance, engineering, IT, etc. Wang et al. [28] worked on Single valued neutrosophic sets in 

2010. Strong Neutrosophic graph and its properties were introduced and discussed by Dhavaseelan 

et al. [20] in 2015 and Single valued neutrosophic concept introduced in 2016 by Akram and 

Shahzadi [6, 7, 8]. Broumi et al. [14, 15, 16, 17, 18] extended their works in single valued neutrosophic 

graphs, interval valued neutrosophic graphs (IVNG) and bipolar neutrosophic graphs. Abdel-Basset 

et al. used Neutrosophic concept in their papers [1, 2, 3, 4, 5] to find the decisions for some real-life 

operation research and IoT-based enterprises in 2019. In 2019, Jan et al. [23] have reviewed the 

following definitions: Interval-Valued Fuzzy Graphs (IVFG), Interval-Valued Intuitionistic Fuzzy 

Graphs (IVIFG), Complement of IVFG, SVNG, IVNG and the complement of SVNG and IVNG. They 

have modified those definitions, supported with some examples. Neutrosophic graphs happen to 

play a vital role in the building of neutrosophic models. Also, these graphs can be used in 

networking, Computer technology, Communication, Genetics, Economics, Sociology, Linguistics, 

etc., when the concept of indeterminacy is present. 

In this research paper, the bounds of single valued neutrosophic vertex coloring for SVNG, 

Complement of SVNG are determined and discussed some more operations on SVNG. 

Definition 1.1. [26] Let X be a space of points(objects). A neutrosophic set A in X is characterized by 

truth-membership function 𝑡𝐴(𝑥) , an indeterminacy-membership function 𝑖𝐴(𝑥)  and a 

falsity-membership function 𝑓𝐴(𝑥). The functions 𝑡𝐴(𝑥), 𝑖𝐴(𝑥), and 𝑓𝐴(𝑥) , are real standard or 

non-standard subsets of ]0−, 1+[ . That is, 𝑡𝐴(𝑥): 𝑋 → ]0−, 1+[ ,  𝑖𝐴(𝑥): 𝑋 → ]0−, 1+[  and 𝑓𝐴(𝑥): 𝑋 →

]0−, 1+[ and 0− ≤ 𝑡𝐴(𝑥) +  𝑖𝐴(𝑥) +  𝑓𝐴(𝑥)  ≤ 3+. 

Definition 1.2. [7] A single-valued neutrosophic graphs (SVNG) G = (X, Y) is a pair where X: N → 

[0,1] is a single-valued neutrosophic set on N and Y: N × N → [0,1] is a single-valued neutrosophic 

relation on N such that 

𝑡𝑌(𝑥𝑦) ≤ min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) ≤ min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) ≤ max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x, y ∈ N. X and Y are called the single-valued neutrosophic vertex set of G and the 

single-valued neutrosophic edge set of G, respectively. A single-valued neutrosophic relation Y is 

said to be symmetric if t𝑌(xy)  = t𝑌(yx),  i𝑌(xy)  =  i𝑌(yx) and f𝑌(xy)  =  f𝑌(yx), for all x,y ∈ N. 

Single-valued neutrosophic be abbreviated here as SVN. 

2. Single-Valued Neutrosophic Vertex Coloring (SVNVC) 

In this section, discussed the bounds of SVNVC for the resultant SVNG by some operations on 

SVNG, CSVNG and complement of SVNG. Also discussed some theorems. 

Definition 2.1. [24] A family Γ = {𝛾1, 𝛾2, … , 𝛾𝑘} of SVN fuzzy set is called a k-SVNVC of a SVNG G = 

(X, Y) if 

1. ∨ 𝛾𝑖(𝑥) = 𝑋, ∀𝑥 ∈ 𝑋 

2. 𝛾𝑖 ∧ 𝛾𝑗 = 0 
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3. For every incident vertices of edge xy of G, min{𝛾𝑖(𝑚1(𝑥)), 𝛾𝑖(𝑚1(𝑦))} =  0,

min{𝛾𝑖(𝑖1(𝑥)), 𝛾𝑖(𝑖1(𝑦))} = 0 𝑎𝑛𝑑 max{𝛾𝑖(𝑛1(𝑥)), 𝛾𝑖(𝑛1(𝑦))} = 1, (1 ≤ 𝑖 ≤ 𝑘).   

This k-SVNVC of G is denoted by 𝜒𝑣(𝐺), is called the SVN chromatic number of the SVNG G. 

 

Definition 2.2 A SVNG G = (X, Y) is called complete single-valued neutrosophic graph (CSVNG) if 

the following conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all x, y ∈ X. 

For any single value neutrosophic subgraph H of SVNG G, 𝜒𝑣(𝐻) ≤ 𝜒𝑣(𝐺) 

Theorem 2.3.  

For any SVNG with n vertices 𝜒𝑣(𝐺) ≤ 𝑛. 

Proof: 

By the observation that the CSVNG with n vertices has the SVNVC is n. All the other graphs with n 

vertices are subgraphs of the CSVNG, it is clear by the above observation. Hence 𝜒𝑣(𝐺) ≤ 𝑛. 

 

Definition 2.4 Let 𝐺1 = (𝑋1, 𝑌1) and 𝐺2 = (𝑋2, 𝑌2)  be single-valued neutrosophic graphs of𝐺1
∗ =

(𝑉1, 𝐸1) and 𝐺2
∗ = (𝑉2, 𝐸2), respectively. The union G1 ∪ G2 is defined as a pair (X, Y) such that 

𝑡𝑋(𝑥) = {

𝑡𝑋1
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉1𝑎𝑛𝑑 𝑥 ∉ 𝑉2,

𝑡𝑋2
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉2𝑎𝑛𝑑 𝑥 ∉ 𝑉1,

max (𝑡𝑋1
(𝑥), 𝑡𝑋2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2.

 

𝑖𝑋(𝑥) = {

𝑖𝑋1
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉1𝑎𝑛𝑑 𝑥 ∉ 𝑉2,

𝑖𝑋2
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉2𝑎𝑛𝑑 𝑥 ∉ 𝑉1,

max (𝑖𝑋1
(𝑥), 𝑖𝑋2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2.

 

 

𝑓𝑋(𝑥) = {

𝑓𝑋1
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉1𝑎𝑛𝑑 𝑥 ∉ 𝑉2,

𝑓𝑋2
(𝑥), 𝑖𝑓 𝑥 ∈ 𝑉2𝑎𝑛𝑑 𝑥 ∉ 𝑉1,

min (𝑓𝑋1
(𝑥), 𝑓𝑋2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝑉1 ∩ 𝑉2.

 

𝑡𝑌(𝑥𝑦) = {

𝑡𝑌1
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2,

𝑡𝑌2
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸2𝑎𝑛𝑑 𝑥 ∉ 𝐸1,

max (𝑡𝑌1
(𝑥), 𝑡𝑌2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝐸1 ∩ 𝐸2.

 

𝑖𝑌(𝑥𝑦) = {

𝑖𝑌1
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2,

𝑖𝑌2
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸2𝑎𝑛𝑑 𝑥 ∉ 𝐸1,

max (𝑖𝑌1
(𝑥), 𝑖𝑌2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝐸1 ∩ 𝐸2.

 

𝑓𝑌(𝑥𝑦) = {

𝑓𝑌1
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸1𝑎𝑛𝑑 𝑥 ∉ 𝐸2,

𝑓𝑌2
(𝑥𝑦), 𝑖𝑓 𝑥𝑦 ∈ 𝐸2𝑎𝑛𝑑 𝑥 ∉ 𝐸1,

min (𝑓𝑌1
(𝑥), 𝑓𝑌2

(𝑥)) ,   𝑖𝑓 𝑥 ∈ 𝐸1 ∩ 𝐸2.

 

For any SVNGs 𝐺1 = (𝑋1, 𝑌1) and 𝐺2 = (𝑋2, 𝑌2), 𝜒𝑣(𝐺1 ∪ 𝐺2) = 𝑚𝑎𝑥{𝜒𝑣(𝐺1), 𝜒𝑣(𝐺2)}. 

Definition 2.5 [8] The complement of a SVNG G = (X, Y) is a SVNG 𝐺̅ = (𝑋̅, 𝑌̅), where 

1. 𝑋̅ = 𝑋 

2. 𝑡𝑋̅(𝑥) = 𝑡𝑋(𝑥), 𝑖𝑋̅(𝑥) = 𝑖𝑋(𝑥), 𝑓𝑋̅(𝑥) = 𝑓𝑋(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 
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3. 𝑡𝑋̅(𝑥𝑦) = {
min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}                 𝑖𝑓  𝑡𝑌(𝑥𝑦) = 0

min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)} − 𝑡𝑌(𝑥𝑦)  𝑖𝑓  𝑡𝑌(𝑥𝑦) > 0
 

    𝑖𝑋̅(𝑥𝑦) = {
min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}                 𝑖𝑓  𝑖𝑌(𝑥𝑦) = 0

min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)} − 𝑖𝑌(𝑥𝑦)  𝑖𝑓  𝑖𝑌(𝑥𝑦) > 0
 

    𝑓𝑋̅(𝑥𝑦) = {
max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}                   𝑖𝑓  𝑓𝑌(𝑥𝑦) = 0

max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)} − 𝑓𝑌(𝑥𝑦)  𝑖𝑓  𝑓𝑌(𝑥𝑦) > 0
 

for all 𝑥, 𝑦 ∈ 𝑋. 

 

Theorem 2.6. For any SVNG 𝐺  with 𝑛  vertices, 2√𝑛 ≤  𝜒𝑣(𝐺) + 𝜒𝑣(𝐺̅) ≤ 2𝑛  and 𝑛 ≤

 𝜒𝑣(𝐺)𝜒𝑣(𝐺̅) ≤ 𝑛2. 

    Let every vertex of G has n − 1 adjacent vertices, then by the definition of complement of SVNG 

each vertex of 𝐺̅ has the lesser than or equal to n − 1 adjacent vertices. Hence, the inequalities true 

for all SVNG. Thus, 2√𝑛 ≤  𝜒𝑣(𝐺) + 𝜒𝑣(𝐺̅) ≤ 2𝑛 and 𝑛 ≤  𝜒𝑣(𝐺)𝜒𝑣(𝐺̅) ≤ 𝑛2. 

Definition 2.7. 

A SVNG G = (X, Y) is called strong single-valued neutrosophic graph (SSVNG) if the following 

conditions are satisfied:  

𝑡𝑌(𝑥𝑦) = min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}, 

𝑖𝑌(𝑥𝑦) = min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}, 

𝑓𝑌(𝑥𝑦) = max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}, 

for all (x,y) ∈ Y . 

Observation 2.8 

For any SSVNG G with n vertices, 2√𝑛 ≤  𝜒𝑣(𝐺) + 𝜒𝑣(𝐺̅) ≤ n + 1 and 𝑛 ≤  𝜒𝑣(𝐺)𝜒𝑣(𝐺̅) ≤ (
𝑛+1

2
)2. 

Given that G is SSVNG and the complement of G is defined by 𝐺̅ = (𝑋̅, 𝑌̅), where 

1. 𝑋̅ = 𝑋 

2. 𝑡𝑋̅(𝑥) = 𝑡𝑋(𝑥), 𝑖𝑋̅(𝑥) = 𝑖𝑋(𝑥), 𝑓𝑋̅(𝑥) = 𝑓𝑋(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 

3. 𝑡𝑋̅(𝑥𝑦) = {
min{𝑡𝑋(𝑥), 𝑡𝑋(𝑦)}                 𝑖𝑓  𝑡𝑌(𝑥𝑦) = 0

            0                                   𝑖𝑓  𝑡𝑌(𝑥𝑦) > 0
 

   𝑖𝑋̅(𝑥𝑦) = {
min{𝑖𝑋(𝑥), 𝑖𝑋(𝑦)}                 𝑖𝑓  𝑖𝑌(𝑥𝑦) = 0

              0                                  𝑖𝑓  𝑖𝑌(𝑥𝑦) > 0
 

   𝑓𝑋̅(𝑥𝑦) = {
max{𝑓𝑋(𝑥), 𝑓𝑋(𝑦)}            𝑖𝑓  𝑓𝑌(𝑥𝑦) = 0

           0                                     𝑖𝑓  𝑓𝑌(𝑥𝑦) > 0
 

for all 𝑥, 𝑦 ∈ 𝑋. Hence, the above inequalities hold.  

 

Theorem 2.9.  For a path graph 𝑃𝑛 , 𝜒𝑣(𝑃𝑛) = 2 where 𝑛 ≥ 2. 

Let Γ = {𝛾1, 𝛾2} be a family of SVN fuzzy sets defined on V as follows: 

𝛾1(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑

           (0,0,1)                𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛
 

𝛾2(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛

           (0,0,1)                   𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑
 

 

Hence the family Γ = {𝛾1, 𝛾2}  fulfilled the conditions of SVNVC of the graph G. Hence the SVN 

chromatic number of 𝑃𝑛 is 𝜒𝑣(𝑃𝑛) = 2. 
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Theorem 2.10.  For a cycle graph 𝐶𝑛 , 𝜒𝑣(𝐶𝑛) = {
2 𝑖𝑓 𝑛 = 𝑒𝑣𝑒𝑛
3 𝑖𝑓 𝑛 = 𝑜𝑑𝑑

 where 𝑛 ≥ 3. 

For n is odd: 

Let Γ = {𝛾1, 𝛾2, , 𝛾3} be a family of SVN fuzzy sets defined on V as follows: 

𝛾1(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 1,3,5, … , 𝑛 − 2

     (0,0,1)                       𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

𝛾2(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 2,4,6, … , 𝑛 − 1

(0,0,1)                 𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

    𝛾3(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))                       𝑓𝑜𝑟 𝑖 = 𝑛

         (0,0,1)                                     𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟𝑠
 

Hence the family Γ = {𝛾1, 𝛾2, , 𝛾3} fulfilled the conditions of SVNVC of the graph G. Hence the SVN 

chromatic number 𝜒𝑣(𝐶𝑛) = 3.  

For n is even: 

Let Γ = {𝛾1, 𝛾2} be a family of SVN fuzzy sets defined on V as follows: 

𝛾1(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑

           (0,0,1)                𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛
 

                           𝛾2(𝑥𝑖) = {
(𝑡(𝑥𝑖), 𝑖(𝑥𝑖), 𝑓(𝑥𝑖))      𝑓𝑜𝑟 𝑖 = 𝑒𝑣𝑒𝑛

           (0,0,1)                   𝑓𝑜𝑟 𝑖 = 𝑜𝑑𝑑
 

Hence the family Γ = {𝛾1, 𝛾2} fulfilled the conditions of SVNVC of the graph G. Hence the SVN 

chromatic number 𝜒𝑣(𝐶𝑛) = 2. 

 

Theorem 2.11.  For any graph SVNG, 𝜒𝑣(𝐺) ≤ ∆(𝐺) + 1. 

Here ∆(𝐺) denotes the number of edges incident with a vertex of SVNG G, hence the result is true 

for all SVNG. 

3. Conclusions  

Graph Coloring is an useful technique to solve many real life problems which are easily converted as 

graph models. SVNG is dealt with vague and imprecise values. Single Valued Neutrosophic 

Coloring concept was introduced by the authors in [24]. In this paper, we discussed few more results 

of SVNVC using CSVNG and Complement of SVNG. We have an idea to extend the concept of 

SVNVC with irregular coloring and dominating coloring technique in future.  
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Abstract: In the structure of nature, we believe that there is an underlying knowledge in all the 

phenomena we wish to understand. Mainly in the area of epidemiology we often tend to seek the 

structure of the data obtained, pattern of the disease, nature or cause of its emergence among living 

organisms. Sometimes, we could see the outbreak of disease is ambiguous and the exact cause of 

the disease is unknown. A significant number of algorithms and methods are available for 

clustering disease data. We could see that literature has no traces of including indeterminacy or 

vagueness in data which has to be much concentrated in epidemiological field. This study analyzes 

the attack of dengue in 26 districts of Sri Lanka for the period of seven years from 2012 to 2018. 

Clusters with low risk, medium risk and high risk areas affected by dengue are identified. In this 

paper, we propose a new algorithm called Neutrosophic-Fuzzy Hierarchical Clustering algorithm 

(NFHC) that includes indeterminacy. Proposed algorithm is compared with fuzzy hierarchical 

clustering algorithm and hierarchical clustering algorithm. Finally the results are evaluated with 

the benchmarking indexes and the performance of the clustering algorithm is studied. NFHC has 

performed a way better than the other two algorithms. 

Keywords: Dengue; Hierarchical clustering; Fuzzy hierarchical clustering; Neutrosophic Logic 

 

1. Introduction 

Emerging and re-emerging infectious diseases which are transmitted to the environment is a 

great threat to human living. The infections can take many forms and it can seriously affect human 

health. Dengue is one among the disease which causes severe outbreaks in many regions of the 

world. Its prevalence, incidence and geographic distribution are demanding a divisive applicable 

plan for control measures against dengue fever. In this case the complete structure of data and 

regions affected by dengue has to be known. Many situations exist that the ambiguity arises in 

finding a solution to the problem. Clustering and Classification are the most commonly encountered 

knowledge-discovery technique. Clustering is used in numerous applications such as disease 

detection, market analysis, medical diagnosis etc. The study concentrates on Sri Lankan dengue data 

analysis. Dengue fever occurs in the background of heavy rain and flooding and has affected 

almost26 districts in Sri Lanka. The country has reported 51659 cases in the year 2018 and 

approximately 41.2 % cases identified in western province alone[1]. In Pakistan, dengue has 

progressed towards becoming a risk for general wellbeing because of inaccessibility of vaccination, 

unclean water, highly populated territories and low quality of sanitation and sewage [2]. There have 

been a number of researches done on dengue fever diagnosis and numerous methods have been 

proposed using classification and clustering techniques for dengue analysis. G.P.Silveria proposed 
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evolution technique of dengue risk analysis or prediction using the model Takagi-Sugeno. 

Takagi-Sugeno model included parameters such as human population density, density of potential 

mosquito breeding and rainfall. The fuzzy rules were developed using partial differential equations 

for Low, Medium and High dengue affected areas. The uncertainty factor considered in this study is 

the breeding period and the maturation of mosquito eggs and Silveria considered rainfall as a factor 

for the increase or decrease in the population of mosquitoes [3]. The selection of Neutrosophic 

approach has increased in group decision making in vague decision environment. Neutrosophic 

approach with Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)[4] is 

considered for decision making process to deal with the vagueness and uncertainty by considering 

the data for the decision criteria. Neutrosophic environment provides a new technique in Multi 

Criteria Decision Making problem. Author Abdel-Basset M [5], has developed and integrated 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) into Decision-Making Trial 

and Evaluation Laboratory (DEMATEL) on a neutrosophic set that handles to overcome the 

ambiguity or the lack of information. He has applied on project selection criteria where the best 

alternatives are provided by the neutrosophic approach.  

This paper mainly focuses on the finding of Dengue affected areas using the clustering 

technique found. The clusters are formed as low risk, medium risk and high risk areas. It helps the 

public sectors to concentrate particularly on that area for the remedial measures that are to be 

considering for the wellbeing of the society. Based on the neutrosophic approach, the clustering for 

the low risk, medium risk and high risk areas are identified and clustered.  

2. Related Work 

The ambiguity or uncertainty representation or handling of incomplete knowledge becomes a 

vital problem in the field of computer science. Researchers from various fields have dealt with 

vague, indeterminate, imprecise and sometimes insufficient information of uncertain data. The 

concept of uncertainty is usually handled by probabilistic approach. Soft computing techniques also 

deals with these problems such as called fuzzy sets [6] and intuitionistic fuzzy sets [7] and rough 

sets. Fuzzy logic is a collection of mathematical values for representing and understanding is based 

on membership degrees rather than the crisp membership of traditional binary logic. It leads to more 

human intelligent machines as fuzzy logic tries to model the human feeling of words, 

decision-making and common sense[8]. 

Unlike Boolean’s two-valued logic, Fuzzy logic is multi-valued logic. Matrices play an 

important role in representation of the real world problems of science and engineering. Therefore, a 

few authors have proposed a matrix representation of fuzzy sets and intuitionistic fuzzy sets 

[9,10,11,12,13,14,15,16,17]. Fuzzy set and Intuitionistic Fuzzy Set deals with the membership and 

non-membership values. Membership value shows the truthiness of the algorithm which is 

classified or clustered. Non-membership values show the falsity of the data that it doesn’t belong to 

that class. 

For some reasons, the calculation of non-membership value is not always possible as in the case 

of membership values. So, there exists some indeterministic that part depicts the ambiguity in fuzzy 

logic. Subsequently, Smarandache [18, 19] introduced the term Neutrosophic Set (NS), which is 

formed as a generalization of classical set, fuzzy set, intuitionistic fuzzy set. The literature [20-24] 

shows the growth of decision-making algorithms over neutrosophical set theory. 

Neutrosophic logic that shows the clear separation between the” relative truth” and” absolute 

truth” while the fuzzy logic does not show any separation. Smarandache Florentine proposed the 

concept of neutrosophic logic based on nonstandard analysis by Abraham Robinson in 1960s. 

Generally, we can say that the available disease information in inherently unclear and unpredictable. 

In real life issues, an element of indeterminacy exists and in this respect, neutrosophic logic can be 

used. Neutrosophic logic generalizes fuzzy, intuitive, boolean, para-consistent logic etc. 
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In many medical diagnosis and study of diseases, the indeterminacy or falsity in the input is not 

captured so far. It is seen from the literature that the concept of neutrosophic logic is not applied 

much on medical diagnosis. Neutrosophic clustering technique is neither employed nor applied to 

any medical applications. Some of the applications of neutrosophic logic are Social Network 

Analysis, Financial Market Information, Neutrosophic Security, Neutrosophic cognitive maps, 

Application to Robotics etc. 

 

2.1 Machine Learning on Dengue 

  

 Many authors have concentrated on Machine Learning algorithms for classification and 

prediction of various diseases. In over 100 nations, dengue is endemic and causes an estimated 50 

million infections per year. Nearly 3.97 billion individuals are at danger of infection from 128 nations 

[25]. Machine Learning algorithms such as Regression Models, Decision Tree, Artificial Neural 

Network, Rough Set Theory, Support Vector Machine etc. are successfully applied [26]. Daranee 

Thitiprayoonwongse et al proposed a hybrid technique combining a decision-making tree with a 

fuzzy logic approach to constructing a model for dengue infection. Author obtained a set of rules 

from decision tree and transformed to fuzzy rules. The results were better by combining fuzzy and 

decision tree approaches [27]. Torra [28], has proposed a fuzzy hierarchical clustering for 

representing the documents. Fuzzy hierarchical clusters are used in order to assure that the clusters 

are small enough by giving low information loss. 

This research mainly focuses on clustering of Dengue disease in various parts of Sri Lanka. 

Increased risk to infectious diseases was recognized as one of five main emerging threats to public 

health resulting from the changes in the natural environment [29]. Diseases caused by mosquitoes 

are a specific danger to humans. The danger of transmission relies on climate variables that regulate 

mosquito habitat development [30-32]. This paper discusses the possibilities to exploit neutrosophic 

logic in epidemiology domain. In many cases, the representational parameters which include 

temperature and humidity as mentioned by [30-32] the climatic variables could also be a part in 

spread of disease. Most of the cases are rare that all the external parameters are considered, which 

leads to a chaos about conclusion to be drawn. 

So the developed system should adapt to the conditions that are uncontrollable or 

unanticipated. In this case indeterminacy plays an important role. The concept of indeterminacy is 

handled or explained in a improvised way by neutrosophic logic. A better approach for all the above 

is Neutrosophic logic. 

3. Proposed Work 

 Clustering can be seen as an practical problem in pattern recognition in unsupervised learning. 

Problems can be size of dataset, number of clusters to be formed, there is no ground truth solution 

unlike classification problems. The goal is to partition the data set into a certain number of natural 

and homogeneous sets where each set’s elements is as similar as possible and different from the 

other sets. In real world applications, cluster separation is a fuzzy concept and therefore the idea of 

fuzzy subsets provides particular benefits over standard clustering [33]. This research proposes a 

hybridized technique for hierarchical clustering by amalgamation of fuzzy and neutrosophic 

approach. There by, the proposed algorithm gains the benefits of addressing imprecise, 

indeterministic, vague and uncertain data. 

3.1. Hierarchical Clustering (HC) 

 In the process of hierarchical clustering, a distance matrix (D) is constructed where; dij is the 

distance between the cities. During clustering, ith and jth locations are merged into a cluster and 

distance matrix is updated. Eventually, the cities are merged based on the similarity measure and 

the dimension of D gets reduced on every step of merging. Hierarchical clustering is categorized 
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based on the method of merging. It includes Single, Complete, Average, Centroid, Median and 

Ward. Merging clusters based on minimum distance between each element is called single linkage 

clustering. Clustering based on maximum distance between each element is complete linkage 

clustering, clustering the mean distance between each element is average linkage clustering, 

clustering is done by mean values of one group with the mean values on other group elements is 

centroid clustering. To overcome the disadvantage of centroid method the median of two groups are 

clustered is called median linkage clustering. Median linkage clustering is suitable for both 

similarity and distance measures. Wards method calculates the sum of the squares of the distance 

between the elements Pi and Pj, where Pi and Pj are the location of the elements in ith and jth positions. 

The distance matrix is formed by using the Euclidean equation. Single, complete and average 

link are defined by the way of merging the cities based on nearest, farthest and average distance 

respectively. 


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Where i,j are the location of cities and n, k are the number of cities. 

Distance matrix here with dimension of 26×26 is formed. It is constructed on the basis of equation 

3.1.Once the distance matrix is formed and based upon the method of hierarchical clustering, 

clusters are generated. 

3.2. Fuzzy Hierarchical Clustering(FHC) 

 Given a set of objects, a fuzzy hierarchical framework has been implemented to construct 

clusters. The methodbegins to establish a fuzzy partition that uses the membership formula[34]. The 

membership matrix is calculatedusing the equation 3.2 which gives distance between each of the 

object, here it represents the cities. 
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where n is the number of locations, m is the weighting parameter or fuzzifier, r is the number of 

iterations used for convergence. There is no theoretical optimumchoice of m in literature. The range 

is usually between 1.25 - 2 [35] and here we have choosen value 2. Theinitial membership matrix(µ) 

is formed using equation (3.2). We have formed a fuzzy measure for objects.Here one object can 

belong to various clusters with the varying membership values ranging from 0 to 1. Valuesfalling 

between these endpoints (from low toextremely favorable clustering) were mapped as 

membershipdegrees. The non-membership value also called as falsity value, represented as [36]. It 

is calculated using thefollowing equation, 
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where, λ is the weighted parameter value ranging from 0 to 1. Here the value of λ is taken as 0.8. 

3.3. Neutrosophic Fuzzy Hierarchical Clustering(NFHC) 

The notion of a neutrosophical set was initially proposed by Smarandache [37]. A 

neutrosophical set A isdefined by a universal set X with truth-membership function TA, a 

falsity-membership function FA and anindeterminacy-membership function IA. Here,TA(x),FA(x) and 
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IA(x) are the real standard sets of values]0; 1+[, i.e., TA(x): X → ]0; 1+[, IA(x): X → ]0; 1+[, and FA(x):X 

→ ]0; 1+[. The indeterminancy-value whichis also denoted by π is given by, 
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From equation (3.2),(3.3) and (3.4), a neutrosophic triplet matrix is obtained. Table 2A shows a 

sample tripletmatrix. Before performing clustering, triplet matrix (µ, π, ) [38] is converted into 

scalar value matrix using normalized hamming distance. The normalized hamming distance [39] 

between two locations P and Q is defined 


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To perform the clustering part. the triplet matrix is converted into a scalar value using equation 

(3.5)[40]. The neutrosophic weights of a triplet matrix is converted into scalar weights. The resultant 

matrix is aneutrosophic matrix and HC is applied for clustering, there by we get a neutrosophic 

fuzzy clusters. 

The dataset consists of dengue reported cases in 26 cities of Sri Lanka. Data is collected for six 

consecutiveyears from 2012 to 2018. First step is finding out the diatnce matrix (D) using the 

equation (3.1). The matrixformed here is 26×26 as distance matrix. Using equation (3.2), (3.3) and 

(3.4) triplet matrix of (µ, π, ) iscalculated. By using equation (3.5) the neutrosophic triplet matrix is 

converted to function matrix with scalarvalue upon which hierarchical clustering is formed. 

Example of the membership matrix obtained for different years. The representation for the year 2012 

is given in table 1A. 

We then perform the process of hierarchical clustering using algorithm 1, for the results 

diaplayed in table1A. HC is applied on each year and clusters are formed for each consecutive year 

from 2012 to 2018. HC hasdifferent methods such as single, complete, wighted, centroid, median and 

ward. 
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In the second step, the value of falsity or the non-membership is determined using the formula 

(3.3). The set of values in each column of the matrix represents (µ, π, ) for each location. 

Finally, the neutrosophic matrix is constructed using equation (3.4). The obtained result is a 

triplet of the form (0.9425, 0.0752 and 0.0603). The triplet matrix expresses the truthness, falsity and 

indeterminacy value of each location paired with all other locations in the dataset. Similar matrix of 

26×26 is obtained for all consecutive years starting from 2012 to 2018. Now find the similarity 

between each pair of objects in and neutrosophic triplet matrix. 

The Euclidean distance matrix, membership matrix and triplet matrix is calculated using 

algorithm 2. The data is taken from the year 2012 to 2017 as training data. Once the algorithm is 

implemented, it has to be tested for its accuracy and how well the proposed algorithm works. The 

process is applied on data set for the year 2018 and the clusters are formed. The predicted clusters 

are compared with the actual data for all the 26cities. Several performance indices techniques are 

elaborated in section 5. 

 

4. Dataset Descriptions 

 The data is collected from Epidemiology Unit Ministry of Sri Lanka. The dengue cases are 

collected for six consecutive years from 2012 to 2017. The data can be downloaded from thesite [41]. 

Data consist of 26 locations in Sri Lanka such as Colombo, Gampaha, Kalutara, Kandy, Matale, N 

Eliya, Galle, Hambantota, Matara, Jaffna, Kilinochchi, Mannar, Vavuniya, Mulativu, Batticaloa, 

Ampara, Trincomalee, Kurunegala, Puttalam, Apura, Polonnaruwa, Badulla, Moneragala, 

Ratnapura, Kegalle and Kalmunai. 

 

Table 1 List of Cities in Sri Lanka 

Cities Names 

1 Colombo 

2 Gampaha 

3 Kalutara 

4 Kandy 

5 Matale 

6 N Eliya 

7 Galle 

8 Hambantota 

9 Matara 

10 Jaffna 

11 Kilinochchi 

12 Mannar 

13 Vavuniya 

14 Mulativu 

15 Batticola 
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16 Ampara 

17 Trincomalee 

18 Kurunegala 

19 Puttalam 

20 Apura 

21 Polonnaruwa 

22 Badulla 

23 Moneragala 

24 Ratnapura 

25 Kegalle 

26 Kalmunai 

 

 
5. Experimental Results 

5.1. Inconsistency Coefficient 

The relative consistency of each link in a formed hierarchical cluster is quantified as 

inconsistency coefficient. When the links are more consistent, the neighboring links have 

approximately same length. Inconsistency coefficient of each link compares its height with the 
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average height of other links from the same level of hierarchy. When the links have larger the 

coefficient there exists greater the difference between the objects connected by the link. When the 

difference between the link values is very small, it is difficult to make conclusions. Hence higher the 

inconsistency gives better clustering. Inconsistency value for different links is tabulated in Table 2. 

Considering the results from table 2, the maximum difference between the links in neutrosophic 

fuzzy hierarchical clustering is identified. When the tree is cut at maximum linkage, the resulting 

clusters are found to be three clusters. The number of clusters is identified using inconsistency 

coefficient. With the inconsistency value and the number of cluster, data is divided into three parts 

such as low risk, medium risk and highly affected dengue areas in Sri Lanka. Neutrosophic Fuzzy 

Hierarchical Clustering has shown highest inconsistent values such as 0.9168, 0.8714, 0.7721, 0.7428 

and 0.7216 for single linkage clustering, complete linkage clustering, centroid, median and ward 

method respectively. The results are better in a way as NFHC has given the maximum distance 

between the links compared with other two techniques. 

 

Table 2. Inconsistency Coefficient of a tree cut in Hierarchical Clustering. 

 
Cluster 

Link 
Single Complete Centroid Median Ward 

HC 
I-2 

links 
0.7071 0.7083 0.6931 0.6682 0.6581 

HC 
I-3 

links 
0.8913 0.9078 0.8691 0.7671 0.7891 

HC 
I-4 

links 
0.6247 0.6901 0.5926 0.6347 0.6874 

FHC 
I-2 

links 
0.7629 0.7145 0.7526 0.6921 0.7021 

FHC 
I-3 

links 
0.8970 0.8825 0.8191 0.7421 0.7334 

FHC 
I-4 

links 
0.5236 0.6971 0.5626 0.6477 0.6792 

NHFC 
I-2 

links 
0.7461 0.7971 0.7526 0.7126 0.6986 

NHFC 
I-3 

links 
0.9168 0.8714 0.7721 0.7428 0.7126 

NHFC 
I-4 

links 
0.6326 0.5910 0.6812 0.6809 0.6574 

 

Figure 1 depicts NFHC clustering applied on dataset for the year 2018. The value in the x-axis 

represents the cities and y-axis represents the tree cut. Figure 1 is visualized in shape map of Sri 

Lanka. Based on the inconsistency-coefficient the tree is cut into three clusters. Clustering for the 

year 2012-2018 is given in figure 3. It has shown effective clustering based on the performance 

indices explained in section 5.2. 
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Figure 1: Dendrogram representation of NFHC on dengue data for year 2018 

 

 

 

 

5.2. Performance Indices 

 Performance indices are used to assess clustering algorithms performance. The literature 

contains several performance indices. The Silhouette Coefficient [42], Davis-Bouldin (DB) index [43] 

and Dunn (D) index [44] are some of the most popular indicators of effectiveness assessment.  

 

Figure 2: NFHC Cluster Visualization for Year 2018, Green-low risk, Yellow-medium risk, Red-high risk. 

5.2.1. Silhouette Coefficient 

Silhouettee index is an index of cluster validity used to evaluate the performance of any cluster. 

An element’ssilhouette index describes its proximity to its own cluster with its proximity to other 

clusters. A clusters silhouette width s(x) is described as, 

)](),(max[

)(
)()(

xaxb

xa
xbxs −=        (5.1) 



Neutrosophic Sets and Systems, Vol. 31, 2020 188  

 

 

Vandhana S and J Anuradha, Neutrosophic Fuzzy Hierarchical Clustering for Dengue Analysis in Sri Lanka    

 

where, a(x) and b(x) are the similarities of the clusters. The average silhouette width of all 

clusters is the silhouette index of the entire clustering. Silhouette index is used to indicate the 

compactness and segregation of clusters. The silhouette index value ranges from -1 to 1 and a better 

clustering outcome is indicated by its greater values. The silhouette coefficient of neutrosophic fuzzy 

hierarchical clustering is high with the value of 0.7163, stating that the performance of Neutrosophic 

fuzzy hierarchical clustering is better than hierarchical clustering and fuzzy hierarchical clustering 

with the score of 0.6782 and 0.5137 respectively. 

 

5.2.2. Davis-Bouldin (DB) index 

The DB index is described as the cluster-to-cluster distance proportion of the amount of data. It 

is formulated in the following way, 
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The DB index seeks at minimizing cluster separation and maximizing cluster distance. The 

lower the DB index shows effective clustering. Our proposed algorithm Neutrosophic fuzzy 

hierarchical clustering has shown the lowest DB-index value of 2.5725 for the method of Single 

linkage clustering. Proposed algorithm has shown better results when compared to traditional 

algorithms. Experiment also reveals that fuzzy hierarchical clustering also performs better than 

traditional hierarchical clustering. However NFHC outperforms all. 

 

5.2.3. Dunn (D) index 

The D index is used to define clusters that are compact and separate. The calculation is as 

follows, 
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Dunn index’s objective is to maximize the distance between the clusters and minimize the 

distance within the cluster. An elevated D index therefore means better clustering. In our 

implementation, highest Dunn index is achieved for NFHC algorithm with the number 1.159 of 

highest among all other methods. It has shown better clustering compared to other algorithms. 

 

Table 3. Performance Metrics of HC, FHC, NFHC 

 Method 
Clustering 

HC FHC NHFC 

Silhouette 

Coefficient 

Single 0.1263 0.6782 0.7163 

Complete 0.2455 0.5763 0.6911 

Centroid 0.4726 0.5922 0.6729 

Median 0.5137 0.5501 0.6905 

Ward 0.4968 0.4328 0.7077 

DB - Index 

Single 5.2637 3.4266 2.5725 

Complete 4.1258 2.4611 2.4627 

Centroid 4.2162 3.1249 2.6674 

Median 4.5018 3.6791 2.0169 

Ward 4.8679 3.0628 2.4209 

Dunn Index 

Single 0.5671 0.8241 1.134 

Complete 0.7744 0.7689 1.021 

Centroid 0.8671 0.7749 1.159 

Median 0.9632 0.9621 1.067 

Ward 0.8940 0.8017 1.116 
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From table 3, we can infer that, the cluster validation of neutrosophic fuzzy hierarchical 

clustering has shown better results compared with hierarchical clustering and fuzzy hierarchical 

clustering. The metrics such as silhouette coefficient, DB index and Dunn index states the excellence 

of thee proposed model. The best values of silhouette cluster analysis is found in NFHC with 0.7163 

for single link, 0.6911 for complete link, 0.6729 for centroid method, 0.6905 for median method and 

0.7077 in ward method. Silhouette coefficient has shown highest results in NFHC for all 5 methods. 

DB index has also produced effective results in cluster analysis of NFHC. The lowest value of DB 

index is centroid method of NFHC with the value 2.6674 whereHC and FHC values for centroid 

method are 4.2162 and 3.1249 respectively. Other methods such as single,complete, median and 

ward has also given lowest values on NFHC comparing with FHC and traditional HC.Though DB 

index of complete method is good in FHC. FHC is also comparatively good when compared with 

traditional HC, as it has produced effective clustering that HC. Highest recorded Dunn index value 

is 1.159, for the method of centroid in NFHC. Final inference from NFHC is, it is giving better results 

on all the methods of clustering such as single, complete, centroid, median and ward when 

compared with same method on fuzzy hierarchical clustering and hierarchical clustering. 

It is evident from the table 3, that the proposed NFHC shows its superiority in its performance 

compared to other methods. Though the fuzzy hierarchical clustering has considered membership 

value for clustering and produced better clusters compared with HC clusters, NFHC outperforms 

the fuzzy results. Thus, proposed NFHC is better in a way as it handles or capable of handling any 

data even with indeterminacy or inconsistency. 

   

(a) Year 2012 (b) Year 2013 (c) Year 2014 
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(d) Year 2015 (e) Year 2016 (f) Year 2017 

 

Figure 3: Cluster Plot for NFHC, color depicts Green-low risk, Yellow-medium risk, Red-high risk. 

 

The visualization part in figure 3 clearly says that, the city of Colombo was in high risk area 

over the past seven years. The trend in Colombo city reveals that it is always in high risk area of 

dengue. In the year 2018, Colombo is the only highly affected area compared to all other cities in Sri 

Lanka. If the trend continues, the life of people at Colombo is in great threat. Looking into the cities 

in the middle of Sri Lanka such as Polonnaruwa, Matale, Polonnaruwa, Trincomalee and Kandy 

they have crossed the threshold of being in low risk area to medium risk area. This depicts that the 

states are gradually increasing in its dengue admissions. It is an important issue to be noted by the 

government, as in future these cities are in high risk of getting into a danger zone of dengue. 

Considering the southern cities of Sri Lanka, in the year 2012 the number of dengue cases was low. 

Over the five consecutive years it has shown the mixed results of being in medium and highly 

affected area. In the area of south, the control measures have to be taken strongly for cutting down 

the growth of dengue fever. The major pattern that is observed from the year 2012 to 2018 is that, 

none of the cities had reduced from reporting the dengue cases. It has always increased from one 

level to next level showing the spread of dengue in a drastic manner. 

 

6. Conclusions  

The study mainly identifies the areas that are affected dengue fever. Though many studies have 

touched the concept of clustering, the area of indeterminacy in clustering for the field of 

epidemiology is still under research. We used neutrosophic fuzzy hierarchical clustering and fuzzy 

hierarchical clustering in this article to cluster dengue fever in Sri Lanka. The purpose of 

neutrosophic fuzzy is, it can handle the indeterminate and inconsistent information where the fuzzy 

fails to handles that information. Cluster validation metrics has given better results in neutrosophic 

fuzzy hierarchical clustering than the other two algorithms of fuzzy hierarchical clustering and 

hierarchical clustering. Some of the findings from this study is that, Colombo is identified as highest 

dengue affected area, many of the cities are in the peak of threshold that it can move to the danger 

zone at any point of time. Re-emerging areas such as Galle, Matara, Hambantota, Ratnapura and 

Badulla are to be concentrated more so that the pattern of occurrence can be controlled in future. 

This method can be used in other fields so that the break out of any disease can be avoided earlier. In 

future, the algorithm can be extended for monitoring other diseases that are affected by 
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environmental and climatic variables. This model can also be extended as multi-criteria model for 

identifying the outbreak of hotspots and early warning systems. 
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Appendix A 

 The following matrices contain the supplementary data for the experimental work carried out. 

The data is given for the year 2012.  

 

 
Table A1 (a) represents Membership matrix (µ) for the cities C1 to C14 from Table 1 in section 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

0 0.5261 0.5423 0.6631 0.6217 0.8431 0.7456 0.4675 0.7634 0.7124 0.6419 0.6787 0.7123 0.6912

0.5261 0 0.4571 0.5863 0.2413 0.7512 0.6674 0.5931 0.7213 0.8012 0.7632 0.2745 0.5481 0.8456

0.5

C C C C C C C C C C C C C C

C

C

C

4

5

423 0.4571 0 0.7512 0.6942 0.4623 0.7561 0.5001 0.6417 0.7812 0.4123 0.8436 0.9845 0.1664

0.6631 0.5863 0.7512 0 0.8412 0.5679 0.4987 0.6782 0.6034 0.5846 0.3699 0.7415 0.5769 0.8462

0.6217 0.2413 0.6942 0.8412 0 0.7135 0.5671 0.67

C

C

6

7

46 0.5237 0.5713 0.5712 0.6716 0.9412 0.6565

0.8431 0.7512 0.4623 0.5679 0.7135 0 0.5172 0.4872 0.5716 0.4872 0.6742 0.4369 0.2145 0.7956

0.7456 0.6674 0.7561 0.4987 0.5671 0.5172 0 0.6813 0.4213 0.5716 0.7416 0.5716 0.6715 0.6135

C

C

8

9

10

0.4675 0.5931 0.5001 0.6782 0.6746 0.4872 0.6813 0 0.6148 0.5127 0.4137 0.8413 0.8422 0.8436

0.7634 0.7213 0.6417 0.6034 0.5237 0.5716 0.4213 0.6148 0 0.4219 0.5166 0.7168 0.6479 0.4696

0.7124 0.8012 0.7812 0.5846 0.5713 0.487

C

C

C

11

12

2 0.5716 0.5127 0.4219 0 0.5712 0.6741 0.9145 0.6713

0.6419 0.7632 0.4123 0.3699 0.5712 0.6742 0.7416 0.4137 0.5166 0.5712 0 0.4193 0.4785 0.6971

0.6787 0.2745 0.8436 0.7415 0.6716 0.4369 0.5716 0.8413 0.7168 0.6741 0.4193 0 0.51

C

C

13

14

36 0.8435

0.7123 0.5481 0.9845 0.5769 0.9412 0.2145 0.6715 0.8422 0.6479 0.9145 0.4785 0.5136 0 0.3469

0.6912 0.8456 0.1664 0.8462 0.6565 0.7956 0.6135 0.8436 0.4696 0.6713 0.6971 0.8435 0.3469 0

C

C

 
 
 



















 




















  

 

 

 

 

 

 

 

 

Table A1 (b) represents Membership matrix (µ) for the cities C15 to C26 from Table 1 in section 4. 
1 2 3 4 5 6 7 8 9 10 11 12 13 14

15

16

0.5197 0.5966 0.5523 0.8425 0.6656 0.8626 0.5946 0.6816 0.3266 0.3247 0.7486 0.9462 0.5653 0.6556

0.4128 0.4956 0.6595 0.5656 0.9463 0.2176 0.8956 0.6867 0.9562 0.7416 0.9512 0.6821 0.518

C C C C C C C C C C C C C C

C

C

17

18

19

5 0.5251

0.7946 0.6596 0.2648 0.8746 0.6941 0.1623 0.5952 0.7856 0.7953 0.9451 0.5623 0.1265 0.5659 0.7566

0.6843 0.3266 0.1654 0.6957 0.8946 0.7162 0.3266 0.2185 0.3256 0.1966 0.7152 0.3956 0.6748 0.7465

0.7069 0.8951 0.32

C

C

C

20

21

61 0.2154 0.1595 0.5451 0.5482 0.1782 0.6816 0.4845 0.7185 0.3497 0.6494 0.4896

0.8431 0.2546 0.3665 0.5955 0.8685 0.1656 0.6595 0.8466 0.4863 0.7566 0.8465 0.6645 0.5867 0.7451

0.7629 0.1655 0.1796 0.6456 0.8562 0.7161 0.6845

C

C

22

23

0.7136 0.6416 0.4986 0.7856 0.7565 0.3516 0.7413

0.5527 0.4652 0.7656 0.5966 0.7163 0.6145 0.5164 0.5651 0.4516 0.7166 0.6146 0.3556 0.3888 0.7463

0.6237 0.8455 0.5965 0.7465 0.9461 0.6858 0.7465 0.8592 0.4566 0.2156 0.3562 0.

C

C

24

25

26

4532 0.5666 0.4857

0.5179 0.8665 0.5165 0.6266 0.5169 0.5996 0.3566 0.7415 0.4566 0.6856 0.7164 0.5645 0.5959 0.5165

0.5873 0.4865 0.8698 0.7495 0.9561 0.6515 0.5795 0.5167 0.7866 0.3595 0.2186 0.8465 0.6585 0.4812

0.5766 0

C

C

C .8455 0.5356 0.5486 0.6715 0.6123 0.7155 0.4189 0.6589 0.3658 0.7529 0.6485 0.5568 0.6745

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Table A1 (c) represents Membership matrix (µ) for the cities C1 to C14 from Table 1 in section 4.
 

15 16 17 18 19 20 21 22 23 24 25 26

1

2

3

0.5197 0.4128 0.7946 0.6843 0.7069 0.8431 0.7629 0.5527 0.6237 0.5179 0.5873 0.5766

0.5966 0.4956 0.6596 0.3266 0.8951 0.2546 0.1655 0.4652 0.8455 0.8665 0.4865 0.8455

0.5523 0.6595 0.

C C C C C C C C C C C C

C

C

C

4

5

2648 0.1654 0.3261 0.3665 0.1796 0.7656 0.5965 0.5165 0.8698 0.5356

0.8425 0.5656 0.8746 0.6957 0.2154 0.5955 0.6456 0.5966 0.7465 0.6266 0.7495 0.5486

0.6656 0.9463 0.6941 0.8946 0.1595 0.8685 0.8562 0.7163 0.9461 0.5169 0.9561

C

C

6

7

8

0.6715

0.8626 0.2176 0.1623 0.7162 0.5451 0.1656 0.7161 0.6145 0.6858 0.5996 0.6515 0.6123

0.5946 0.8956 0.5952 0.3266 0.5482 0.6595 0.6845 0.5164 0.7465 0.3566 0.5795 0.7155

0.6816 0.6867 0.7856 0.2185 0.1782 0.8466 0.7136 0.

C

C

C

9

10

11

12

13

14

5651 0.8592 0.7415 0.5167 0.4189

0.3266 0.9562 0.7953 0.3256 0.6816 0.4863 0.6416 0.4561 0.4566 0.4566 0.7866 0.6589

0.3247 0.7416 0.9451 0.1966 0.4845 0.7566 0.4986 0.7166 0.2156 0.6856 0.3595 0.3658

0.7486

0.946

C

C

C

C

C

C

0.9512 0.5623 0.7152 0.7185 0.8465 0.7856 0.6146 0.3562

2 0.6821 0.1265 0.3956 0.3497 0.6645 0.7565 0.3556 0.4532

0.5653 0.5185 0.5659 0.6748 0.6494 0.5867 0.3516 0.3888 0.5666

0.6556 0.5251 0.7566 0.7465 0.4896 0.7451 0.7413 0.7463 0

0.7164 0.2186 0.7529

0.5645 0.8465 0.6485

0.5959 0.6585 0.5568

.4857 0.5165 0.4812 0.6745

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

 

 

Table A1 (d) represents Membership matrix (µ) for the cities C15 to C26 from Table 1 in section 4. 

15 16 17 18 19 20 21 22 23 24 25 26

15

16

17

0 0.4657 0.6289 0.6465 0.6594 0.8556 0.5162 0.3589 0.9415 0.4565 0.8465 0.7456

0.4657 0 0.8956 0.7441 0.8949 0.3598 0.5716 0.5635 0.4945 0.9452 0.9515 0.9512

0.6289 0.8956 0 0.2156 0.

C C C C C C C C C C C C

C

C

C

18

19

20

4163 0.6147 0.1897 0.8656 0.3859 0.1763 0.4569 0.3518

0.6465 0.7441 0.2156 0 0.2155 0.5716 0.7166 0.8462 0.6889 0.6455 0.5743 0.4686

0.6594 0.8949 0.4163 0.2155 0 0.6816 0.2965 0.4562 0.3462 0.4655 0.7152 0.8597

0.8556 0.359

C

C

C

21

22

23

8 0.6147 0.5716 0.6816 0 0.4859 0.4856 0.5678 0.5615 0.4969 0.7456

0.5162 0.5716 0.1897 0.7166 0.2965 0.4859 0 0.7855 0.4887 0.7416 0.8917 0.2654

0.3589 0.5635 0.8656 0.8462 0.4562 0.4856 0.7855 0 0.8946 0.4852 0.1985 0.6464

0

C

C

C

24

25

.9415 0.4945 0.3859 0.6889 0.3462 0.5678 0.4887 0.8946 0 0.8561 0.5785 0.4156

0.4565 0.9452 0.1763 0.6455 0.4655 0.5615 0.7416 0.4852 0.8561 0 0.4668 0.5486

0.8465 0.9515 0.4569 0.5743 0.7152 0.4969 0.8917 0.1985 0.5785 0.4668 0

C

C

26

0.5972

0.7456 0.9512 0.3518 0.4686 0.8597 0.7456 0.2654 0.6464 0.4156 0.5486 0.5972 0C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

 

 

Table A2 (a) represents Neutrosophic matrix (µ, π, ) for the cities C1 to C5 from Table 1 in section 4.

1 2 3 4 5

1

2

3

0,0,0 0.5261,0.1403,0.3335 0.5423,0.1384,0.3192 0.6631,0.1068,0.2300 0.6217,0.1256,0.2526

0.5261,0.1403,0.3335 0,0,0 0.4571,0.1316,0.4112 0.5863,0.1203,0.2933 0.2413,0.1096,0.6491

0.5423,0.1384,

C C C C C

C

C

C

4

5

0.3192 0.4571,0.1316,0.4112 0,0,0 0.7512,0.0857,0.1630 0.6942,0.1000,0.2057

0.6631,0.1068,0.2300 0.5863,0.1203,0.2933 0.7512,0.0857,0.1630 0,0,0 0.8412,0.0588,0.0999

0.6217,0.1256,0.2526 0.2413,0.1091,0.6491

C

C 0.6942,0.1000,0.2057 0.8412,0.0588,0.0999 0,0,0

 
 
 
 
 
 
 
 
    

 

 

Table A2 (b) represents Neutrosophic matrix (µ, π, ) for the cities C6 to C10 from Table 1 in section 4. 

1 2 3 4 5

6

7

0.8431,0.0631,0.0937 0.7512,0.0857,0.1630 0.4623,0.1314,0.4062 0.5679,0.1229,0.3091 0,0,0

0.7456,0.0950,0.1593 0.6674,0.1059,0.2266 0.7561,0.0844,0.1594 0.4987,0.1297,0.3715 0.7135,0.0954,0.1910

C C C C C

C

C

C8

9

0.4675,0.1449,0.3875 0.5931,0.1193,0.2875 0.5001,0.1296,0.3702 0.6782,0.1035,0.2182 0.5671,0.1230,0.3098

0.7634,0.0897,0.1468 0.7213,0.0935,0.1851 0.6417,0.1110,0.2472 0.6034,0.1177,0.2788 0.6746,0.10439,0.C

10

2210

0.7124,0.1044,0.1831 0.8012,0.0714,0.1273 0.7812,0.0773,0.1414 0.5846,0.1206,0.2947 0.5237,0.1277,0.3485C

 
 
 
 
 
 
 
 
  
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Table A2 (c) represents Neutrosophic matrix (µ, π, ) for the cities C11 to C20 from Table 1 in section 4. 









































497,0.08170.8685,0.0190,0.28540.5955,0.1293,0.50410.3665,0.1127,0.63260.2546,0.1631,0.09370.8431,0.0C

844,0.75600.1595,0.0028,0.68170.2154,0.1252,0.54860.3261,0.1404,0.06440.8951,0.0058,0.18720.7069,0.1C

405,0.06480.8946,0.0996,0.20460.6957,0.0866,0.74790.1654,0.0253,0.54800.3266,0.1116,0.20400.6843,0.1C

000,0.20580.6941,0.1476,0.07770.8746,0.0149,0.62020.2648,0.1075,0.23280.6596,0.1798,0.12550.7946,0.0C

213,0.03230.9463,0.0232,0.31110.5656,0.1075,0.23290.6595,0.1299,0.37440.4956,0.1457,0.44140.4128,0.1C

062,0.22810.6656,0.1584,0.09900.8425,0.0248,0.32280.5523,0.1188,0.28450.5966,0.1410,0.33920.5197,0.1C

081,0.23530.6565,0.1572,0.09650.8462,0.0869,0.74660.1664,0.0574,0.09690.8456,0.0099,0.19880.6912,0.1C

233,0.03540.9412,0.0217,0.30130.5769,0.1063,0.00910.9845,0.0253,0.32650.5481,0.1047,0.18320.7123,0.1C

050,0.22330.6716,0.1883,0.17010.7415,0.0580,0.09830.8436,0.0169,0.60850.2745,0.1130,0.20820.6787,0.1C

224,0.30630.5712,0.1295,0.50050.3699,0.1316,0.45600.4123,0.1824,0.15430.7632,0.0214,0.23660.6419,0.1C

20

19

18

17

16

15

14

13

12

11

54321 CCCCC

 
 

 

Table A2 (d) represents Neutrosophic matrix (µ, π, ) for the cities C21 to C26 from Table 1 in section 4. 





























050,0.22340.6715,0.1252,0.32610.5486,0.1266,0.33770.5356,0.1574,0.09700.8455,0.0336,0.28970.5766,0.1

176,0.02620.9561,0.0861,0.16430.7495,0.0492,0.08090.8698,0.0304,0.38300.4865,0.1319,0.28070.5873,0.1

283,0.35470.5169,0.1138,0.25950.6266,0.1283,0.35510.5165,0.1504,0.08300.8665,0.0412,0.34080.5179,0.1

214,0.03240.9461,0.0870,0.16640.7465,0.0188,0.28460.5965,0.1574,0.09700.8455,0.0252,0.25100.6237,0.1

947,0.18890.7163,0.0188,0.28450.5966,0.1817,0.15260.7656,0.0313,0.40340.4652,0.1371,0.31010.5527,0.1

538,0.08990.8562,0.0103,0.24400.6456,0.1916,0.72870.1796,0.0866,0.74780.1655,0.0898,0.14720.7629,0.0

26

25

24

23

22

21

54321

C

C

C

C

C

C

CCCCC

 

 

 

Table A2 (e) represents Neutrosophic matrix (µ, π, ) for the cities C1 to C5 from Table 1 in section 4. 

6 7 8 9 10

1

2

0.8431,0.0582,0.0986 0.7456,0.0872,0.1671 0.4675,0.1312,0.4012 0.7634,0.0824,0.1541 0.7124,0.0956,0.1919

0.7512,0.0857,0.1630 0.6674,0.1059,0.2266 0.5931,0.1193,0.2875 0.7213,0.0935,0.1851 0.801

C C C C C

C

C

3

4

2,0.0714,0.1273

0.4623,0.1314,0.4062 0.7561,0.0844,0.1594 0.5001,0.1296,0.3702 0.6417,0.1110,0.2472 0.7812,0.0773,0.1414

0.5679,0.1229,0.3091 0.4987,0.1297,0.3715 0.6782,0.1035,0.2182 0.6034,0.1177,0.2788 0

C

C

5

.5846,0.1206,0.2947

0.7135,0.0954,0.1910 0.5671,0.1230,0.3098 0.6746,0.1043,0.2210 0.5237,0.1277,0.3485 0.5713,0.1224,0.3062C

 
 
 
 
 
 
 
 
  

 

 

 

Table A2 (f) represents Neutrosophic matrix (µ, π, ) for the cities C6 to C10 from Table 1 in section 4. 

6 7 8 9 10

6

7

8

0,0,0 0.5172,0.1283,0.3544 0.4872,0.1304,0.3823 0.5716,0.1224,0.3059 0.4872,0.1304,0.3823

0.5172,0.1283,0.3544 0,0,0 0.6813,0.1029,0.2157 0.4213,0.1320,0.4469 0.5716,0.1224,0.3059

0.4872,0.1304

C C C C C

C

C

C

9

10

,0.3823 0.6813,0.1029,0.2157 0,0,0 0.6148,0.1158,0.2693 0.5127,0.1286,0.3586

0.5716,0.1224,0.3059 0.4213,0.1320,0.4469 0.6148,0.1158,0.2693 0,0,0 0.4219,0.1327,0.4462

0.4872,0.1304,0.3823 0.5716,0.1224,0.30

C

C 59 0.5127,0.1286,0.3586 0.4219,0.1327,0.4462 0,0,0

 
 
 
 
 
 
 
 
  

 

 

Table A2 (g) represents Neutrosophic matrix (µ, π, ) for the cities C11to C20 from Table 1 in section 4. 









































842,0.15910.7566,0.0304,0.38320.4863,0.1570,0.09630.8466,0.0075,0.23290.6595,0.1866,0.74770.1656,0.0C

305,0.38490.4845,0.1028,0.21550.6816,0.1911,0.73060.1782,0.0252,0.32650.5482,0.1256,0.32920.5451,0.1C

971,0.70620.1966,0.0251,0.54920.3256,0.1036,0.67780.2185,0.1253,0.54800.3266,0.1947,0.18900.7162,0.0C

218,0.03300.9451,0.0732,0.13140.7953,0.0760,0.13830.7856,0.0190,0.28570.5952,0.1854,0.75220.1623,0.0C

883,0.17000.7416,0.0175,0.02620.9562,0.0017,0.21150.6867,0.1402,0.06410.8956,0.0034,0.67890.2176,0.1C

250,0.55020.3247,0.1253,0.54800.3266,0.1028,0.21550.6816,0.1191,0.28620.5946,0.1517,0.08560.8626,0.0C

050,0.22360.6713,0.1312,0.39910.4696,0.1580,0.09830.8436,0.0838,0.27030.6135,0.1731,0.13120.7956,0.0C

333,0.05210.9145,0.0098,0.24220.6479,0.1585,0.09920.8422,0.0050,0.22340.6715,0.1025,0.68290.2145,0.1C

044,0.22150.6741,0.1946,0.18850.7168,0.0588,0.09980.8413,0.0224,0.30590.5716,0.1318,0.43120.4369,0.1C

265,0.53660.3368,0.1283,0.35500.5166,0.1316,0.45460.4137,0.1883,0.17000.7416,0.0044,0.22130.6742,0.1C

CCCCC

20

19

18

17

16

15

14

13

12

11

109876
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Table A2 (h) represents Neutrosophic matrix (µ, π, ) for the cities C21 to C26 from Table 1 in section 4. 





























292,0.50490.3658,0.1076,0.23340.6589,0.1317,0.44930.4189,0.1949,0.18950.7155,0.0163,0.27130.6123,0.1

287,0.51170.3595,0.1757,0.13760.7866,0.0283,0.35490.5167,0.1213,0.29910.5795,0.1091,0.23930.6515,0.1

019,0.21240.6856,0.1316,0.41170.4566,0.1883,0.17010.7415,0.0285,0.51480.3566,0.1183,0.28200.5996,0.1

028,0.68150.2156,0.1316,0.41170.4566,0.1528,0.08790.8592,0.0870,0.16640.7465,0.0019,0.21220.6858,0.1

946,0.18870.7166,0.0317,0.41660.4516,0.1232,0.31160.5651,0.1283,0.35520.5164,0.1159,0.26950.6145,0.1

297,0.37160.4986,0.1110,0.24730.6416,0.1954,0.19090.7136,0.0022,0.21320.6845,0.1947,0.18910.7161,0.0

26

25

24

23

22

21

109876

C

C

C

C

C

C

CCCCC

 

 

 

Table A2 (i) represents Neutrosophic matrix (µ, π, ) for the cities C1 to C5 from Table 1 in section 4. 

11 12 13 14 15

1

2

0.6419,0.1110,0.2470 0.6787,0.1034,0.2178 0.7123,0.0960,0.1919 0.6912,0.1006,0.2081 0.5197,0.12811,0.3521

0.7632,0.0824,0.1543 0.2745,0.1169,0.6085 0.5481,0.1253,0.3265 0.8456,0.0574,0.0969

C C C C C

C

C

3

4

0.5966,0.1188,0.2845

0.4123,0.1316,0.4560 0.8436,0.0580,0.0983 0.9845,0.0063,0.0091 0.1664,0.0869,0.7466 0.5523,0.1248,0.3228

0.3699,0.1295,0.5005 0.7415,0.0883,0.1701 0.5769,0.1217,0.3013 0.8462,0.0572,0.

C

C

5

0965 0.8425,0.0584,0.0990

0.5712,0.1224,0.3063 0.6716,0.1050,0.2233 0.9412,0.0233,0.0354 0.6565,0.1081,0.2353 0.6656,0.1062,0.2281C

 
 
 
 
 
 
 
 
  

  

 

 

Table A2 (j) represents Neutrosophic matrix (µ, π, ) for the cities C6 to C10 from Table 1 in section 4. 

11 12 13 14 15

6

7

0.6742,0.1044,0.2213 0.4369,0.1318,0.4312 0.2145,0.1025,0.6829 0.7956,0.0731,0.1312 0.8626,0.0517,0.0856

0.7416,0.0883,0.1700 0.5716,0.1224,0.3059 0.6715,0.1050,0.2234 0.6135,0.1838,0.2703 0

C C C C C

C

C

8

9

.5946,0.1191,0.2862

0.4137,0.1316,0.4546 0.8413,0.0588,0.0998 0.8422,0.0585,0.0992 0.8436,0.0580,0.0983 0.6816,0.1028,0.2155

0.5166,0.1283,0.3550 0.7168,0.0946,0.1885 0.6479,0.1098,0.2422 0.4696,0.1312,0.3

C

C

10

991 0.3266,0.1253,0.5480

0.5712,0.1224,0.3063 0.6741,0.1044,0.2214 0.9145,0.0333,0.0521 0.6713,0.1050,0.2236 0.3247,0.1250,0.5502C

 
 
 
 
 
 
 
 
  

 

 

 

Table A2 (k) represents Neutrosophic matrix (µ, π, ) for the cities C11 to C20 from Table 1 in section 4. 









































540,0.09030.8556,0.0873,0.16750.7451,0.0203,0.29290.5867,0.1065,0.22890.6645,0.1571,0.09630.8465,0.0C

075,0.23300.6594,0.1302,0.38010.4896,0.1095,0.24100.6494,0.1278,0.52240.3497,0.1942,0.18720.7185,0.0C

101,0.24330.6465,0.1870,0.16640.7465,0.0043,0.22080.6748,0.1310,0.47330.3956,0.1950,0.18970.7152,0.0C

134,0.25760.6289,0.1842,0.15910.7566,0.0231,0.31090.5659,0.1710,0.80240.1265,0.0236,0.31400.5623,0.1C

313,0.40290.4657,0.1276,0.34720.5251,0.1282,0.35320.5185,0.1027,0.21510.6821,0.1195,0.02920.9512,0.0C

0,0,0083,0.23600.6556,0.1232,0.31140.5653,0.1214,0.03230.9462,0.0864,0.16490.7486,0.0C

083,0.23600.6556,0.10,0,0276,0.52540.3469,0.1581,0.09830.8435,0.0993,0.20350.6971,0.0C

232,0.31140.5653,0.1276,0.52540.3469,0.10,0,0286,0.35770.5136,0.1308,0.39060.4785,0.1C

214,0.03230.9462,0.0581,0.09830.8435,0.0286,0.35770.5136,0.10,0,0317,0.44890.4193,0.1C

864,0.16490.7486,0.0993,0.20350.6971,0.0308,0.39060.4785,0.1317,0.44890.4193,0.10,0,0C

20

19

18

17

16

15

14

13

12

11

1514131211 CCCCC

 

Table A2 (l) represents Neutrosophic matrix (µ, π, ) for the cities C21 to C26 from Table 1 in section 4. 





























872,0.16710.7456,0.0043,0.22110.6745,0.1242,0.31890.5568,0.1097,0.24170.6485,0.1852,0.16180.7529,0.0

571,0.09630.8465,0.0307,0.38800.4812,0.1077,0.23370.6585,0.1571,0.09630.8465,0.0037,0.67760.2186,0.1

316,0.41180.4565,0.1283,0.35510.5165,0.1189,0.28510.5959,0.1233,0.31210.5645,0.1947,0.18880.7164,0.0

232,0.03520.9415,0.0304,0.38380.4857,0.1230,0.31030.5666,0.1316,0.41510.4532,0.1284,0.51530.3562,0.1

287,0.51230.3589,0.1870,0.16660.7463,0.0307,0.48040.3888,0.1284,0.51590.3556,0.1159,0.26940.6146,0.1

284,0.35530.5162,0.1883,0.17030.7413,0.0280,0.52030.3516,0.1843,0.15910.7565,0.0760,0.13830.7856,0.0

26

25

24

23

22

21

1514131211

C

C

C

C

C

C

CCCCC
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Table A2 (m) represents Neutrosophic matrix (µ, π, ) for the cities C1 to C5 from Table 1 in section 4. 

16 17 18 19 20

1

2

0.4128,0.1316,0.4555 0.7946,0.07341,0.1319 0.6843,0.1022,0.2134 0.7069,0.0970,0.1960 0.8431,0.0582,0.0986

0.4956,0.1299,0.3744 0.6596,0.1075,0.2328 0.3266,0.1253,0.5480 0.8951,0.0404,0.0644

C C C C C

C

C

3

4

0.2546,0.1127,0.6326

0.6595,0.1075,0.2329 0.2648,0.1149,0.6202 0.1654,0.0866,0.7479 0.3261,0.1252,0.5486 0.3665,0.1293,0.5041

0.5656,0.1232,0.3111 0.8746,0.0476,0.0777 0.6957,0.0996,0.2046 0.2154,0.1028,0.

C

C

5

6817 0.5955,0.1190,0.2854

0.9463,0.0213,0.0323 0.6941,0.1000,0.2058 0.8946,0.0405,0.0648 0.1595,0.0844,0.7560 0.8685,0.0497,0.0817C

 
 
 
 
 
 
 
 
  

  

 

Table A2 (n) represents Neutrosophic matrix (µ, π, ) for the cities C6 to C10 from Table 1 in section 4. 

16 17 18 19 20

6

7

0.2176,0.1034,0.6789 0.1623,0.0854,0.7522 0.7162,0.0947,0.1890 0.5451,0.1256,0.3292 0.1656,0.0866,0.7477

0.8956,0.0402,0.0641 0.5952,0.1190,0.2857 0.3266,0.1253,0.5480 0.5482,0.1252,0.3265 0

C C C C C

C

C

8

9

.6595,0.1075,0.2329

0.6867,0.1017,0.2115 0.7856,0.0760,0.1383 0.2185,0.1036,0.6778 0.1782,0.0911,0.7306 0.8466,0.0570,0.0963

0.9562,0.0175,0.0262 0.7953,0.0732,0.1314 0.3256,0.1251,0.5492 0.6816,0.1028,0.2

C

C

10

155 0.4863,0.1304,0.3832

0.7416,0.0883,0.1700 0.9451,0.0218,0.0330 0.1966,0.0971,0.7062 0.4845,0.1305,0.3849 0.7566,0.0842,0.1591C

 
 
 
 
 
 
 
 
  

 

Table A2 (o) represents Neutrosophic matrix (µ, π, ) for the cities C11 to C15 from Table 1 in section 4. 









































0,0,0028,0.21550.6816,0.1224,0.30590.5716,0.1159,0.26930.6147,0.1288,0.51130.3598,0.1C

028,0.21550.6816,0.10,0,0028,0.68160.2155,0.1317,0.45190.4163,0.1404,0.06460.8949,0.0C

224,0.30590.5716,0.1028,0.68160.2155,0.10,0,0028,0.68150.2156,0.1876,0.16820.7441,0.0C

159,0.26930.6147,0.1317,0.45190.4163,0.1028,0.68150.2156,0.10,0,0402,0.06410.8956,0.0C

288,0.51130.3598,0.1404,0.06460.8949,0.0876,0.16820.7441,0.0402,0.06410.8956,0.00,0,0C

540,0.09030.8556,0.0075,0.23300.6594,0.1101,0.24330.6465,0.1134,0.25760.6289,0.1313,0.40290.4657,0.1C

873,0.16750.7451,0.0302,0.38010.4896,0.1870,0.16640.7465,0.0842,0.15910.7566,0.0276,0.34720.5251,0.1C

203,0.29290.5867,0.1095,0.24100.6494,0.1043,0.22080.6748,0.1231,0.31090.5659,0.1282,0.35320.5185,0.1C

065,0.22890.6645,0.1278,0.52240.3497,0.1310,0.47330.3956,0.1710,0.80240.1265,0.0027,0.21510.6821,0.1C

571,0.09630.8465,0.0942,0.18720.7185,0.0950,0.18970.7152,0.0236,0.31400.5623,0.1195,0.02920.9512,0.0C

20

19

18

17

16

15

14

13

12

11

2019181716 CCCCC

  

 

Table A2 (p) represents Neutrosophic matrix (µ, π, ) for the cities C21 to C26 from Table 1 in section 4. 





























872,0.16710.7456,0.0527,0.08750.8597,0.0312,0.40010.4686,0.1280,0.52010.3518,0.1195,0.02920.9512,0.0

298,0.37320.4969,0.1950,0.18970.7152,0.0220,0.30360.5743,0.1316,0.41140.4569,0.1193,0.02910.9515,0.0

237,0.31470.5615,0.1313,0.40310.4655,0.1103,0.24410.6455,0.1904,0.73320.1763,0.0218,0.03290.9452,0.0

229,0.30920.5678,0.1275,0.52620.3462,0.1012,0.20980.6889,0.1306,0.48340.3859,0.1299,0.37550.4945,0.1

304,0.38390.4856,0.1316,0.41210.4562,0.1572,0.09650.8462,0.0507,0.08360.8656,0.0234,0.31300.5635,0.1

304,0.38360.4859,0.1209,0.58250.2965,0.1946,0.18870.7166,0.0949,0.71530.1897,0.0224,0.30590.5716,0.1

26

25

24

23

22

21

2019181716

C

C

C

C

C

C

CCCCC

 

 

Table A2 (q) represents Neutrosophic matrix (µ, π, ) for the cities C1 to C5 from Table 1 in section 4. 

21 22 23 24 25 26

1

2

0.7629,0.0825,0.1545 0.5527,0.1247,0.3225 0.6237,0.1143,0.2619 0.5179,0.1282,0.3538 0.5873,0.1202,0.2924 0.5766,0.1217,0.3016

0.1655,0.0866,0.7478 0.4652,0.1313,0.4034 0.8455,0.0574,0.09

C C C C C C

C

C

3

4

70 0.8665,0.0504,0.0830 0.4865,0.1304,0.3830 0.8455,0.0574,0.0970

0.1796,0.0916,0.7287 0.7656,0.0817,0.1526 0.5965,0.1188,0.2846 0.5165,0.1283,0.3551 0.8698,0.0492,0.0809 0.5356,0.1266,0.3377

0.6456,0.1103,

C

C

5

0.2440 0.5966,0.1188,0.2845 0.7465,0.0870,0.1664 0.6266,0.1138,0.2595 0.7495,0.0861,0.1643 0.5486,0.1252,0.3261

0.8562,0.0538,0.0899 0.7163,0.0947,0.1889 0.9461,0.0214,0.0324 0.5169,0.1283,0.3547 0.9561,0.017C 6,0.0262 0.6715,0.1050,0.2234

 
 
 
 
 
 
 
 
  
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Table A2 (r) represents Neutrosophic matrix (µ, π, ) for the cities C6 to C10 from Table 1 in section 4.

 

21 22 23 24 25 26

6

7

0.7161,0.0947,0.1891 0.6145,0.1159,0.2695 0.6858,0.1019,0.2122 0.5996,0.1183,0.2820 0.6515,0.1091,0.2393 0.6123,0.1163,0.2713

0.6845,0.1022,0.2132 0.5164,0.1283,0.3552 0.7465,0.0870,0.16

C C C C C C

C

C

8

9

64 0.3566,0.1285,0.5148 0.5795,0.1213,0.2991 0.7155,0.0949,0.1895

0.7136,0.0954,0.1909 0.5651,0.1232,0.3116 0.8592,0.0528,0.0879 0.7415,0.0883,0.1701 0.5167,0.1283,0.3549 0.4189,0.1317,0.4493

0.6416,0.1110,

C

C

10

0.2473 0.4561,0.1316,0.4122 0.4566,0.1316,0.4117 0.4566,0.1316,0.4117 0.7866,0.0757,0.1376 0.6589,0.1076,0.2334

0.4986,0.1297,0.3716 0.7166,0.0946,0.1887 0.2156,0.1028,0.6815 0.6856,0.1019,0.2124 0.3595,0.12C 87,0.5117 0.3658,0.1292,0.5049

 
 
 
 
 
 
 
 
  

 

Table A2 (s) represents Neutrosophic matrix (µ, π, ) for the cities C11 to C20 from Table 1 in section 4. 









































872,0.16710.7456,0.0298,0.37320.4969,0.1237,0.31470.5615,0.1229,0.30920.5678,0.1304,0.38390.4856,0.1304,0.38360.4859,0.1C

527,0.08750.8597,0.0950,0.18970.7152,0.0313,0.40310.4655,0.1275,0.52620.3462,0.1316,0.41210.4562,0.1209,0.58250.2965,0.1C

312,0.40010.4686,0.1220,0.30360.5743,0.1103,0.24410.6455,0.1012,0.20980.6889,0.1572,0.09650.8462,0.0946,0.18870.7166,0.0C

280,0.52010.3518,0.1316,0.41140.4569,0.1904,0.73320.1763,0.0306,0.48340.3859,0.1507,0.08360.8656,0.0949,0.71530.1897,0.0C

195,0.02920.9512,0.0193,0.02910.9515,0.0218,0.03290.9452,0.0299,0.37550.4945,0.1234,0.31300.5635,0.1224,0.30590.5716,0.1C

872,0.16710.7456,0.0571,0.09630.8465,0.0316,0.41180.4565,0.1232,0.03520.9415,0.0287,0.51230.3589,0.1284,0.35530.5162,0.1C

043,0.22110.6745,0.1307,0.38800.4812,0.1283,0.35510.5165,0.1304,0.38380.4857,0.1870,0.16660.7463,0.0883,0.17030.7413,0.0C

242,0.31890.5568,0.1077,0.23370.6585,0.1189,0.28510.5959,0.1230,0.31030.5666,0.1307,0.48040.3888,0.1280,0.52030.3516,0.1C

097,0.24170.6485,0.1571,0.09630.8465,0.0233,0.31210.5645,0.1316,0.41510.4532,0.1284,0.51590.3556,0.1843,0.15910.7565,0.0C

852,0.16180.7529,0.0037,0.67760.2186,0.1947,0.18880.7164,0.0284,0.51530.3562,0.1159,0.26940.6146,0.1760,0.13830.7856,0.0C

20

19

18

17

16

15

14

13

12

11

262524232221 CCCCCC

  

 

Table A2 (t) represents Neutrosophic matrix (µ, π, ) for the cities C21 to C26 from Table 1 in section 4. 





























0,0,0187,0.28400.5972,0.1252,0.32610.5486,0.1316,0.45270.4156,0.1101,0.24340.6464,0.1150,0.61950.2654,0.1

187,0.28400.5972,0.10,0,0313,0.40180.4668,0.1214,0.30000.5785,0.1977,0.70370.1985,0.0416,0.06660.8917,0.0

252,0.32610.5486,0.1313,0.40180.4668,0.10,0,0539,0.08990.8561,0.0305,0.38420.4852,0.18830.17000.7416,0.0

316,0.45270.4156,0.1214,0.30000.5785,0.1539,0.08990.8561,0.00,0,0405,0.06480.8946,0.0303,0.38090.4887,0.1

101,0.24340.6464,0.1977,0.70370.1985,0.0305,0.38420.4852,0.1405,0.06480.8946,0.00,0,0760,0.13840.7855,0.0

150,0.61950.2654,0.1416,0.06660.8917,0.0883,0.17000.7416,0.0303,0.38090.4887,0.1760,0.13840.7855,0.00,0,0
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Table A3 (a) represents Neutrosophic matrix after applying hamming distance for the cities C1 to C14 from 

Table 1 in section 4. 























































8

07494.06924.01715.05133.03152.0663.02654.07526.05674.05817.06917.04353.01396.0

7494.007279.0469.07577.03933.04473.01398.061.05521.03278.06892.0539.03458.0

6924.07279.004959.05562.04885.01762.06446.06185.0341.014.04136.05588.0271.0

1715.0469.04959.00604.0498.02855.02141.07082.03157.01763.06412.04687.05571.0

5133.07577.05562.0604.007778.01384.01929.06197.04157.06101.04965.07518.06694.0

3152.03933.04885.0498.07778.003662.05086.03219.02531.03221.02834.02858.03261.0

663.04473.01762.02855.01384.03662.003838.02859.05782.01459.02153.01967.03305.0

2654.01398.06446.02141.01929.05086.03838.0034.02846.05827.06479.01945.05508.0

7526.061.06185.07082.06197.03219.02859.034.006959.05929.02289.05309.07898.0

5674.05521.0341.03157.04157.02531.05782.02846.06959.007432.04457.01823.03582.0

5817.03278.014.01763.06101.03221.01459.05827.05929.07432.003313.01916.05418.0

6917.06892.04136.06412.04965.02834.02153.06479.02289.04457.03313.003353.0447.0

4353.0539.05588.04687.07518.02858.01967.01945.05309.01823.01916.03353.004433.0

1396.03458.0271.05571.06694.03261.03305.05508.07898.03582.05418.0447.04433.00
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Table A3 (b) represents Neutrosophic matrix after applying hamming distance for the cities C15 to C26 from 

Table 1 in section 4. 


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










6074.0345.04399.06214.0539.06129.06826.06353.03585.02488.0746.07894.0

2854.04601.05949.04742.02952.02003.06671.05413.04928.01996.07398.04644.0

7631.06032.07958.03079.0318.05498.05537.04357.05024.06572.01217.05419.0

5538.03787.05102.01707.06055.05549.04129.07938.03478.06064.07166.04514.0

6453.05764.05196.04441.01428.0113.05711.03088.07111.06533.03809.0481.0

1431.01633.01912.01369.06383.01048.03665.05186.01805.07845.02825.03619.0

4607.036.01014.01251.0103.05398.04713.03969.03967.02452.03649.02562.0

39.07846.0212.04955.02037.01955.03776.01797.03052.04751.07089.0591.0

7935.07401.0665.01925.0717.01798.04225.06134.01.02086.02148.05409.0

7036.07656.03686.01398.07373.07626.03206.01045.01853.03728.0548.03075.0

7575.04367.01429.02569.03143.05688.01483.03789.07544.044.06747.04426.0

5558.03544.05141.03032.06515.04049.079.01509.04121.04806.07008.06944.0
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Table A3 (c) represents Neutrosophic matrix after applying hamming distance for the cities C1 to C14 from 

Table 1 in section 4. 
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4564.07782.01127.03099.04211.05596.055.06391.03409.07247.03992.02313.0

2408.04626.03118.03204.01679.05784.05586.03054.04498.07973.07296.03269.0

6074.02854.07631.05538.06453.01431.04607.039.07935.07036.07575.05558.0

345.04601.06032.03787.05764.01633.036.07846.07401.07656.04367.03544.0

4399.05949.07958.05102.05196.01912.01014.0212.0665.03686.01429.05141.0

6214.04742.03079.01707.04441.01369.01251.04955.01925.01398.02569.03032.0

539.02952.0318.06055.01428.06383.0103.02037.0717.07373.03143.06515.0

6129.02003.05498.05549.0113.01048.05398.01955.01798.07626.05688.04049.0

6826.06671.05537.04129.05711.03665.04713.03776.04225.03206.01483.079.0

6353.05413.04357.07938.03088.05186.03969.01797.06134.01045.03789.01509.0

3585.04928.05024.03478.07111.01805.03967.03052.01.01853.07544.04121.0

2488.01996.06572.06064.06533.07845.02452.04751.02086.03728.044.04806.0

746.07398.01217.07166.03809.02825.03649.07089.02148.0548.06747.07008.0

7894.04644.05419.04514.0481.03619.02562.0591.05409.03075.04426.06944.0
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Table A3 (d) represents Neutrosophic matrix after applying hamming distance for the cities C15 to C26 from 

Table 1 in section 4. 
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





0.07415.06435.04602.02357.02824.03461.07442.05705.05877.05613.048.04564.02408.026

7415.00.03931.05777.05071.01118.01269.07418.07177.04569.07097.01427.07782.04626.025

6435.03931.00.04397.06436.01995.07043.01647.06868.03112.06383.01883.01127.03118.024

4602.05777.04397.00.04584.05828.02975.02179.06496.048.05216.04932.03099.03204.023

2357.05071.06436.04584.00.01003.04678.03811.0767.05222.0478.02681.04211.01679.022

2824.01118.01995.05828.01003.00.02731.0336.07423.01639.055.07747.05596.05784.021

3461.01269.07043.02975.04678.02731.00.01448.03585.06117.01018.03913.055.05586.020

7442.07418.01647.02179.03811.0336.01448.00.01905.05184.02291.0277.06391.03054.019

5705.07177.06868.06496.0767.07423.03585.01905.00.06038.07394.04102.03409.04498.018

5877.04569.03112.048.05222.01639.06117.05184.06038.00.03031.04798.07247.07973.017

5613.07097.06383.05216.0478.055.01018.02291.07394.03031.00.05875.03992.07296.016

48.01427.01883.04932.02681.07747.03913.0277.04102.04798.50587.00.02313.03269.015

2625242322212019181716151413 CCCCCCCCCCCCCC
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Abstract: Neutrosophy theory has found application in health sciences in recent years. There is the 

need to develop neutrosophic algebraic systems which are good and appropriate for studying and 

understanding the effects of diseases and their possible treatments. In order to achieve this, special 

types of quasi neutrosophic loops and their isotopy needed to be introduced for this purpose. 

Fenyves BCI-algebras are BCI-algebras (special types of quasi neutrosophic loops) that satisfy the 60 

Bol-Moufang identities. In this paper, the isotopy of BCI-algebras are studied. Neccessary and 

sufficient conditions for a groupoid isotope of a BCI-algebra to be a BCI-algebra are established. It is 

shown that 𝑝-semisimplicity, quasi-associativity and BCK-algebra are invariant under isotopies 

which are determined by some regular permutation groups. Furthermore, the isotopy of both the 46 

associative and 14 non-associative Fenyves BCI-algebras are also studied. It is shown that for 

BCI-alegbras, associativity is isotopic invariant. Hence, the following set of Fenyves BCI algebras 

(𝐹𝑖-algebras) are invariant under any isotopy: 𝑖 ∈ {1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22,23,24 

, 25,26,27,28,30,31,32,33,34,35,36,37,38,40,41,43,44,45,47,48,49,50,51,53,57,58,60}. It is shown that 

the following sets of non-associative Fenyves BCI algebras (𝐹𝑖-algebras) are invariant under isotopies 

which are determined by some regular permutation groups: 𝑖 ∈

{3,5,8,19,21,29,39,42,46,52,55,56,59}, {56}, {8,19,29,39,46,59}. In conclusion, this is the isotopic study 

of 120 particular types of the 540 varieties of Fenyves quasi neutrosophic triplet loops (FQNTLs) 

which were recently discovered, wherein the 14 non-associative Fenyves BCI-algebras do not 

necessarily have the Iseki's conditions (S). Importantly, applying these results, the initial (old, sick or 

healthy) state of a person can be represented by a type of Fenyves BCI-algebra, while the Fenyves 

BCI-algebra isotope will represent the final (new, healthy or sick) state of the person as a result of the 

prescribed medical treatment, which the isotopism represents. The isotopism is a measure of the 

change from the old state of body condition to the new state.  

Keywords: BCI-algebra; quasi neutrosophic loops; Fenyves identities; Bol-Moufang Type 

 

 

1. Introduction 

     The prevalence and spread of diseases among inhabitants of the world, especially tropical 

regions has raised serious concerns among scientists. In this work, we embarked on an algebraic way 

of representing the effects of diseases on the health of the people. This is based on the philosophy of 

representing disease-victim(s) by algebraic structures. These structures represent the state of health 

before the ''invasion'' by organisms which cause disease(s). The transformation of the body by these 

diseases is represented by the isotopisms which form the crux of the study. The isotopisms 

transform a hitherto healthy person to somebody with health challenges. Other researchers who 
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have worked on neutrosophy theory and its applications to medicine and other fields include 

Abdel-Basset et al. [1], [2], [3], [4]. 

 

1.1.  BCI-algebra and BCK-algebra 

BCK-algebras and BCI-algebras are abbreviated as two B-algebras. The former was raised in 

1966 by Imai and Iseki [16], Japanese mathematicians, and the latter was put forward in the same 

year by Iseki [17]. The two algebras originated from two different sources: set theory and 

propositional calculi. 

There are some systems which contain the only implicational functor among logical 

functors, such as the system of weak positive implicational calculus, BCK-system and BCI-system. 

Undoubtedly, there are common properties among those systems. We know that there are close 

relationships between the notions of the set difference in set theory and the implication functor in 

logical systems. For example, we have the following simple inclusion relations in set theory:  

 (𝐴 − 𝐵) − (𝐴 − 𝐶) ⊆ 𝐶 − 𝐵,        𝐴 − (𝐴 − 𝐵) ⊆ 𝐵. 

These are similar to the propositional formulas in propositional calculi:  

 (𝑝 → 𝑞) → ((𝑞 → 𝑟) → (𝑝 → 𝑟)),        𝑝 → ((𝑝 → 𝑞) → 𝑞), 

which raise the following questions: What are the most essential and fundamental properties of 

these relationships? Can we formulate a general algebra from the above consideration? How do we 

find an axiomatic system to establish a good theory of general algebras? Answering these questions, 

K.Iseki formulated two kinds of B-algebras, in which BCI-algebras are of wider class than 

BCK-algebras. Their names are taken from BCK and BCI systems in combinatory logic. 

BCI-Algebras are very interesting algebraic structures that have generated wide interest 

among pure mathematicians. In fact, since late 1970s, much attention has been paid to the study of 

BCI and BCK algebras. In particular, the participation in the research of polish mathematicians 

Tadeusz Traczyk and Andrzej Wronski as well as Australian mathematician William H. Cornish and 

so on, is really making this branch of algebra to develop rapidly. Many interesting and important 

results are discovered continuously. Now, the theory of BCI-algebras has been widely spread to 

many areas such as general theory which includes congruences, quotient algebras, 

BCI-Homomorphisms, direct sums and direct products, commutative BCK-algebras, positive 

implicative and implicative BCK-algebras, derivations of BCI-algebras, and ideal theory of 

BCI-algebras ([16], [18], [14], [41], [50]). 

 

1.2.  BCI-algebra and the Fenyves Identities 

    We shall now discuss BCI-algebras in relation to Fenyves identities. 

 

Definition 1  A triple (𝑋,∗ ,0) is called a BCI-algebra if the following conditions are satisfied for any 

𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. ((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)) ∗ (𝑧 ∗ 𝑦) = 0;  

2. 𝑥 ∗ 0 = 𝑥;  

3. 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0 ⇒ 𝑥 = 𝑦.  
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    We call the binary operation ∗ on 𝑋 multiplication, and the constant 0 in 𝑋 the zero element 

of 𝑋. We often write 𝑋 instead of (𝑋,∗ ,0) for a BCI-algebra in brevity. Juxtaposition 𝑥𝑦 shall be at 

times used for 𝑥 ∗ 𝑦 and will have preference over ∗ i.e. 𝑥𝑦 ∗ 𝑧 = (𝑥 ∗ 𝑦) ∗ 𝑧.  

Example 1  Let 𝑆 be a set. Let 2𝑆 be the power set of 𝑆, − the set difference and ∅ for the empty set. Then 

(2𝑆, −, ∅) is a BCI-algebra.  

Example 2  Suppose (𝐺,⋅, 𝑒) is an abelian group with 𝑒 as the identity element. Define a binary operation ∗ 

on 𝐺 by putting 𝑥 ∗ 𝑦 = 𝑥𝑦−1. Then (𝐺,∗, 𝑒) is a BCI-algebra.  

Example 3  (ℤ, −,0) and (ℝ − {0},÷ ,1) are BCI-algebras.  

Example 4  Let 𝑆 be a set. Let 2𝑆 be the power set of 𝑆, 𝛥 the symmetric difference and ∅ the empty set. 

Then (2𝑆, 𝛥, ∅) is a BCI-algebra.  

The following theorems give necessary and sufficient conditions for the existence of a BCI-algebra.  

Theorem 1 (Yisheng [51]) 

Let 𝑋 be a non-empty set, ∗ a binary operation on 𝑋 and 0 a constant element of 𝑋. Then (𝑋,∗ ,0) 

is a BCI- algebra if and only if the following conditions hold:   

1. ((𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)) ∗ (𝑧 ∗ 𝑦) = 0;  

2. (𝑥 ∗ (𝑥 ∗ 𝑦)) ∗ 𝑦 = 0;  

3. 𝑥 ∗ 𝑥 = 0;  

4. 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0 imply 𝑥 = 𝑦.  

Definition 2 A BCI- algebra (𝑋,∗ ,0) is called a BCK-algebra if 0 ∗ 𝑥 = 0 for all 𝑥 ∈ 𝑋.  

Definition 3 (Jaiyé𝑜lá et al. [36]) 

A BCI- algebra (𝑋,∗ ,0) is called a Fenyves BCI-algebra if it satisfies an identity of Bol-Moufang type.  

The identities of Bol-Moufang type are given below:   

 𝐹1: 𝑥𝑦 ∗ 𝑧𝑥 = (𝑥𝑦 ∗ 𝑧)𝑥      𝐹2: 𝑥𝑦 ∗ 𝑧𝑥 = (𝑥 ∗ 𝑦𝑧)𝑥 (Moufang identity)    𝐹3: 𝑥𝑦 ∗ 𝑧𝑥 = 𝑥(𝑦 ∗ 𝑧𝑥) 

 𝐹4: 𝑥𝑦 ∗ 𝑧𝑥 = 𝑥(𝑦𝑧 ∗ 𝑥) (Moufang identity) 𝐹5: (𝑥𝑦 ∗ 𝑧)𝑥 = (𝑥 ∗ 𝑦𝑧)𝑥  𝐹6: (𝑥𝑦 ∗ 𝑧)𝑥 = 𝑥(𝑦 ∗ 𝑧𝑥) (extra identity) 

 𝐹7: (𝑥𝑦 ∗ 𝑧)𝑥 = 𝑥(𝑦𝑧 ∗ 𝑥) 𝐹8: (𝑥 ∗ 𝑦𝑧)𝑥 = 𝑥(𝑦 ∗ 𝑧𝑥) 𝐹9: (𝑥 ∗ 𝑦𝑧)𝑥 = 𝑥(𝑦𝑧 ∗ 𝑥) 𝐹10: 𝑥(𝑦 ∗ 𝑧𝑥) = 𝑥(𝑦𝑧 ∗ 𝑥) 

 𝐹11: 𝑥𝑦 ⋅ 𝑥𝑧 = (𝑥𝑦 ∗ 𝑥)𝑧  𝐹12: 𝑥𝑦 ∗ 𝑥𝑧 = (𝑥 ∗ 𝑦𝑥)𝑧  𝐹13: 𝑥𝑦 ∗ 𝑥𝑧 = 𝑥(𝑦𝑥 ∗ 𝑧) (extra identity) 

 𝐹14: 𝑥𝑦 ∗ 𝑥𝑧 = 𝑥(𝑦 ∗ 𝑥𝑧)   𝐹15: (𝑥𝑦 ∗ 𝑥)𝑧 = (𝑥 ∗ 𝑦𝑥)𝑧   𝐹16: (𝑥𝑦 ∗ 𝑥)𝑧 = 𝑥(𝑦𝑥 ∗ 𝑧) 

 𝐹17: (𝑥𝑦 ∗ 𝑥)𝑧 = 𝑥(𝑦 ∗ 𝑥𝑧) (Moufang identity)   𝐹18: (𝑥 ∗ 𝑦𝑥)𝑧 = 𝑥(𝑦𝑥 ∗ 𝑧) 

 𝐹19: (𝑥 ∗ 𝑦𝑥)𝑧 = 𝑥(𝑦 ∗ 𝑥𝑧) (left Bol identity)   𝐹20: 𝑥(𝑦𝑥 ∗ 𝑧) = 𝑥(𝑦 ∗ 𝑥𝑧)   𝐹21: 𝑦𝑥 ∗ 𝑧𝑥 = (𝑦𝑥 ∗ 𝑧)𝑥 

 𝐹22: 𝑦𝑥 ∗ 𝑧𝑥 = (𝑦 ∗ 𝑥𝑧)𝑥 (extra identity)   𝐹23: 𝑦𝑥 ∗ 𝑧𝑥 = 𝑦(𝑥𝑧 ∗ 𝑥)   𝐹24: 𝑦𝑥 ∗ 𝑧𝑥 = 𝑦(𝑥 ∗ 𝑧𝑥) 

 𝐹25: (𝑦𝑥 ∗ 𝑧)𝑥 = (𝑦 ∗ 𝑥𝑧)𝑥   𝐹26: (𝑦𝑥 ∗ 𝑧)𝑥 = 𝑦(𝑥𝑧 ∗ 𝑥) (right Bol identity) 

 𝐹27: (𝑦𝑥 ∗ 𝑧)𝑥 = 𝑦(𝑥 ∗ 𝑧𝑥) (Moufang identity) 𝐹28: (𝑦 ∗ 𝑥𝑧)𝑥 = 𝑦(𝑥𝑧 ∗ 𝑥)   𝐹29: (𝑦 ∗ 𝑥𝑧)𝑥 = 𝑦(𝑥 ∗ 𝑧𝑥) 

 𝐹30: 𝑦(𝑥𝑧 ∗ 𝑥) = 𝑦(𝑥 ∗ 𝑧𝑥)  𝐹31: 𝑦𝑥 ∗ 𝑥𝑧 = (𝑦𝑥 ∗ 𝑥)𝑧 𝐹32: 𝑦𝑥 ∗ 𝑥𝑧 = (𝑦 ∗ 𝑥𝑥)𝑧  𝐹33: 𝑦𝑥 ∗ 𝑥𝑧 = 𝑦(𝑥𝑥 ∗ 𝑧) 

 𝐹34: 𝑦𝑥 ∗ 𝑥𝑧 = 𝑦(𝑥 ∗ 𝑥𝑧)  𝐹35: (𝑦𝑥 ∗ 𝑥)𝑧 = (𝑦 ∗ 𝑥𝑥)𝑧  𝐹36: (𝑦𝑥 ∗ 𝑥)𝑧 = 𝑦(𝑥𝑥 ∗ 𝑧) (RC identity) 

 𝐹37: (𝑦𝑥 ∗ 𝑥)𝑧 = 𝑦(𝑥 ∗ 𝑥𝑧) (C-identity) 𝐹38: (𝑦 ∗ 𝑥𝑥)𝑧 = 𝑦(𝑥𝑥 ∗ 𝑧) 𝐹39: (𝑦 ∗ 𝑥𝑥)𝑧 = 𝑦(𝑥 ∗ 𝑥𝑧) (LC identity) 

 𝐹40: 𝑦(𝑥𝑥 ∗ 𝑧) = 𝑦(𝑥 ∗ 𝑥𝑧)  𝐹41: 𝑥𝑥 ∗ 𝑦𝑧 = (𝑥 ∗ 𝑥𝑦)𝑧 (LC identity)    𝐹42: 𝑥𝑥 ∗ 𝑦𝑧 = (𝑥𝑥 ∗ 𝑦)𝑧 

 𝐹43: 𝑥𝑥 ∗ 𝑦𝑧 = 𝑥(𝑥 ∗ 𝑦𝑧) 𝐹44: 𝑥𝑥 ∗ 𝑦𝑧 = 𝑥(𝑥𝑦 ∗ 𝑧)  𝐹45: (𝑥 ∗ 𝑥𝑦)𝑧 = (𝑥𝑥 ∗ 𝑦)𝑧  

 𝐹46: (𝑥 ∗ 𝑥𝑦)𝑧 = 𝑥(𝑥 ∗ 𝑦𝑧) (LC identity) 𝐹47: (𝑥 ∗ 𝑥𝑦)𝑧 = 𝑥(𝑥𝑦 ∗ 𝑧) 𝐹48: (𝑥𝑥 ∗ 𝑦)𝑧 = 𝑥(𝑥 ∗ 𝑦𝑧) (LC identity) 

 𝐹49: (𝑥𝑥 ∗ 𝑦)𝑧 = 𝑥(𝑥𝑦 ∗ 𝑧) 𝐹50: 𝑥(𝑥 ∗ 𝑦𝑧) = 𝑥(𝑥𝑦 ∗ 𝑧) 𝐹51: 𝑦𝑧 ∗ 𝑥𝑥 = (𝑦𝑧 ∗ 𝑥)𝑥  𝐹52: 𝑦𝑧 ∗ 𝑥𝑥 = (𝑦 ∗ 𝑧𝑥)𝑥 

 𝐹53: 𝑦𝑧 ∗ 𝑥𝑥 = 𝑦(𝑧𝑥 ∗ 𝑥) (RC identity)  𝐹54: 𝑦𝑧 ∗ 𝑥𝑥 = 𝑦(𝑧 ∗ 𝑥𝑥)  𝐹55: (𝑦𝑧 ∗ 𝑥)𝑥 = (𝑦 ∗ 𝑧𝑥)𝑥 

 𝐹56: (𝑦𝑧 ∗ 𝑥)𝑥 = 𝑦(𝑧𝑥 ∗ 𝑥) (RC identity) 𝐹57: (𝑦𝑧 ∗ 𝑥)𝑥 = 𝑦(𝑧 ∗ 𝑥𝑥) (RC identity) 
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 𝐹58: (𝑦 ∗ 𝑧𝑥)𝑥 = 𝑦(𝑧𝑥 ∗ 𝑥)        𝐹59: (𝑦 ∗ 𝑧𝑥)𝑥 = 𝑦(𝑧 ∗ 𝑥𝑥)      𝐹60: 𝑦(𝑧𝑥 ∗ 𝑥) = 𝑦(𝑧 ∗ 𝑥𝑥)  

   

The identities of Bol-Moufang type are sixty in number based on Fenyves [12], [13]. The 

identities of Bol-Moufang type were investigated in BCI-algebras by Jaiyéolá et al. [36], thereby 

leading to the study of the sixty varieties of Fenyves BCI -algebras, as well as their holomorphic 

study in Ilojide et al. [15]. Here are some examples. 

Example 5 Let us assume the BCI-algebra (𝐺,∗, 𝑒)  in Example 2. Then (𝐺,∗, 𝑒)  is an 𝐹8 -algebra, 

𝐹19-algebra, 𝐹29-algebra, 𝐹39-algebra, 𝐹46-algebra, 𝐹52-algebra, 𝐹54-algebra, 𝐹59-algebra.  

Example 6 Let us assume the BCI-algebra (2𝑆, −, ∅)  in Example 1. Then (2𝑆, −, ∅)  is an 𝐹3 -algebra, 

𝐹5-algebra, 𝐹21-algebra, 𝐹29-algebra, 𝐹42-algebra, 𝐹46-algebra, 𝐹54-algebra and 𝐹55-algebra.  

Example 7 The BCI-algebra (2𝑆, 𝛥, ∅) in Example 4 is associative.  

Example 8 By considering the direct product of the BCI-algebras (𝐺,∗, 𝑒) and (2𝑆, −, ∅) of Example 2 and 

Example 1 respectively, we have a BCI-algebra (𝐺 × 2𝑆, (∗, −), (𝑒, ∅))  which is a 𝐹29 -algebra and a 

𝐹46-algebra.  

Remark 1 The direct product of two or more BCI-algebras which are 𝐹𝑖-algebras will give a BCI-algebra which 

is an 𝐹𝑖-algebra for distinct 𝑖's.  

Definition 4 A BCI-algebra (𝑋,∗ ,0) is called associative if (𝑥 ∗ 𝑦) ∗ 𝑧 = 𝑥 ∗ (𝑦 ∗ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.  

Definition 5 A BCI-algebra (𝑋,∗ ,0) is called 𝑝-semisimple if 0 ∗ (0 ∗ 𝑥) = 𝑥 for all 𝑥 ∈ 𝑋 .  

Theorem 2 (Yisheng [51]) Suppose that (𝑋,∗ ,0) is a BCI-algebra. Define a binary relation ≤ on 𝑋 by which 

𝑥 ≤ 𝑦 if and only if 𝑥 ∗ 𝑦 = 0 for any 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, ≤) is a partially ordered set with 0 as a minimal 

element(meaning that 𝑥 ≤ 0 implies 𝑥 = 0 for any 𝑥 ∈ 𝑋).  

Definition 6 A BCI-algebra (𝑋,∗ ,0) is called quasi-associative if (𝑥 ∗ 𝑦) ∗ 𝑧 ≤ 𝑥 ∗ (𝑦 ∗ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈

𝑋.  

The following theorems give equivalent conditions for associativity, quasi-associativity and 

𝑝-semisimplicity in a BCI-algebra:  

Theorem 3  (Yisheng [51]) 

Given a BCI-algebra 𝑋, the following are equivalent 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. 𝑋 is associative.  

2. 0 ∗ 𝑥 = 𝑥.  

3. 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 ∀ 𝑥, 𝑦 ∈ 𝑋.  

Theorem 4  (Yisheng [51]) 

Let 𝑋 be a BCI-algebra. Then the following conditions are equivalent for any 𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋:   

1. 𝑋 is 𝑝-semisimple  

2. (𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑢) = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑢).  

3. 0 ∗ (𝑦 ∗ 𝑥) = 𝑥 ∗ 𝑦.  

4. (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) = 𝑧 ∗ 𝑦.  

5. 𝑧 ∗ 𝑥 = 𝑧 ∗ 𝑦 implies 𝑥 = 𝑦. (the left cancellation law)  

6. 𝑥 ∗ 𝑦 = 0 implies 𝑥 = 𝑦.  

Theorem 5 (Yisheng [51]) 

Given a BCI-algebra 𝑋, the following are equivalent for all 𝑥, 𝑦 ∈ 𝑋:   

1. 𝑋 is quasi-associative.  
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2. 𝑥 ∗ (0 ∗ 𝑦) = 0 implies 𝑥 ∗ 𝑦 = 0.  

3. 0 ∗ 𝑥 = 0 ∗ (0 ∗ 𝑥).  

4. (0 ∗ 𝑥) ∗ 𝑥 = 0.  

Theorem 6 (Yisheng [51]) 

A triple (𝑋,∗ ,0) is a BCI-algebra if and only if there is a partial ordering ≤ on 𝑋 such that the 

following conditions hold for any 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) ≤ 𝑧 ∗ 𝑦;  

2. 𝑥 ∗ (𝑥 ∗ 𝑦) ≤ 𝑦;  

3. 𝑥 ∗ 𝑦 = 0 if and only if 𝑥 ≤ 𝑦.  

Theorem 7  (Yisheng [51]) 

Let 𝑋 be a BCI-algebra. 𝑋 is 𝑝-semisimple if and only if one of the following conditions holds for 

any 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. 𝑥 ∗ 𝑧 = 𝑦 ∗ 𝑧 implies 𝑥 = 𝑦. (the right cancellation law)  

2. (𝑦 ∗ 𝑥) ∗ (𝑧 ∗ 𝑥) = 𝑦 ∗ 𝑧.  

3. (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) = 0 ∗ (𝑦 ∗ 𝑧).  

Theorem 8  (Yisheng [51]) Suppose that (𝑋,∗ ,0) is a BCI-algebra. 𝑋 is associative if and only if 𝑋 is 

𝑝-semisimple and 𝑋 is quasi-associative.  

Theorem 9  (Yisheng [51]) Suppose that (𝑋,∗ ,0) is a BCI-algebra. Then for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:   

1. (𝑥 ∗ 𝑦) ∗ 𝑧 = (𝑥 ∗ 𝑧) ∗ 𝑦.  

2. 𝑥 ≥ 𝑦 implies 0 ∗ 𝑥 = 0 ∗ 𝑦.  

Remark 2 In Theorem 8, quasi-associativity in BCI-algebra plays a similar role which weak associativity (i.e. 

the 𝐹𝑖 identities) plays in quasigroup and loop theory.  

 

1.3.  Isotopy and Autotopy in Quasigroups and Loops 

    We now move on to quasigroups and loops, their isotopy and autotopy.  

Definition 7 Let 𝐿 be a non-empty set. Define a binary operation (⋅) on 𝐿 . If 𝑥 ⋅ 𝑦 ∈ 𝐿 for all 𝑥, 𝑦 ∈ 𝐿, (𝐿,⋅) 

is called a groupoid. If in a groupoid (𝐿,⋅), the equations:  

 𝑎 ⋅ 𝑥 = 𝑏        𝑎𝑛𝑑        𝑦 ⋅ 𝑎 = 𝑏 

 have unique solutions for 𝑥  and 𝑦  respectively, then (𝐿,⋅)  is called a quasigroup. If in a 

quasigroup (𝐿,⋅), there exists a unique element 𝑒 called the identity element such that for all 𝑥 ∈ 𝐿, 

𝑥 ⋅ 𝑒 = 𝑒 ⋅ 𝑥 = 𝑥, (𝐿,⋅) is called a loop.  

Remark 3 For a groupoid (𝐺,⋅), 𝑅𝑥: 𝐺 → 𝐺, the right translation is defined by 𝑦𝑅𝑥 = 𝑦 ⋅ 𝑥 and 𝐿𝑥: 𝐺 → 𝐺, 

the left translation is defined by 𝑦𝐿𝑥 = 𝑥 ⋅ 𝑦 for all 𝑥, 𝑦 ∈ 𝐺. This mappings are not necessarily bijections. But 

for a quasigroup, they are.  

 Consider (𝐺,⋅) and (𝐻,∘) being two groupoids (quasigroups, loops). Let 𝐴, 𝐵 and 𝐶 be 

three bijective mappings, that map 𝐺 onto 𝐻. The triple 𝛼 = (𝐴, 𝐵, 𝐶) is called an isotopism of (𝐺,⋅) 

onto (𝐻,∘), written as 

  (𝐺,⋅)
(𝐴,𝐵,𝐶)
→    (𝐻,∘) if 𝑥𝐴 ∘ 𝑦𝐵 = (𝑥 ⋅ 𝑦)𝐶∀𝑥, 𝑦 ∈ 𝐺. 

So, (𝐻,∘) is called a groupoid (quasigroup, loop) isotope of (𝐺,⋅). 
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If 𝐶 = 𝐼 is the identity map on 𝐺 so that 𝐻 = 𝐺, then the triple 𝛼 = (𝐴, 𝐵, 𝐼) is called a 

principal isotopism of (𝐺,⋅) onto (𝐺,∘) and (𝐺,∘) is called a principal isotope of (𝐺,⋅). Eventually, the 

equation of relationship now becomes  

 𝑥 ⋅ 𝑦 = 𝑥𝐴 ∘ 𝑦𝐵∀𝑥, 𝑦 ∈ 𝐺 

which is easier to work with. But if 𝐴 = 𝑅𝑔  and 𝐵 = 𝐿𝑓  where 𝑓, 𝑔 ∈ 𝐺 , the relationship now 

becomes  

 𝑥 ⋅ 𝑦 = 𝑥𝑅𝑔 ∘ 𝑦𝐿𝑓∀𝑥, 𝑦 ∈ 𝐺. 

With this new form, the triple 𝛼 = (𝑅𝑔, 𝐿𝑓 , 𝐼) is called an 𝑓, 𝑔-principal isotopism of (𝐺,⋅) onto (𝐺,∘), 

𝑓 and 𝑔 are called translation elements of 𝐺 or at times written in the pair form (𝑔, 𝑓), while (𝐺,∘) is 

called an 𝑓, 𝑔-principal isotope of (𝐺,⋅). 

The following theorem shows that the principal isotopes of a groupoid account for all its 

isotopes.  

Theorem 10  (Pflugfelder [43]) 

If (𝐺,⋅) and (𝐻,∘) are isotopic groupoids, then (𝐻,∘) is isomorphic to some principal isotope (𝐺, å) 

of (𝐺,⋅).  

    Let (𝑋,∗ ,0)  be a BCI-algebra and let 𝑥 + 𝑦 = 𝑥 ∗ (0 ∗ 𝑥) . A groupoid (𝑋, +)  is called an 

associated groupoid of (𝑋,∗ ,0). Based on Theorem 2, Corollaries 3, 4 and 5 of Dudek [9], 𝑥 ∗ 𝑦 = 𝑥 −

𝑦 = 𝑥 + (−𝑦) ⇔ (𝑥 ∗ 𝑦)𝐼 = 𝑥𝐼 + 𝑦𝐽 where 𝐽: 𝑥 ↦ −𝑥. so, we have 

Lemma 1  A BCI-algebra (𝑋,∗ ,0) is a quasigroup if and only if there exists an abelian group (𝑋, +,0) such 

that (𝑋, +,0)
(𝐼,𝐼,𝐽)
→   (𝑋,∗ ,0).  

 According to Dudek [9], the variety of all BCI-algebras that are quasigroups 

(BCI-quasigroups) is selected from the quasivariety of all BCI-algebra by any of the following 

equivalent laws:   

(i) 𝑝-semi simplicity law: 0 ∗ (0 ∗ 𝑥) = 𝑥 

(ii) Semi left inverse property: 𝑥 ∗ (𝑥 ∗ 𝑦) = 𝑦 (SLIP) 

(iii) Medial law: (𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑢) = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑢)   

(iv) (𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧) = (𝑧 ∗ 𝑦)  

(v)  0 ∗ (𝑥 ∗ 𝑧) = 𝑧 ∗ 𝑥 

(vi)  (𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑥) = (𝑥 ∗ 𝑧) ∗ (𝑦 ∗ 𝑥) 

(vii)  [(𝑥 ∗ 𝑦) ∗ 𝑧] ∗ [(𝑥 ∗ 𝑢) ∗ 𝑦] = (𝑢 ∗ 𝑧)  

    Thus, following Lemma 1, it can further be said that the variety of all BCI-algebras that are 

quasigroups is determined by abelian group under the isotopy (𝐼, 𝐼, 𝐽) where 𝐽  is the inverse 

mapping on the abelian group. 

Dudek [11] showed that a BCI-algebra with the medial law obeys the SLIP and further 

showed in Dudek [10] that every BCI-algebra that obeys the SLIP has the Iseki's condition (S)-[19] 

and form a variety characterized with an associated abelian group. 

    In Theorem 10, if (𝐺,⋅) = (𝐻,∘), then the triple 𝛼 = (𝐴, 𝐵, 𝐶) of bijections on (𝐺,⋅) is called an 

autotopism of the groupoid (quasigroup, loop) (𝐺,⋅). Such triples form a group 𝐴𝑈𝑇(𝐺,⋅) called the 

autotopism group of (𝐺,⋅). Furthermore, if 𝐴 = 𝐵 = 𝐶, then 𝐴 is called an automorphism of the 
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groupoid (quasigroup, loop) (𝐺,⋅). Such bijections form a group 𝐴𝑈𝑀(𝐺,⋅) called the automorphism 

group of (𝐺,⋅). 

The group of all permutation on 𝐺 is called the permutation group of 𝐺 and denoted by 

𝑆𝑌𝑀(𝐺).   

1. 𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called autotopic if there exists (𝑈, 𝑉,𝑊) ∈ 𝐴𝑈𝑇(𝐺,⋅); the set of all such mappings 

forms a group Σ(𝐺,⋅).  

2.  𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called 𝜆-regular if there exists (𝑈, 𝐼, 𝑈) ∈ 𝐴𝑈𝑇(𝐺,⋅); the set of all such mappings 

forms a group Λ(𝐺,⋅) ≤ Σ(𝐺,⋅).  

3. 𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called 𝜌-regular if there exists (𝐼, 𝑈, 𝑈) ∈ 𝐴𝑈𝑇(𝐺,⋅); the set of all such mappings 

forms a group 𝒫(𝐺,⋅) ≤ 𝑆𝑌𝑀(𝐺).  

4. 𝑈 ∈ 𝑆𝑌𝑀(𝐺) is called 𝜇-regular if there exists 𝑈′ ∈ 𝑆𝑌𝑀(𝐺) such that (𝑈, 𝑈′−1, 𝐼) ∈ 𝐴𝑈𝑇(𝐺,⋅). 𝑈′ 

is called the adjoint of 𝑈. The set of all 𝜇-regular mappings forms a group Φ(𝐺,⋅) ≤ Σ(𝐺,⋅). The 

set of all adjoint mapping forms a group Ψ(𝐺,⋅) ≤ 𝑆𝑌𝑀(𝐺). Whenever 𝑈′ = 𝑈, then 𝑈 is said to 

be 𝜇-regular and self adjoint.  

 

1.4.  Quasigroup, Loop and their Universality 

      In recent past, and up to the present time, identities of Bol-Moufang type have been studied on 

the platform of groupoids, quasigroups and loops by Fenyves [12], Phillips and Vojtĕchovský, P. [44]

, [45], [46], Jaiyeola [20], Robinson [47], Burn [6], [7], [8], Kinyon and Kunen [40] and by several other 

authors to mention a few. Fenyves [13], Kinyon and Kunen [40], and Phillips and Vojtĕchovský [46] 

found some of these identities to be equivalent to associativity in quasigroups and loops (i.e. 

groups), and others to describe weak associative laws such as extra, Bol, Moufang, central, flexible 

laws in quasigroups and loops. These results are tabularly summarised in Jaiyéolá et al. [36]. 

Loops such as Bol loops, Moufang loops, central loops and extra loops are the most popular 

loops of Bol-Moufang type whose isotopic invariance (universality) has been considered. Some 

others are flexible loops, F-quasigroups, totally symmetric quasigroups(TSQ), distributive 

quasigroups, weak inverse property loops(WIPLs), cross inverse property loops(CIPLs), 

semi-automorphic inverse property loops(SAIPLs) and inverse property loops(IPLs). As shown in 

Pflugfelder [43], a left(right) inverse property loop is universal if and only if it is a left(right) Bol 

loop, so an IPL is universal if and only if it is a Moufang loop. Kepka et. al. [37], [38], [39] solved the 

Belousov problem concerning the universality of F-quasigroup which has been open since 1967. The 

universality of WIPLs and CIPLs has been addressed by Osborn [42] and Artzy [5] respectively 

while the universality of elasticity(flexibility) was studied by Syrbu [49]. Jaiyéolá [20], [22], Jaiyéolá 

and Adéníran [26], [27], [28] studied the universality of central loops while Jaiyéolá [23], [21], [24]

, [25], Jaiyéolá and Adéníran [29], [31], [30], [32], and Jaiyéolá et al. [33] studied the universality 

Osborn loops. 

 

1.5.  Some Existing Results on Fenyves BCI-algebras 

Jaiyéolá et al. [36] investigated Fenyves identities on the platform of BCI-algebras. They 

classified the Fenyves BCI-algebras into 46 associative and 14 non-associative types and showed 

that some Fenyves identities played the role of quasi-associativity, vis-a-vis Theorem 8 in 
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BCI-algebras. Their work clarified the relationship between a BCI-algebra, a quasigroup and a loop. 

Some of their results are stated below. 

Theorem 11 (Jaiyé𝑜lá et al. [36]) 

1. A BCI algebra 𝑋 is a quasigroup if and only if it is 𝑝-semisimple.  

2. A BCI algebra 𝑋 is a loop if and only if it is associative.  

3. An associative BCI algebra 𝑋 is a Boolean group.  

Theorem 12 (Jaiyé𝑜lá et al. [36]) 

Let (𝑋,∗ ,0)  be a BCI-algebra. If 𝑋  is any of the following Fenyves BCI-algebras, then 𝑋  is 

associative.   

1.  𝐹1-algebra  2.  𝐹2-algebra  3.  𝐹4-algebra  4.  𝐹6-algebra  5.  𝐹7-algebra  6.  𝐹9-algebra    

7.  𝐹10 -algebra  8.  𝐹11 -algebra  9.  𝐹12 -algebra  10.  𝐹13 -algebra  11.  𝐹14 -algebra  12.  

𝐹15 -algebra  13.  𝐹16 -algebra  14.  𝐹17 -algebra  15.  𝐹18 -algebra  16.  𝐹20 -algebra  17.  

𝐹22-algebra  18. 𝐹23-algebra 19.  𝐹24-algebra  20.  𝐹25-algebra  21.  𝐹26-algebra  22.  𝐹27-algebra  

23.  𝐹28-algebra  24. 𝐹30-algebra 25.  𝐹31-algebra  26.  𝐹32-algebra  27.  𝐹33-algebra   

28.  𝐹34 -algebra  29.  𝐹35 -algebra  30. 𝐹36 -algebra 31.  𝐹37 -algebra  32.  𝐹38 -algebra  33.  

𝐹40-algebra  34.  𝐹41-algebra  35.  𝐹43-algebra  36. 𝐹44-algebra 37.  𝐹45-algebra  38.  𝐹47-algebra  

39.  𝐹48 -algebra  40.  𝐹49 -algebra  41.  𝐹50 -algebra  42. 𝐹51 -algebra 43.  𝐹53 -algebra  44.  

𝐹57-algebra  45.  𝐹58-algebra  46.  𝐹60-algebra. 

Remark 4 All other 𝐹𝑖's which are not mentioned in Theorem 12 were found to be non-associative. Every 

BCI-algebra is naturally an 𝐹54 BCI-algebra. A BCI-algebra that obeys any of the 𝐹𝑖's in Theorem 12 is a 

Boolean group by Theorem 11(3), hence isomorphic to its associated groupoid (the abelian group in Lemma 1).  

Zhang et al. [52] introduced quasi-neutrosophic triplet loops (QNTLs) which is made up of 

nine main types (cf. Definition 9 of Jaiyéolá et al. [36]). BCI-algebra belong to the class of three of 

these nine main types of QNTLs: (r-r)-QNT, (r-l)-QNTL and (r-lr)-QNTL. Therefore, any 𝐹𝑖 

BCI-algebra, 1 ≤ 𝑖 ≤ 60  belongs to at least one of the following varieties of Fenyves quasi 

neutrosophic triplet loops: (r-r)-FQNTL, (r-l)-FQNTL and (r-lr)-FQNTL. Any associative QNTL is 

called a quasi neutrosophic triplet group (QNTG). 

The variety of quasi neutrosophic triplet loop is a generalization of neutrosophic triplet 

group (NTG) which was originally introduced by Smarandache and Ali [48]. New results and 

developments on neutrosophic triplet groups and neutrosophic triplet loop have been reported by 

Zhang et al. [52], [54], [55], [53], and Smarandache and Jaiyéolá [34], [35]. 

 

1.6.  Motivation, Problem Statement, Aims and Objectives, Methodology 

 In this current paper, the isotopy of BCI-algebras is the main focus of this study (an 

extension of the work in Jaiyéolá et al. [36]). Necessary and sufficient conditions for a groupoid 

isotope of a BCI-algebra to be a BCI-algebra will be established. It will be shown that 

𝑝 -semisimplicity, quasi-associativity and BCK-algebra are invariant under isotopies which are 

determined by some regular permutation groups. Furthermore, the isotopy of both the 46 

associative and 14 non-associative Fenyves BCI-algebras will also be studied. This is with the view 

of showing that there exist some other laws aside (i) to (vii) in subsection 1.3 which can be used to 

select some other varieties of BCI-algebra (e.g. 𝐹𝑖  BCI-algebras, which are not necessarily 



Neutrosophic Sets and Systems, Vol. 31, 2020     208  

 

 

Temitope Gbolahan Jaiyé𝑜lá, Emmanuel Ilojide, Adisa Jamiu Saka, Kehinde Gabriel Ilori, On the Isotopy of some Varieties 

of Fenyves Quasi Neutrosophic Triplet Loop (Fenyves BCI-algebras) 

 

quasigroups) from the quasivariety of all BCI-algebras. Furthermore, this will mean that such 

varieties of BCI-algebra (which are not necessarily quasigroups) can be determined by another 

structure under an isotopy which differs from (𝐼, 𝐼, 𝐽) . Consequently, the 14  non-associative 

Fenyves BCI-algebras do not necessarily have the Iseki's conditions (S) based on the results in 

Theorem 14 of Jaiyéolá et al. [36]. 

 

2.  Main Results 

2.1.  Regular Bijections of BCI-Algebras 

 We need the following results on regular bijections of BCI-algebras.  

Lemma 2  Let (𝐺,⋅ ,0) be a BCI-algebra with 𝛿, 𝑈 ∈ SYM(𝐺). Then the following hold:   

1. 𝛿 is 𝜆-regular ⇔ 𝛿𝑅𝑥 = 𝑅𝑥𝛿 ⇔ 𝐿𝑥𝛿 = 𝐿𝑥𝛿 for all 𝑥 ∈ 𝐺.  

2. 𝛿 is 𝜌-regular ⇔ 𝛿𝐿𝑥 = 𝐿𝑥𝛿 ⇔ 𝑅𝑥𝛿 = 𝑅𝑥𝛿 for all 𝑥 ∈ 𝐺.  

3. 𝛿 is 𝜇-regular and self-adjoint ⇔ 𝛿𝑅𝑥 = 𝑅𝑥𝛿 ⇔ 𝐿𝑥𝛿 = 𝛿𝐿𝑥 for all 𝑥 ∈ 𝐺.  

4. If 𝑈 is 𝜆-regular, then 𝐿0𝑈 = 𝐿0𝑈, 𝑥𝑈 ⋅ 𝑥 = 0𝑈 for all 𝑥 ∈ 𝐺.  

5. If 𝑈 is 𝜌-regular, then 𝑈 = 𝑅0𝑈, 0 ⋅ 0𝑈 = 0𝑈, 𝑈𝐿0 = 𝐿0𝑈.  

6. If 𝑈 is 𝜇-regular and self-adjoint, then 0𝑈 ⋅ 0𝑈−1 = 0, 𝑈𝑅0𝑈−1 = 𝐼, 𝐿0𝑈 = 𝑈𝐿0.  

7. If 𝑈 is autotopic, then there exist 𝑉,𝑊 ∈ 𝑆𝑌𝑀(𝐺) such that 𝑈−1𝑊 = 𝑅0𝑉, 𝑉𝐿0𝑈 = 𝐿0𝑊, 

𝑥𝑈 ⋅ 𝑥𝑉 = 0𝑊 for all 𝑥 ∈ 𝐺.  

Proof.   

1. 𝛿 is 𝜆-regular ⇔ (𝛿, 𝐼, 𝛿) ∈ AUT (𝐺,⋅) ⇔ 𝑦𝛿 ⋅ 𝑥𝐼 = (𝑦 ⋅ 𝑥)𝛿 ⇔ 𝑦𝛿𝑅𝑥 = 𝑦𝑅𝑥𝛿 ⇔ 𝛿𝑅𝑥 =

𝑅𝑥𝛿 ⇔ 𝑦𝛿𝑅𝑥 = 𝑦𝑅𝑥𝛿 ⇔ 𝑦𝛿 ⋅ 𝑥 = (𝑦 ⋅ 𝑥)𝛿 ⇔ 𝑥𝐿𝑦𝛿 = 𝑥𝐿𝑦𝛿 ⇔ 𝐿𝑦𝛿 = 𝐿𝑦𝛿.  

2. 𝛿 is 𝜌-regular ⇔ (𝐼, 𝛿, 𝛿) ∈ AUT (𝐺,⋅) ⇔ 𝑥𝐼 ⋅ 𝑦𝛿 = (𝑥 ⋅ 𝑦)𝛿 ⇔ 𝑦𝛿𝐿𝑥 = 𝑦𝐿𝑥𝛿 ⇔ 𝛿𝐿𝑥 =

𝐿𝑥𝛿 ⇔ 𝑦𝛿𝐿𝑥 = 𝑦𝐿𝑥𝛿 ⇔ 𝑥 ⋅ 𝑦𝛿 = (𝑥 ⋅ 𝑦)𝛿 ⇔ 𝑥𝑅𝑦𝛿 = 𝑥𝑅𝑦𝛿 ⇔ 𝑅𝑦𝛿 = 𝑅𝑦𝛿.  

3.  𝛿 is 𝜇-regular with adjoint 𝛿′ = 𝛿 ⇔ (𝛿, 𝛿′−1, 𝐼) ∈ AUT (𝐺,⋅) ⇔ 𝑥𝛿 ⋅ 𝑦𝛿′−1 = (𝑥 ⋅ 𝑦)𝐼 ⇔

𝑥𝛿 ⋅ 𝑦𝛿𝛿−1 = 𝑥 ⋅ 𝑦𝛿 (by replacing 𝑦 by 𝑦𝛿) ⇔ 𝑥𝛿 ⋅ 𝑦 = 𝑥 ⋅ 𝑦𝛿 ⇔ 𝑥𝛿𝑅𝑦 = 𝑥𝑅𝑦𝛿 ⇔ 𝛿𝑅𝑦 =

𝑅𝑦𝛿 ⇔ 𝑥𝛿𝑅𝑦 = 𝑥𝑅𝑦𝛿 ⇔ 𝑥𝛿 ⋅ 𝑦 = 𝑥 ⋅ 𝑦𝛿 ⇔ 𝑦𝐿𝑥𝛿 = 𝑦𝛿𝐿𝑥 ⇔ 𝐿𝑥𝛿 = 𝛿𝐿𝑥.  

4. If 𝑈 is 𝜆-regular, then 𝑥𝑈 ⋅ 𝑦 = (𝑥𝑦)𝑈. Put 𝑥 = 0 in this, then you have 𝐿0𝑈 = 𝐿0𝑈. Putting 

𝑦 = 𝑥, we have 𝑥𝑈 ⋅ 𝑥 = 0𝑈. 

5.  If 𝑈 is 𝜌-regular, then 𝑥 ⋅ 𝑦𝑈 = (𝑥𝑦)𝑈. Put 𝑦 = 0, then you get 𝑈 = 𝑅0𝑈. Putting 𝑥 = 𝑦 =

0, we have 0 ⋅ 0𝑈 = 0𝑈. Substituting 𝑥 = 0, we get 𝑈𝐿0 = 𝐿0𝑈.  

6. If 𝑈 is 𝜇-regular with adjoint 𝑈′ = 𝑈, then 𝑥 ⋅ 𝑦𝑈−1 = 𝑥 ⋅ 𝑦. Put 𝑥 = 𝑦 = 0 to get 0𝑈 ⋅

0𝑈−1 = 0. Put 𝑦 = 0 to get 𝑈𝑅0𝑈−1 = 𝐼. Put 𝑥 = 0 to get 𝐿0𝑈 = 𝑈𝐿0.  

7.  If 𝑈 is autotopic, then there exist 𝑉,𝑊 ∈ 𝑆𝑌𝑀(𝐺) such that 𝑥𝑈 ⋅ 𝑦𝑉 = 𝑥 ⋅ 𝑦. Putting 𝑦 = 0, 

we get 𝑈−1𝑊 = 𝑅0𝑉. Substituting 𝑥 = 0, we have 𝑉𝐿0𝑈 = 𝐿0𝑊. Substituting 𝑦 = 𝑥, we get 

𝑥𝑈 ⋅ 𝑥𝑉 = 0𝑊.  

 

2.2.  Quasi Neutrosophic Triplet Loop Isotopes of BCI-Algebras 

 We now present results on isotopy of BCI-algebras.  

Theorem 13  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗) is a groupoid.   

1. Let 𝜀−1𝛿 = 𝛿−1𝜀. Then, (𝐺,∗ ,0) is a (r-r)-quasi NTL or (r-l)-quasi NTL or (r-rl)-quasi NTL if 
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and only if 𝛿 = 𝜀 and 𝛿 = 𝑅0𝜀−1  (i.e. ∃𝑔 ∈ 𝐺 ∋ 𝛿 = 𝑅𝑔; 𝑔 = 0𝜀
−1).  

2.  (𝐺,∗ ,0) is a BCI-algebra if and only if the following hold:   

a. 𝛿 = 𝑅0𝜀−1  (∃𝑔 ∈ 𝐺 ∋ 𝛿 = 𝑅𝑔; 𝑔 = 0𝜀
−1);  

b.  𝛿 = 𝜀;  

c.  [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦) = 0.  

Proof.   

1. (𝐺,∗ ,0) is a (r-r)-quasi NTL or (r-l)-quasi NTL or (r-rl)-quasi NTL if and only if 𝑥 ∗ 0 = 𝑥 

and 𝑥 ∗ 𝑥 = 0.   

a. 𝑥 ∗ 0 = 𝑥 ⇔ (𝑥𝛿−1 ⋅ 0𝜀−1)𝐼 = 𝑥 ⇔ 𝑥𝛿−1𝑅0𝜀−1 = 𝑥 ⇔ 𝛿−1𝑅0𝜀−1 = 𝐼 ⇔ 𝛿 = 𝑅0𝜀−1 .  

b.  𝑥 ∗ 𝑥 = 0 ⇔ 𝑥𝛿−1 ⋅ 𝑥𝜀−1 = 0 = 𝑥2. Replace 𝑥 by 𝑥𝜀−1𝛿 to get 𝑥 ∗ 𝑥 = 0 ⇔ 𝑥𝜀−1𝛿𝛿−1 ⋅

𝑥𝜀−1𝛿𝜀−1 = (𝑥𝜀−1𝛿)2 ⇔ 𝑥𝜀−1 ⋅ 𝑥𝜀−1𝛿𝜀−1 = 0 ⇔ 𝑥𝜀−1 ⋅ 𝑥𝛿−1 = 0. So, 𝑥𝛿−1 ⋅ 𝑥𝜀−1 = 0 

and 𝑥𝜀−1 ⋅ 𝑥𝛿−1 = 0 implies that 𝑥𝛿−1 = 𝑥𝜀−1 ⇔ 𝛿 = 𝜀.  

2. For the forward, we shall assume that (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗) and (𝐺,∗ ,0) is a BCI-algebra.   

a. As above in 1, 𝑥 ∗ 0 = 𝑥 ⇔ 𝛿 = 𝑅0𝜀−1.  

b.  Let 𝑥 ∗ 𝑦 = 0 and 𝑦 ∗ 𝑥 = 0, and so 𝑥𝛿−1 ⋅ 𝑦𝜀−1 = 0 and 𝑦𝛿−1 ⋅ 𝑥𝜀−1 = 0 respectively. 

The equation 𝑦𝛿−1 ⋅ 𝑥𝜀−1 = 0 can be re-written as 𝑦𝛿−1 ⋅ 𝑥𝜀−1 = 𝑦2. Now, replacing 𝑦 

by 𝑦𝜀−1𝛿 to get 𝑦𝜀−1𝛿𝛿−1 ⋅ 𝑥𝜀−1 = (𝑦𝜀−1𝛿)2 ⇒ 𝑦𝜀−1 ⋅ 𝑥𝜀−1 = 0 ⇒ 𝑦𝜀−1 ⋅ 𝑥𝜀−1 = 𝑥2. 

Furthermore, 𝑥 by 𝑥𝛿−1𝜀 to get 𝑦𝜀−1 ⋅ 𝑥𝛿−1𝜀𝜀−1 = (𝑥𝛿−1𝜀)2 ⇒ 𝑦𝜀−1 ⋅ 𝑥𝛿−1 = 0. 

Thus, we have shown that 𝑥𝛿−1 ⋅ 𝑦𝜀−1 = 0 and 𝑦𝜀−1 ⋅ 𝑥𝛿−1 = 0. Recall that 𝑥 ⋅ 𝑦 = 0 and 

𝑦 ⋅ 𝑥 = 0 imply that 𝑥 = 𝑦. So, 𝑥𝛿−1 = 𝑦𝜀−1 ⇒ 𝛿 = 𝜀.  

c. [(𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)] ∗ (𝑧 ∗ 𝑦) = 0 ⇔ [(𝑥𝛿−1 ⋅ 𝑦𝜀−1)𝛿−1 ⋅ (𝑥𝛿−1 ⋅ 𝑧𝜀−1)𝜀−1]𝛿−1 ⋅ [(𝑧𝛿−1 ⋅

𝑦𝜀−1)]𝜀−1 = 0. Replace 𝑥𝛿−1 by 𝑥, 𝑦𝜀−1 by 𝑦, and 𝑧𝜀−1 by 𝑧 to get [(𝑥 ⋅ 𝑦)𝛿−1 ⋅ (𝑥 ⋅

𝑧)𝜀−1]𝛿−1 ⋅ [𝑧𝜀𝛿−1 ⋅ 𝑦]𝜀−1 = 0 ⇒ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)]𝛿−1 ⋅ [𝑧𝜀𝛿−1 ⋅ 𝑦]𝜀−1 = 0 ⇒ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅

𝑧)] ∗ [𝑧𝜀𝛿−1 ⋅ 𝑦] = 0 ⇒ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ [𝑧 ⋅ 𝑦] = 0.  

    For the converse: we shall assume (a), (b) and (c). Following directly the reverse of 2(a), 

𝑥 ∗ 0 = 𝑥 . Since 𝛿 = 𝜀 , then 𝑥 ∗ 𝑦 = 0 ⇒ 𝑥𝛿−1 ⋅ 𝑦𝜀−1 = 0  and 𝑦 ∗ 𝑥 = 0 ⇒ 𝑦𝛿−1 ⋅ 𝑥𝜀−1 = 0 

which means that 𝑥𝛿−1 ⋅ 𝑦𝛿−1 = 0 and 𝑦𝛿−1 ⋅ 𝑥𝛿−1 = 0 imply 𝑥 = 𝑦. Since 𝛿 = 𝜀, then (c) 

can be reversed to get [(𝑥 ∗ 𝑦) ∗ (𝑥 ∗ 𝑧)] ∗ (𝑧 ∗ 𝑦) = 0. ∴ (𝐺,∗ ,0) is a BCI-algebra.  

Corollary 1 Let (𝐺,⋅ ,0)
(𝑅𝑔,𝑅𝑔,𝐼)
→     (𝐺,∗) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗) is a groupoid.   

1. (𝐺,∗ ,0) is a (r-r)-quasi NTL, (r-l)-quasi NTL and (r-rl)-quasi NTL.  

2. (𝐺,∗ ,0) is a BCI-algebra if and only if [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦) = 0 holds.  

 

Proof. We shall use Theorem 13. 1 and 2 are true because 𝑅𝑔 = 𝑅0𝑅𝑔−1  since 𝑔 = 0𝑅𝑔
−1 ⇔ 𝑔2 = 0, 

which is true in the BCI-algebra (𝐺,⋅ ,0).  

Theorem 14  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄) such that 0𝐶 = 0′, where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄) is a 

groupoid. 

1. Let 𝐴−1𝐵 = 𝐵−1𝐴 , then (𝐻,⋄, 0′)  is a (r-r)-quasi NTL or (r-l)-quasi NTL or 

(r-rl)-quasi NTL if and only if 𝐴 = 𝐵 and 𝐴 = 𝑅0′𝐵−1𝐶 (i.e. ∃𝑔 ∈ 𝐺 ∋ 𝐴 = 𝑅𝑔𝐶, 𝑔 =
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0′𝐵−1).  

2.  (𝐻,⋄, 0′) is a BCI-algebra if and only if the following hold:   

a. 𝐴 = 𝑅0′𝐵−1𝐶 (∃𝑔 ∈ 𝐺 ∋ 𝐴 = 𝑅𝑔𝐶, 𝑔 = 0
′𝐵−1); 

b. 𝐴 = 𝐵; 

c. [(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧 ⋄ 𝑦) = 0′. 

Proof. We make use of Theorem 13. Theorem 10 shall be applied in here as follows: (𝐺,∗) is a 

principal isotope of (𝐺,⋅) such that (𝐺,∗) ≅
𝐶
(𝐻,⋄).   

a. is true ⇔ 𝐴𝐶−1 = 𝑅0(𝐵𝐶−1)−1  ⇔ 𝐴𝐶−1 = 𝑅0𝐶𝐵−1 ⇔ 𝐴 = 𝑅0′𝐵−1𝐶.  

b. is true ⇔ 𝐴𝐶−1 = 𝐵𝐶−1 ⇔ 𝐴 = 𝐵. 

c.  [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦) = 0 ⇔ {[(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)] ∗ (𝑧 ⋅ 𝑦)}𝐶 = 0𝐶 ⇔ [(𝑥 ⋅ 𝑦) ∗ (𝑥 ⋅ 𝑧)]𝐶 ⋄

(𝑧 ⋅ 𝑦)𝐶 = 0′ ⇔ [(𝑥 ⋅ 𝑦)𝐶 ⋄ (𝑥 ⋅ 𝑧)𝐶] ⋄ (𝑧 ⋅ 𝑦)𝐶 = 0′ ⇔ [(𝑥𝐴 ⋄ 𝑦𝐵) ⋄ (𝑥𝐴 ⋄ 𝑧𝐵)] ⋄ (𝑧𝐴 ⋄ 𝑦𝐵) =

0′.  

 Replace 𝑥𝐴  by 𝑥 , 𝑦𝐵  by 𝑦 , and 𝑧𝐵  by 𝑧  to get [(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧𝐵−1𝐴 ⋄ 𝑦) = 0′ ⇔

[(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧 ⋄ 𝑦) = 0′.  

Corollary 2 Let (𝐺,⋅ ,0)
(𝑅𝑔𝐶,𝑅𝑔𝐶,𝐶)
→        (𝐻,⋄) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄) is a groupoid. Let 0𝐶 =

0′, then  

1.  (𝐻,⋄, 0′) is a (r-r)-quasi NTL, (r-l)-quasi NTL and (r-rl)-quasi NTL.  

2.  (𝐻,⋄, 0′) is a BCI-algebra if and only if [(𝑥 ⋄ 𝑦) ⋄ (𝑥 ⋄ 𝑧)] ⋄ (𝑧 ⋄ 𝑦) = 0′ holds.  

  

Proof. We shall use Theorem 14. 1 and 2 are true because 𝑅𝑔𝐶 = 𝑅0′(𝑅𝑔𝐶)−1𝐶 since 𝑔 = 0′(𝑅𝑔𝐶)
−1 ⇔

𝑔 = 0′𝐶−1𝑅𝑔
−1 ⇔ 𝑔 = 0𝑅𝑔

−1 ⇔ 𝑔2 = 0, which is true in the BCI-algebra (𝐺,⋅ ,0).  

 

2.3.  Isotopy of [𝑝-semisimple, quasi-associative] BCI-Algebras and BCK-Algebras 

 Isotopy of 𝑝-semisimple, quasi-associative BCI-algebras and BCK-Algebras is presented.  

Theorem 15  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0)  where (𝐺,⋅ ,0)  is a BCI-algebra and (𝐺,∗ ,0)  is a BCI-algebra. 

Under any of the following conditions:   

 

1. 0𝛿 = 0, 𝛿 ∈ 𝒫(𝐺,∗) and |𝛿| = 2 (i.e. 𝛿2 = 𝐼);  

2. 𝛿 ∈ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗) and |𝛿| = 2;  

(𝐺,⋅ ,0) is 𝑝-semisimple if and only if (𝐺,∗ ,0) is 𝑝-semisimple.  

Proof. By Theorem 13, 𝛿 = 𝜀.   

1. (𝐺,⋅ ,0) is 𝑝-semisimple if and only if 0 ⋅ (0 ⋅ 𝑥) = 𝑥 ⇔ 𝐿0
2 = 𝐼 . (𝐺,⋅ ,0) is 𝑝-semisimple if 

and only if 0𝛿 ∗ (0𝛿 ∗ 𝑥𝛿)𝛿 = 𝑥 ⇔ 0 ∗ (0 ∗ 𝑥𝛿)𝛿 = 𝑥 ⇔ 0 ∗ (0 ∗ 𝑥)𝛿 = 𝑥𝛿 ⇔ 𝕃0𝛿𝕃0 = 𝛿. 

Following 2. of Lemma 2, (𝐺,⋅ ,0) is 𝑝-semisimple if and only if 𝕃0
2 = 𝐼 ⇔ (𝐺,∗ ,0) is    

 𝑝-semisimple. 

2. (𝐺,⋅ ,0)  is 𝑝 -semisimple if and only if (𝑥 ⋅ 𝑦) ⋅ (𝑥 ⋅ 𝑧) = 𝑧 ⋅ 𝑦 ⇔ 𝐿𝑥𝐿𝑥⋅𝑦 = 𝑅𝑦 . (𝐺,⋅ ,0)  is 

𝑝-semisimple if and only if (𝑥𝛿 ∗ 𝑦𝜀)𝛿 ∗ (𝑥𝛿 ∗ 𝑧𝜀)𝜀 = 𝑧𝛿 ∗ 𝑦𝜀 ⇔ (𝑥 ∗ 𝑦)𝛿 ∗ (𝑥 ∗ 𝑧)𝛿 = 𝑧 ∗ 𝑦 ⇔

𝕃𝑥𝛿𝕃(𝑥∗𝑦)𝛿 = ℝ𝑦. 
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Following 3. of Lemma 2, (𝐺,⋅ ,0)  is 𝑝 -semisimple if and only if 𝕃𝑥𝛿
2𝕃(𝑥∗𝑦) = ℝ𝑦 ⇔

𝕃𝑥𝕃(𝑥∗𝑦) = 

ℝ𝑦 ⇔ (𝐺,∗ ,0) is 𝑝-semisimple.  

Corollary 3  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra, and 

(𝐺,∗) is a principal isotope of (𝐺,⋅). Under any of the following conditions:   

 

1. 0𝐶 = 0𝐴, 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) and 𝐶𝐴−1𝐶 = 𝐴;  

2. 𝐴𝐶−1 ∈ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗) and 𝐶𝐴−1𝐶 = 𝐴;  

 

(𝐺,⋅ ,0) is 𝑝-semisimple if and only if (𝐻,⋄ ,0′) is 𝑝-semisimple.  

Proof. Use the Theorem 15.  

Theorem 16  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that 0𝛿 = 0. (𝐺,⋅ ,0) is a BCK-algebra if and only if (𝐺,∗ ,0) is a BCK-algebra.  

  

Proof. (𝐺,⋅ ,0) is a BCK-algebra if and only if 0 ⋅ 𝑥 = 0 ⇔ 0𝛿 ∗ 𝑥𝜀 = 0 ⇔ 0 ∗ 𝑥𝛿 = 0 ⇔ 0 ∗ 𝑥 = 0 if 

and only if (𝐺,∗ ,0) is a BCK-algebra.  

Corollary 4  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a zero-cancellative BCI-algebra and (𝐻,⋄ ,0′) is a 

BCI-algebra such that 0𝐶 = 0𝐴 = 0′. (𝐺,⋅ ,0) is a BCK-algebra if and only if (𝐻,⋄ ,0′) is a BCK-algebra.  

  

Proof. Use the Theorem 16.  

Theorem 17  Let (𝐺,⋅ ,0, ≤)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0, ⋜  ) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra. 

Under any of the following conditions:   

1. 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2. 𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

3.  𝛿 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

 (𝐺,⋅ ,0) is quasi-associative if and only if (𝐺,∗ ,0) is quasi-associative.  

 Proof. In the light of Theorem 2, we shall adopt the following representation for any two self 

maps 𝐴  and 𝐵  on 𝐺 : 𝐴 ≤ 𝐵 ⇔ 𝑥𝐴 ≤ 𝑥𝐵  and 𝐴 ⋜ 𝐵 ⇔ 𝑥𝐴 ⋜ 𝑥𝐵  for all 𝑥 ∈ 𝐺 . Recall that by 

Theorem 2, 𝑥 ⋅ 𝑦 = 0 ⇔ 𝑥 ≤ 𝑦 and 𝑥 ∗ 𝑦 = 0 ⇔ 𝑥 ⋜ 𝑦. So, 𝑥 ≤ 𝑦 ⇔ 𝑥 ⋅ 𝑦 = 0 ⇔ 𝑥𝛿 ∗ 𝑦𝜀 = 0 ⇔ 𝑥𝛿 ⋜

𝑦𝜀. Hence, 𝑥 ≤ 𝑦 ⇔ 𝑥𝛿 ⋜ 𝑦𝜀. Note that by Theorem 13, 𝛿 = 𝜀.   

1. (𝐺,⋅ ,0)  is quasi-associative if and only if (𝑥 ⋅ 𝑦) ⋅ 𝑧 ≤ 𝑥 ⋅ (𝑦 ⋅ 𝑧) ⇔ (𝑥𝛿 ∗ 𝑦𝜀)𝛿 ∗ 𝑧𝜀 ≤ 𝑥𝛿 ∗

(𝑦𝛿 ∗ 𝑧𝜀)𝜀 ⇔ (𝑥 ∗ 𝑦)𝛿 ∗ 𝑧 ≤ 𝑥 ∗ (𝑦 ∗ 𝑧)𝜀 ⇔ ℝ𝑦𝛿ℝ𝑧 ≤ ℝ(𝑦∗𝑧)𝛿 . 

Following 1. and 2. of Lemma 2, (𝐺,⋅ ,0) is quasi-associative if and only if 𝛿ℝ𝑦ℝ𝑧 ≤ 𝛿ℝ𝑦∗𝑧 ⇔ (𝑥𝛿 ∗

𝑦) ∗ 𝑧 ≤ 𝑥𝛿 ∗ (𝑦 ∗ 𝑧) ⇔ (𝑥 ∗ 𝑦) ∗ 𝑧 ≤ 𝑥 ∗ (𝑦 ∗ 𝑧) ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧] ⋅ [𝑥 ∗ (𝑦 ∗ 𝑧)] = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧]𝛿 ∗ [𝑥 ∗

(𝑦 ∗ 𝑧)]𝜀 = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧𝛿] ∗ [𝑥 ∗ (𝑦 ∗ 𝑧𝜀)] = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧] ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)] = 0 ⇔ [(𝑥 ∗ 𝑦) ∗ 𝑧] ⋜

[𝑥 ∗ (𝑦 ∗ 𝑧)] if and only if (𝐺,∗ ,0) is quasi-associative. 

2. By Lemma 2, 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗) ⇔ 𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗). Hence, the 
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conclusion follows by 1.  

3. By Lemma 2, 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗) ⇔ 𝛿 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗). Hence, the 

conclusion follows by 1.  

Corollary 5  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra, (𝐻,⋄ ,0′) is a BCI-algebra and 

(𝐺,∗) is a principal isotope of (𝐺,⋅) with 0𝐶 = 0′. Under any of the following conditions:   

 

1. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗); 

3. 𝐴𝐶−1 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗);  

 

(𝐺,⋅ ,0) is quasi-associative if and only if (𝐻,⋄ ,0′) is quasi-associative.  

  

Proof. Use the Theorem 5.  

 

2.4.  Isotopy of Associative Fenyves BCI-Algebras 

  

Isotopy of associative Fenyves BCI-algebras is presented. The set 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅)  of a 

groupoid (𝐺,⋅) is defined as 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅) = {𝑥 ∈ 𝐺: 𝑥𝑦 = 𝑦𝑥∀𝑦 ∈ 𝐺}.  

Theorem 18  Let (𝐺,⋅ ,0)
(𝛼,𝛼,𝐼)
→    (𝐺,∗ ,0)  where (𝐺,⋅ ,0)  and (𝐺,∗ ,0)  are BCI-algebras. (𝐺,∗ ,0)  is 

associative if and only if 0𝛼−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅).  

  

Proof. 0 ∗ 𝑥 = 𝑥 ⇔ 0𝛼−1 ⋅ 𝑥𝛼−1 = 𝑥 ⇔ 𝛼 = 𝐿0𝛼−1 ⇔ 𝑅0𝛼−1 = 𝐿0𝛼−1 ⇔ 0𝛼−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅).  

Corollary 6  Let (𝐺,⋅ ,0)
(𝐴,𝐴,𝐶)
→    (𝐻,⋄ ,0′)  where (𝐺,⋅ ,0)  and (𝐻,⋄ ,0′)  are BCI-algebras. (𝐻,⋄ ,0′)  is 

associative if and only if 0𝐶𝐴−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅).  

  

Proof. Use Theorem 18.  

Corollary 7  Let (𝐺,⋅ ,0)
(𝛼,𝛼,𝐼)
→    (𝐺,∗ ,0)  where (𝐺,⋅ ,0)  and (𝐺,∗ ,0)  are BCI-algebras. (𝐺,∗ ,0)  is an 

𝐹𝑖-algebra if and only if 0𝛼−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅) for 𝑖 = 1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22, 

23,24,25,26,27,28,30,31,32,33,34,35,36, 37,38,40,41,43,44,45,47,48,49,50,51,53,57,58,60.  

  

Proof. This follows by Theorem 18 and Theorem 12.  

Corollary 8  Let (𝐺,⋅ ,0)
(𝐴,𝐴,𝐶)
→    (𝐻,⋄, 0′)  where (𝐺,⋅ ,0)  and (𝐻,⋄, 0′)  are BCI-algebras. (𝐻,⋄, 0′)  is an 

𝐹𝑖-algebra if and only if 0𝐶𝐴−1 ∈ 𝐶𝑒𝑛𝑡𝑟𝑢𝑚(𝐺,⋅) for 𝑖 = 1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22, 

23,24,25,26,27,28,30,31,32,33,34,35,36, 37,38,40,41,43,44,45,47,48,49,50,51,53,57,58,60.  

  

Proof. This follows by Corollary 6 and Theorem 12.  
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Theorem 19  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra. Then 

(𝐺,⋅ ,0) is associative if and only if (𝐺,∗ ,0) is associative.  

  

Proof. (𝐺,⋅ ,0) is associative if and only if 𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥 ⇔ 𝑥𝛿 ∗ 𝑦𝜀 = 𝑦𝛿 ∗ 𝑥𝜀 ⇔ 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 ⇔ (𝐺,∗ ,0) 

is associative.  

Corollary 9  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra. 

Then (𝐺,⋅ ,0) is associative if and only if (𝐻,⋄ ,0′) is associative.  

  

Proof. This follows from Theorem 19.  

Corollary 10  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra. Then 

(𝐺,⋅ ,0)  is an 𝐹𝑖 -algebra if and only if (𝐺,∗ ,0)  is an 𝐹𝑖 -algebra, 𝑖 =

1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,40,41, 

43,44,45,47,48,49,50,51,53,57,58,60.  

  

Proof. This follows from Theorem 12 and Theorem 19.  

Corollary 11  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄, 0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄, 0′) is a BCI-algebra. 

Then (𝐺,⋅ ,0)  is an 𝐹𝑖 -algebra if and only if (𝐻,⋄, 0′)  is an 𝐹𝑖 -algebra, 𝑖 =

1,2,4,6,7,9,10,11,12,13,14,15,16,17,18,20,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,40,41, 

43,44,45,47,48,49,50,51,53,57,58,60.  

 

Proof. This follows from Theorem 12 and Corollary 9.  

 

Remark 5 Note that those 𝐹𝑖 identities which are not in Corollary 11, do not necessarily imply associativity in 

BCI-algebra, hence, they need some isotopic conditions for isotopic invariance. The next subsection addresses 

this.  

 

2.5.  Isotopy of Non-Associative Fenyves BCI-Algebras 

  

Isotopy of non-associative Fenyves BCI-algebras is presented.  

 

Theorem 20  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that any of the following is true:   

 

1. .𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2.  𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

3.  𝛿 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗).  
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Then, (𝐺,⋅ ,0)  is an 𝐹𝑖 -algebra if and only if (𝐺,∗ ,0)  is an 𝐹𝑖 -algebra; where 𝑖 =

3,5,8,19,21,29,39,42,46,52,55,56,59.  

  

Proof. By Lemma 2, 𝛿 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗) ⇔ 𝛿 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗) ⇔ 𝛿 ∈ Λ(𝐺,∗

) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗). By Theorem 13, 𝛿 = 𝜀. The arguments of the proof is based on 

condition 1. 

 

(𝐺,⋅ ,0)  is an 𝐹3 -algebra if and only if (𝑥 ⋅ 𝑦) ⋅ (𝑧 ⋅ 𝑥) = 𝑥 ⋅ [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⇔ (𝑥𝛿 ∗ 𝑦𝜀)𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀 =

𝑥𝛿 ∗ [𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀]𝜀 ⇔ (𝑥 ∗ 𝑦)𝛿 ∗ (𝑧 ∗ 𝑥)𝜀 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)𝜀]𝜀 ⇔ 𝑦𝕃𝑥𝛿ℝ(𝑧∗𝑥)𝜀 = 𝑦ℝ(𝑧∗𝑥)𝜀𝜀𝕃𝑥 ⇔

𝕃𝑥𝛿ℝ(𝑧∗𝑥)𝜀 = ℝ(𝑧∗𝑥)𝜀
2𝕃𝑥 ⇔ 𝑦𝕃𝑥ℝ(𝑧∗𝑥) = 𝑦ℝ(𝑧∗𝑥)𝕃𝑥 ⇔ [(𝑥 ∗ 𝑦) ∗ (𝑧 ∗ 𝑥) = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is 

an 𝐹3-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹5-algebra if and only if [(𝑥 ⋅ 𝑦) ⋅ 𝑧)]𝑥 = [𝑥 ⋅ (𝑦 ⋅ 𝑧)]𝑥 ⇔ [(𝑥 ∗ 𝑦)𝛿 ∗ 𝑧]𝛿 ∗ 𝑥 = [𝑥 ∗ (𝑦 ∗

𝑧)𝜀]𝛿 ∗ 𝑥 ⇔ 𝑦ℝ𝑧𝜀𝕃𝑥𝛿ℝ𝑥 = 𝑦𝕃𝑥𝛿ℝ𝑧𝛿ℝ𝑥 ⇔ ℝ𝑧𝜀𝕃𝑥𝛿ℝ𝑥 = 𝕃𝑥𝛿ℝ𝑧𝛿ℝ𝑥 ⇔ ℝ𝑧𝕃𝑥𝜀𝛿ℝ𝑥 = 𝕃𝑥ℝ𝑧𝛿
2ℝ𝑥 ⇔

ℝ𝑧𝕃𝑥ℝ𝑥 = 𝕃𝑥ℝ𝑧ℝ𝑥 ⇔ 𝑦ℝ𝑧𝕃𝑥ℝ𝑥 = 𝑦𝕃𝑥ℝ𝑧ℝ𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)] ∗ 𝑥 = [(𝑥 ∗ 𝑦) ∗ 𝑧] ∗ 𝑥 ⇔ (𝐺,∗ ,0)  is an 

𝐹5-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹8-algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⋅ 𝑥 = 𝑥 ⋅ [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧𝜀)𝜀]𝛿 ∗ 𝑥𝜀 = 𝑥𝛿 ∗

[𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀]𝜀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)𝜀]𝛿 ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)𝜀]𝜀 ⇔ 𝑦ℝ𝑧𝜀𝕃𝑥𝛿ℝ𝑥 = 𝑦ℝ(𝑧∗𝑥)𝜀𝜀𝕃𝑥 ⇔

ℝ𝑧𝕃𝑥𝜀𝛿ℝ𝑥 = ℝ(𝑧∗𝑥)𝜀
2𝕃𝑥 ⇔ ℝ𝑧𝕃𝑥ℝ𝑥 = ℝ(𝑧∗𝑥)𝕃𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)] ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is an 

𝐹8-algebra 

 

(𝐺,⋅ ,0)  is an 𝐹19 -algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑥)] ⋅ 𝑧 = 𝑥 ⋅ [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑥𝜀)𝜀]𝛿 ∗ 𝑧𝜀 =

𝑥𝛿 ∗ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧𝜀)𝜀]𝜀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)𝜀]𝛿 ∗ 𝑧𝜀 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)𝜀]𝜀 ⇔ 𝑦ℝ𝑥𝜀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ(𝑥∗𝑧)𝜀𝜀ℝ𝑥 ⇔

ℝ𝑥𝕃𝑥𝜀𝛿ℝ𝑧 = ℝ(𝑥∗𝑧)𝜀
2ℝ𝑥 ⇔ ℝ𝑥𝕃𝑥ℝ𝑧 = ℝ(𝑥∗𝑧)ℝ𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)] ∗ 𝑧 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹19-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹21-algebra if and only if [(𝑦 ⋅ 𝑥) ⋅ (𝑧 ⋅ 𝑥)] = [(𝑦 ⋅ 𝑥) ⋅ 𝑧] ⋅ 𝑥 ⇔ (𝑦𝛿 ∗ 𝑥𝜀)𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀 =

[(𝑦𝛿 ∗ 𝑥𝜀)𝛿 ∗ 𝑧𝜀]𝛿 ∗ 𝑥𝜀 ⇔ (𝑦 ∗ 𝑥)𝛿 ∗ (𝑧 ∗ 𝑥)𝜀 = [(𝑦 ∗ 𝑥)𝛿 ∗ 𝑧]𝛿 ∗ 𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥𝛿𝛿ℝ𝑥 = 𝑧ℝ𝑥𝛿𝕃𝑦ℝ𝑥𝛿 ⇔

𝕃𝑦ℝ𝑥𝛿ℝ𝑥 = ℝ𝑥𝕃𝑦ℝ𝑥𝛿 ⇔ 𝕃𝑦𝛿ℝ𝑥ℝ𝑥 = ℝ𝑥𝕃𝑦𝛿ℝ𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑦ℝ𝑥 ⇔ [(𝑦 ∗ 𝑥) ∗ (𝑧 ∗ 𝑥)] = [(𝑦 ∗ 𝑥) ∗

𝑧] ∗ 𝑥 ⇔ (𝐺,∗ ,0) is an 𝐹21-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹29 -algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⋅ 𝑥 = 𝑦 ⋅ [𝑥 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧𝜀)𝜀]𝛿 ∗ 𝑥𝜀 =

𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀]𝜀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)𝜀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)𝜀]𝜀 ⇔ 𝑧𝕃𝑥𝜀𝕃𝑦𝛿ℝ𝑥 = 𝑧ℝ𝑥𝜀𝕃𝑥𝜀𝕃𝑦 ⇔

𝕃𝑥𝕃𝑦𝜀𝛿ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥𝜀
2𝕃𝑦 ⇔ 𝕃𝑥𝕃𝑦ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)] ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0) is an 

𝐹29-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹39 -algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑥)] ⋅ 𝑧 = 𝑦 ⋅ [𝑥 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑥𝜀)𝜀]𝛿 ∗ 𝑧𝜀 =

𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑧𝜀)𝜀]𝜀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)𝜀]𝛿 ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)𝜀]𝜀 ⇔ 𝑧𝕃[𝑦∗(𝑥∗𝑥)𝜀]𝛿 = 𝑧𝕃𝑥𝜀𝕃𝑥𝜀𝕃𝑦 ⇔
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𝕃[𝑦∗(𝑥∗𝑥)𝜀𝛿] = 𝕃𝑥
2𝜀2𝕃𝑦 ⇔ 𝕃[𝑦∗(𝑥∗𝑥)] = 𝕃𝑥

2𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)] ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹39-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹42-algebra if and only if (𝑥 ⋅ 𝑥) ⋅ (𝑦 ⋅ 𝑧) = [(𝑥 ⋅ 𝑥) ⋅ 𝑦] ⋅ 𝑧 ⇔ 0𝛿 ∗ (𝑦 ∗ 𝑧)𝜀 = (0𝛿 ∗ 𝑦)𝛿 ∗

𝑧 ⇔ 𝑦ℝ𝑧𝜀𝕃0𝛿 = 𝑦𝕃0𝛿𝛿ℝ𝑧 ⇔ 𝑦ℝ𝑧𝜀𝕃0𝛿 = 𝑦𝕃0𝛿𝛿ℝ𝑧 ⇔ 𝑦ℝ𝑧𝕃0𝜀𝛿 = 𝑦𝕃0ℝ𝑧 ⇔ 𝑦ℝ𝑧𝕃0 = 𝑦𝕃0ℝ𝑧 ⇔ 0 ∗

(𝑦 ∗ 𝑧) = (0 ∗ 𝑦) ∗ 𝑧 ⇔ (𝐺,∗ ,0) is an 𝐹42-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹46 -algebra if and only if [𝑥 ⋅ (𝑥 ⋅ 𝑦)] ⋅ 𝑧 = 𝑥 ⋅ [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑦𝜀)𝜀]𝛿 ∗ 𝑧𝜀 =

𝑥𝛿 ∗ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧𝜀)𝜀]𝜀 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)𝜀]𝛿 ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)𝜀]𝜀 ⇔ 𝑦𝕃𝑥𝜀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ𝑧𝜀𝕃𝑥𝜀𝕃𝑧 ⇔

𝕃𝑥𝕃𝑥𝜀𝛿ℝ𝑧 = ℝ𝑧𝕃𝑥𝜀
2𝕃𝑧 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)] ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)] ⇔ (𝐺,∗ ,0) is an 𝐹46-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹52-algebra if and only if (𝑦 ⋅ 𝑧) ⋅ (𝑥 ⋅ 𝑥) = [(𝑦 ⋅ 𝑧) ⋅ 𝑥] ⋅ 𝑥 ⇔ (𝑦𝛿 ∗ 𝑧𝜀)𝛿 ∗ (𝑥𝛿 ∗ 𝑥𝜀)𝜀 =

[(𝑦𝛿 ∗ 𝑧𝜀)𝛿 ∗ 𝑥𝜀]𝛿 ∗ 𝑥𝜀 ⇔ (𝑦 ∗ 𝑧)𝛿 ∗ (𝑥 ∗ 𝑥)𝜀 = [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 ⇔ 𝑦ℝ𝑧𝛿ℝ(𝑥∗𝑥)𝜀 = 𝑦ℝ𝑧𝛿ℝ𝑥𝛿ℝ𝑥 ⇔

ℝ𝑧ℝ(𝑥∗𝑥)𝜀𝛿 = ℝ𝑧ℝ𝑥𝛿
2ℝ𝑥 ⇔ ℝ𝑧ℝ(𝑥∗𝑥) = ℝ𝑧ℝ𝑥

2 ⇔ (𝑦 ∗ 𝑧) ∗ (𝑥 ∗ 𝑥) = [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 ⇔ (𝐺,∗ ,0)  is an 

𝐹52-algebra. 

 

(𝐺,⋅ ,0) is an 𝐹55-algebra if and only if [(𝑦 ⋅ 𝑧) ⋅ 𝑥]𝑥 = [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⋅ 𝑥 ⇔ [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 = [𝑦 ∗ (𝑧 ∗

𝑥)𝜀]𝛿 ∗ 𝑥 ⇔ 𝑧𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = 𝑧ℝ𝑥𝜀𝕃𝑦𝛿ℝ𝑥 = 𝑧ℝ𝑥𝜀𝕃𝑦𝛿ℝ𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥𝛿𝛿ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑦𝜀𝛿ℝ𝑥 =

𝑧ℝ𝑥𝜀𝕃𝑦𝛿ℝ𝑥 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑦ℝ𝑥 = 𝑧ℝ𝑥𝜀𝕃𝑦𝛿ℝ𝑥 ⇔ [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 = [𝑦 ∗ (𝑧 ∗ 𝑥)] ∗ 𝑥 ⇔ (𝐺,∗ ,0)  

is an 𝐹55-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹56 -algebra if and only if [(𝑦 ⋅ 𝑧) ⋅ 𝑥] ⋅ 𝑥 = 𝑦 ⋅ [(𝑧 ⋅ 𝑥) ⋅ 𝑥] ⇔ [(𝑦𝛿 ∗ 𝑧𝜀)𝛿 ∗ 𝑥𝜀]𝛿 ∗ 𝑥𝜀 =

𝑦𝛿 ∗ [(𝑧𝛿 ∗ 𝑥𝜀)𝛿 ∗ 𝑥𝜀]𝜀 ⇔ [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 = 𝑦 ∗ [(𝑧 ∗ 𝑥)𝛿 ∗ 𝑥]𝜀 ⇔ 𝑧𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = 𝑧ℝ𝑥𝛿ℝ𝑥𝜀𝕃𝑦 ⇔

𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = ℝ𝑥𝛿ℝ𝑥𝜀𝕃𝑦 ⇔ 𝕃𝑦ℝ𝑥𝛿
2ℝ𝑥 = ℝ𝑥ℝ𝑥𝛿𝜀𝕃𝑦 ⇔ 𝕃𝑦ℝ𝑥ℝ𝑥 = ℝ𝑥ℝ𝑥𝕃𝑦 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 =

𝑧ℝ𝑥ℝ𝑥𝕃𝑦 ⇔ [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 = 𝑦 ∗ [(𝑧 ∗ 𝑥) ∗ 𝑥] ⇔ (𝐺,∗ ,0) is an 𝐹56-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹59 -algebra if and only if [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⋅ 𝑥 = 𝑦 ⋅ [𝑧 ⋅ (𝑥 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀]𝛿 ∗ 𝑥𝜀 =

𝑦𝛿 ∗ [𝑧𝛿 ∗ (𝑥𝛿 ∗ 𝑥𝜀)𝜀]𝜀 ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)𝜀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)𝜀]𝜀 ⇔ 𝑦ℝ(𝑧∗𝑥)𝜀𝛿ℝ𝑥 = 𝑦ℝ[𝑧∗(𝑥∗𝑥)𝜀]𝜀 ⇔

ℝ(𝑧∗𝑥)𝜀𝛿ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)]𝜀
2 ⇔ ℝ(𝑧∗𝑥)ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)] ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)] ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is 

an 𝐹59-algebra.  

 

Corollary 12  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra 

such that any of the following is true:   

 

1. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Λ(𝐺,∗);  

2. 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) ∩ Φ(𝐺,∗) with 𝛿′ = 𝛿 ∈ Ψ(𝐺,∗);  

3. 𝐴𝐶−1 ∈ Λ(𝐺,∗) ∩ Φ(𝐺,∗) with (𝐴𝐶−1)′ = 𝐴𝐶−1 ∈ Ψ(𝐺,∗);  

 

where (𝐺,∗) is a principal isotope of (𝐺,⋅) with 0𝐶 = 0′. Then (𝐺,⋅ ,0) is an 𝐹𝑖-algebra if and only if 

(𝐻,⋄ ,0′) is an 𝐹𝑖-algebra; where 𝑖 = 3,5,8,19,21,29,39,42,46,52,55,56,59.  
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Proof. This follows from Theorem 20 and Theorem 14.  

 

Theorem 21  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that 𝛿 ∈ 𝛬(𝐺,∗) and |𝛿| = 2. Then (𝐺,⋅ ,0) is an 𝐹56-algebra if and only if (𝐺,∗ ,0) is an 𝐹56-algebra.  

  

Proof. By Theorem 13, 𝛿 = 𝜀. 

(𝐺,⋅ ,0)  is an 𝐹56 -algebra if and only if [(𝑦 ⋅ 𝑧) ⋅ 𝑥] ⋅ 𝑥 = 𝑦 ⋅ [(𝑧 ⋅ 𝑥) ⋅ 𝑥] ⇔ [(𝑦 ∗ 𝑧)𝛿 ∗ 𝑥]𝛿 ∗ 𝑥 = 𝑦 ∗

[(𝑧 ∗ 𝑥)𝛿 ∗ 𝑥]𝜀 ⇔ 𝑧𝕃𝑦𝛿ℝ𝑥𝛿ℝ𝑥 = 𝑧ℝ𝑥𝛿ℝ𝑥𝜀𝕃𝑦 ⇔ 𝑧𝕃𝑦ℝ𝑥𝛿𝛿ℝ𝑥 = 𝑧ℝ𝑥ℝ𝑥𝛿𝜀𝕃𝑦 ⇔ 𝑧𝕃𝑦ℝ𝑥ℝ𝑥 =

𝑧ℝ𝑥ℝ𝑥𝕃𝑦 ⇔ [(𝑦 ∗ 𝑧) ∗ 𝑥] ∗ 𝑥 = 𝑦 ∗ [(𝑧 ∗ 𝑥) ∗ 𝑥] ⇔ (𝐺,∗ ,0) is an 𝐹56-algebra.  

 

Corollary 13  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a BCI-algebra 

such that 𝐴𝐶−1 ∈ 𝛬(𝐺,∗) and |𝐴𝐶−1| = 2. Then (𝐺,⋅ ,0) is an 𝐹56-algebra if and only if (𝐻,⋄ ,0′) is an 

𝐹56-algebra.  

  

Proof. This follows from Theorem 21 and Theorem 14.  

 

Theorem 22  Let (𝐺,⋅ ,0)
(𝛿,𝜀,𝐼)
→   (𝐺,∗ ,0) where (𝐺,⋅ ,0) is a BCI-algebra and (𝐺,∗ ,0) is a BCI-algebra such 

that 𝛿 ∈ 𝒫(𝐺,∗) and |𝛿| = 2. Then (𝐺,⋅ ,0) is an 𝐹𝑖-algebra if and only if (𝐺,∗ ,0) is an 𝐹𝑖-algebra; where 

𝑖 = 8,19,29,39,46,59.  

  

Proof. By Theorem 13, 𝛿 = 𝜀. 

(𝐺,⋅ ,0) is an 𝐹8-algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⋅ 𝑥 = 𝑥 ⋅ [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧𝜀)𝜀]𝛿 ∗ 𝑥𝜀 = 𝑥𝛿 ∗

[𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀]𝜀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)𝜀]𝛿 ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)𝜀]𝜀 ⇔ 𝑦ℝ𝑧𝜀𝕃𝑥𝛿ℝ𝑥 = 𝑦ℝ(𝑧∗𝑥)𝜀𝜀𝕃𝑥 ⇔

ℝ𝑧𝕃𝑥𝜀𝛿ℝ𝑥 = ℝ(𝑧∗𝑥)𝜀
2𝕃𝑥 ⇔ ℝ𝑧𝕃𝑥ℝ𝑥 = ℝ(𝑧∗𝑥)𝕃𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑧)] ∗ 𝑥 = 𝑥 ∗ [𝑦 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is an 

𝐹8-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹19 -algebra if and only if [𝑥 ⋅ (𝑦 ⋅ 𝑥)] ⋅ 𝑧 = 𝑥 ⋅ [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑥𝜀)𝜀]𝛿 ∗ 𝑧𝜀 =

𝑥𝛿 ∗ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧𝜀)𝜀]𝜀 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)𝜀]𝛿 ∗ 𝑧𝜀 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)𝜀]𝜀 ⇔ 𝑦ℝ𝑥𝜀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ(𝑥∗𝑧)𝜀𝜀ℝ𝑥 ⇔

ℝ𝑥𝕃𝑥𝜀𝛿ℝ𝑧 = ℝ(𝑥∗𝑧)𝜀
2ℝ𝑥 ⇔ ℝ𝑥𝕃𝑥ℝ𝑧 = ℝ𝑥∗𝑧)ℝ𝑥 ⇔ [𝑥 ∗ (𝑦 ∗ 𝑥)] ∗ 𝑧 = 𝑥 ∗ [𝑦 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹19-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹29 -algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑧)] ⋅ 𝑥 = 𝑦 ⋅ [𝑥 ⋅ (𝑧 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑧𝜀)𝜀]𝛿 ∗ 𝑥𝜀 =

𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀]𝜀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)𝜀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)𝜀]𝜀 ⇔ 𝑧𝕃𝑥𝜀𝕃𝑦𝛿ℝ𝑥 = 𝑧ℝ𝑥𝜀𝕃𝑥𝜀𝕃𝑦 ⇔

𝕃𝑥𝕃𝑦𝜀𝛿ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥𝜀
2𝕃𝑦 ⇔ 𝕃𝑥𝕃𝑦ℝ𝑥 = 𝑧ℝ𝑥𝕃𝑥𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑧)] ∗ 𝑥 = 𝑦 ∗ [𝑥 ∗ (𝑧 ∗ 𝑥)] ⇔ (𝐺,∗ ,0) is an 

𝐹29-algebra. 

(𝐺,⋅ ,0) is an 𝐹39-algebra if and only if [𝑦 ⋅ (𝑥 ⋅ 𝑥)] ⋅ 𝑧 = 𝑦 ⋅ [𝑥 ⋅ (𝑥 ⋅ 𝑧)] ⇔ [𝑦𝛿 ∗ (𝑥𝛿 ∗ 𝑥𝜀)𝜀]𝛿 ∗

𝑧𝜀 = 𝑦𝛿 ∗ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑧𝜀)𝜀]𝜀 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)𝜀]𝛿 ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)𝜀]𝜀 ⇔ 𝑧𝕃[𝑦∗(𝑥∗𝑥)𝜀]𝛿 = 𝑧𝕃𝑥𝜀𝕃𝑥𝜀𝕃𝑦 ⇔
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𝕃[𝑦∗(𝑥∗𝑥)𝜀𝛿] = 𝕃𝑥
2𝜀2𝕃𝑦 ⇔ 𝕃[𝑦∗(𝑥∗𝑥)] = 𝕃𝑥

2𝕃𝑦 ⇔ [𝑦 ∗ (𝑥 ∗ 𝑥)] ∗ 𝑧 = 𝑦 ∗ [𝑥 ∗ (𝑥 ∗ 𝑧)] ⇔ (𝐺,∗ ,0)  is an 

𝐹39-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹46 -algebra if and only if [𝑥 ⋅ (𝑥 ⋅ 𝑦)] ⋅ 𝑧 = 𝑥 ⋅ [𝑥 ⋅ (𝑦 ⋅ 𝑧)] ⇔ [𝑥𝛿 ∗ (𝑥𝛿 ∗ 𝑦𝜀)𝜀]𝛿 ∗ 𝑧𝜀 =

𝑥𝛿 ∗ [𝑥𝛿 ∗ (𝑦𝛿 ∗ 𝑧𝜀)𝜀]𝜀 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)𝜀]𝛿 ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)𝜀]𝜀 ⇔ 𝑦𝕃𝑥𝜀𝕃𝑥𝛿ℝ𝑧 = 𝑦ℝ𝑧𝜀𝕃𝑥𝜀𝕃𝑧 ⇔

𝕃𝑥𝕃𝑥𝜀𝛿ℝ𝑧 = ℝ𝑧𝕃𝑥𝜀
2𝕃𝑧 ⇔ [𝑥 ∗ (𝑥 ∗ 𝑦)] ∗ 𝑧 = 𝑥 ∗ [𝑥 ∗ (𝑦 ∗ 𝑧)] ⇔ (𝐺,⋅ ,0) is an 𝐹46-algebra. 

 

(𝐺,⋅ ,0)  is an 𝐹59 -algebra if and only if [𝑦 ⋅ (𝑧 ⋅ 𝑥)] ⋅ 𝑥 = 𝑦 ⋅ [𝑧 ⋅ (𝑥 ⋅ 𝑥)] ⇔ [𝑦𝛿 ∗ (𝑧𝛿 ∗ 𝑥𝜀)𝜀]𝛿 ∗ 𝑥𝜀 =

𝑦𝛿 ∗ [𝑧𝛿 ∗ (𝑥𝛿 ∗ 𝑥𝜀)𝜀]𝜀 ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)𝜀]𝛿 ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)𝜀]𝜀 ⇔ 𝑦ℝ(𝑧∗𝑥)𝜀𝛿ℝ𝑥 = 𝑦ℝ[𝑧∗(𝑥∗𝑥)𝜀]𝜀 ⇔

ℝ(𝑧∗𝑥)𝜀𝛿ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)]𝜀
2 ⇔ ℝ(𝑧∗𝑥)ℝ𝑥 = ℝ[𝑧∗(𝑥∗𝑥)] ⇔ [𝑦 ∗ (𝑧 ∗ 𝑥)] ∗ 𝑥 = 𝑦 ∗ [𝑧 ∗ (𝑥 ∗ 𝑥)] ⇔ (𝐺,∗ ,0)  is 

an 𝐹59-algebra.  

  

Corollary 14  Let (𝐺,⋅ ,0)
(𝐴,𝐵,𝐶)
→    (𝐻,⋄ ,0′) be an isotopism; where (𝐺,⋅ ,0) is a BCI-algebra and (𝐻,⋄ ,0′) is a 

BCI-algebra such that 𝐴𝐶−1 ∈ 𝒫(𝐺,∗) and |𝐴𝐶−1| = 2, where (𝐺,∗) is a principal isotope of (𝐺,⋅) with 

0𝐶 = 0′. Then, (𝐺,⋅ ,0) is an 𝐹𝑖-algebra if and only if (𝐻,⋄ ,0′) is an 𝐹𝑖-algebra; where 𝑖 = 8,19,29,39,46,59.  

Proof. This follows from Theorem 22 and Theorem 14.  

 

Remark 6 Note that those 𝐹𝑖 identities which do not appear in Corollaries 12,13,14 will trivially obey these 

corollaries because they imply associativity in BCI-algebra with no condition(s) placed on the isotopy.  

 

3.  Summary, Conclusion and Future Studies 

  

We shall now highlight the theoretical and practical implications of this research, discuss 

our research findings, highlight practical advantages and research limitations, and then suggest 

some future studies. 

Comparing the characterization of the permutation in the isotopy for the isotopic invariance 

of quasi-associativity (a measure of weak associativity) in Theorem 17 and the characterization of the 

permutation in the isotopy for the isotopic invariance of the 13 non-associative 𝐹𝑖  algebras in 

Theorem 20, the three are the same. This is a new contribution to the fact that isotopy in BCI-algebras 

and quasi-associativity can be measured with 14 non-associative 𝐹𝑖 identities. 

In loop theory, all the 30 Fenyves identities that are equivalent to associativity are isotopic 

invariant for any isotopy and some of the other 30 Fenyves identities that are non-associative (e.g. 

Moufang, Bol, Extra) are also isotopic invariant for any isotopy, while the others (e.g. LC, RC, C) are 

not. From our results in this work, all the 46 𝐹𝑖 identities that are equivalent to associativity in 

BCI-algebras are isotopic invariant for any isotopy, while for the 14 Fenyves identities that are 

non-associative in BCI-algebras; they are isotopic invariant for special isotopies including some well 

known identities (e.g. left Bol, LC and RC). Thus, it can be concluded that the isotopy of Fenyves 

identities that are non-associative in BCI-algebras is of better advantage over Fenyves identities that 

are non-associative in loops. But, there is limitation on the isotopy of all the 46 𝐹𝑖 identities that are 

equivalent to associativity in BCI-algebras. 
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Those 46 Fenyves identities that are equivalent to associativity in BCI-algebras as well as 

𝐹54 which of course are isotopic invariant under any isotopy are denoted by √ in the fourth and 

fifth columns of Table 1 and Table 2. While the 13 Fenyves identities that are equivalent to 

associativity in BCI-algebras excluding 𝐹54 which are isotopic invariant under special isotopies are 

identified by the symbol '‡' in the fourth and fifth columns of Table 1 and Table 2. Theoretically and 

practically, this research implies the isotopic study of 120 particular types of the 540 varieties of 

Fenyves quasi neutrosophic triplet loops (FQNTLs) discovered in Jaiyéolá et al. [36] (cf. Figure 1). 

For future studies, based on the philosophy of representing disease-victim(s) by 

neutrosophic algebraic structures, some of the 14 Fenyves identities that are non-associative in 

BCI-algebras (quasi neutrosophic loops) can be judiciously selected with good and appropriate 

choice of special isotopies for which such are isotopic invariant in order to study and understand the 

effects of diseases and possible treatment of a patient.  
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  FENYVES  

IDENTITY  

 𝑭𝒊 ≡ 𝑨𝑺𝑺  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN BCI ALG  

 𝑭𝒊 + 𝑩𝑪𝑰  

 ⇒ 𝑨𝑺𝑺  

  𝐹1  √     √   √  

 𝐹2    √     √  √  

 𝐹3  √      ‡   ‡ 

 𝐹4      √  √    √ 

 𝐹5  √      ‡   ‡ 

 𝐹6       √   √   √ 

 𝐹7  √     √   √  

 𝐹8  √     ‡   ‡ 

 𝐹9      √  √  √  

 𝐹10  √      √   √ 

 𝐹11  √     √   √  

 𝐹12  √     √   √  

 𝐹13      √  √   √  

 𝐹14  √     √   √  

 𝐹15       √ √   √  

 𝐹16  √     √   √  

 𝐹17      √  √   √  

 𝐹18  √     √   √  

 𝐹19    √    ‡   ‡ 

 𝐹20  √       √   √ 

 𝐹21  √      ‡   ‡ 

 𝐹22    √   √    √ 

 𝐹23  √     √   √  

 𝐹24  √      √  √  

 𝐹25  √     √    √ 

 𝐹26    √   √   √  

 𝐹27    √   √    √ 

 𝐹28  √     √   √  

 𝐹29  √      ‡   ‡ 

 𝐹30    √   √    √ 

 𝐹31  √     √    √ 

 𝐹32  √     √   √  

 𝐹33  √     √   √  

 𝐹34  √      √    √   

 𝐹35    √   √   √  

Table 1: Characterization of the Isotopy of Fenyves Identities in Loops and BCI-Algebras 
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  FENYVES  

IDENTITY  

 𝑭𝒊 ≡ 𝑨𝑺𝑺  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN A LOOP  

 𝑭𝒊 ISO 

INVAR  

 IN BCI ALG  

 𝑭𝒊 + 𝑩𝑪𝑰  

 ⇒ 𝑨𝑺𝑺  

  𝐹36    √   √   √  

 𝐹37    √   √   √  

 𝐹38    √   √    √ 

 𝐹39    √    ‡   ‡ 

 𝐹40    √     √   √ 

 𝐹41    √     √  √  

 𝐹42    √    ‡   ‡ 

 𝐹43    √   √   √  

 𝐹44  √     √   √  

 𝐹45    √   √   √  

 𝐹46    √    ‡   ‡ 

 𝐹47  √     √   √  

 𝐹48    √   √   √  

 𝐹49  √     √   √  

 𝐹50  √     √    √ 

 𝐹51    √   √   √  

 𝐹52  √      ‡   ‡ 

 𝐹53    √     √   √ 

 𝐹54    √   √    ‡ 

 𝐹55  √      ‡   ‡ 

 𝐹56    √    ‡   ‡ 

 𝐹57    √   √   √  

 𝐹58  √     √    √ 

 𝐹59  √      ‡   ‡ 

 𝐹60    √   √    √ 

Table 2: Characterization of the Isotopy of Fenyves Identities in Loops and BCI-Algebras 
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Abstract: Neutrosophic theory alleviates the ambiguity situation more effectively than fuzzy sets. 

Neutrosophic soft set deals with the combination of truth, indeterminacy and falsity membership. 

This provides a space for the convention with multi-aspect decision-making (MADM) problems that 

involve these combinations. The main aim of this paper is to provide a unique ranking for the 

alternatives to overcome the existing drawbacks in the said environment. Initially, a new score 

function and the weighted neutrosophic vector are discussed. Secondly, to show the supremacy of 

the proposed score function a comparison analysis is discussed between the existing score method 

and the proposed approach. Thirdly, algorithm and flowchart are discussed for the case study. 

Lastly, a new technique for ranking the alternatives is discussed which enables us to determine the 

unique highest score. The working model is illustrated with suitable examples to authenticate the 

tool and to demonstrate the effectiveness of the planned approach. 

Keywords: Single valued neutrosophic sets, Neutrosophic soft matrix (NSM), weighted 

neutrosophic vector, Score and value function, Multi-aspect decision-analysis. 

 

 

1. Introduction 

Our world is complex and rapid changes keep occurring in the field of engineering, medical 

science, banking, modern education, social, economic, and various other fields. Complexity 

generally arises from ambiguity and to overcome these situations in day to day life, Zadeh (1965) 

introduced a fuzzy set (FS) [14] and an interval-valued fuzzy set (IVFS) [15]. Atanassov (1986) 

proposed the concept of intuitionistic fuzzy set (IFS) [1] and interval-valued intuitionistic fuzzy set 

[2] a combination of membership and non-membership functions. However, both fuzzy and 

intuitionistic fuzzy sets cannot treat the indeterminacy part in the day to day problems. To deal with 

indeterminacy situations, Smarandache (1998) grounded the neutrosophic set (NS) [10] theory 

which is an overview of FS and IFS. In plithogenic set (PS) elements are characterized by the 

attribute values. It was introduced by Smarandache [27] as a generalization of crisp, fuzzy, 

intuitionistic fuzzy, and neutrosophic sets.  

FS, IVFS, IFS, NS, PS and hybrid of these sets are used in various decision-making problems. 

Decision making plays a significant role in today’s social, scientific and economic endeavor. Most of 

the decision-making process is based on an objective to reduce the cost, reduce the production time, 
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and increase the profit for the organization. However, considering today’s environment the decision 

should include various objective sources to deal with uncertainty. It weighs the provided 

information and chooses the best criteria for subsequent action. The information provided in a 

complex world is likely ambiguous, hence the outcomes are vague, irrespective of the decision made 

on the criteria chosen. To explain this scenario, consider the criteria of taking a loan from a bank. The 

outcome can be ambiguous with the possibility of a loan getting approved or declined or 

undetermined. The primary issues in MADM are to rank the relative importance of each of the 

objectives. Despite our vast knowledge and experience in handling these objectives, we come across 

violations in our everyday life. A bank manager makes a decision in this complex environment and 

figures out that his/her decision becomes weird. We have come across many situations where the 

loan applicant fails to repay the loan amount despite following the scrutiny process. The said 

problem could be due to the change in information and condition according to the situation. The 

outcomes of these situations have nothing to do with the quality of the decisions made. The best we 

can do with our knowledge is that in the long run the `good decisions’ will outplay the `bad 

decisions’.  

Most of the researchers utilize NS as a significant tool to analyze MADM problems with the 

help of aggregation operators, information measures, score functions and machine learning 

algorithms. Abhishek et al. [28] developed a parametric divergence measure and initiated the 

concept of pattern recognition and medical diagnosis problem for neutrosophic sets. Abdel-Basset et 

al. [18] proposed a hybrid combination between analytical hierarchical process and neutrosophic 

theory to solve the uncertainty involved in the technology of the internet of things. Abhisek and 

Rakesh [29] proposed a notion for finding the threshold value in decision-making problems when 

the qualitative and quantitative information is outsized. Abdel-Basset et al. [20] proposed the 

concept of type 2 neutrosophic number TOPSIS method to deal with real case decision problems. 

Edalatpanah and Smarandache [30] found a new method to solve the data envelopment analysis 

using the weighted arithmetic average operator in neutrosophic sets. Abdel-Basset et al. [19] 

initiated a neutrosophic approach for evaluating green supply chain management to aid managers 

and decision-makers. Vakkas et al. [33] proposed a novel ranking method for decision-making 

problems in the bipolar neutrosophic environment. Pandy and Trinita [31] constructed a new 

approach to represent gray-scale (medical) images in the bipolar neutrosophic domain. Shazia et al. 

[32] presented the concept of the plithogenic hypersoft matrix and discussed some of its theoretical 

properties. Abdel-Basset et al. [17] developed the combination of quality function deployment with 

plithogenic operations and analyzed the case study of Thailand’s sugar industry and also developed 

a novel evaluation approach to handle the hospital medical care systems based on plithogenic sets 

[16]. Azeddine et al. [34] introduced an improved method to map machine learning algorithms from 

crisp number to Neutrosophic environment. Wang and Smarandache (2010) focused on 

single-valued neutrosophic set [13] to magnetize on MADM problems. Chinnadurai et al., (2016) [3] 

discussed some of its theoretical properties. Smarandache and Teodorescu (2014) introduced the 

fusion of fuzzy data to neutrosophic data [11] with case studies. Garg and Nancy (2018) developed 

the neutrosophic Muirhead mean operators [5] for an aggregating single-valued neutrosophic set to 

solve MADM problems among the ambiguity. Gulistan et al., (2019) studied on neutrosophic cubic 

soft matrices [6] using max-min operations. Jun et al. presented elucidation to handle actual data 

which consists of crisp values using the neutrosophic analytic hierarchy process. Abdel-Basset et.al. 
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[12] developed the concept of Neutrosophic AHP-SWOT Analysis for MADM problems by 

analyzing a real case study. 

The advantage of this proposed method is that it shortens the computation process and 

provides a better solution in decision-making. To establish the superiority of our improved score 

function a comparison study is illustrated with suitable examples. From the presented references 

[21, 22, 23, 24, 25, 26] it is clear that there are limitations in providing unique ranking using score 

function in neutrosophic MADM methods. The fact that we would like to enlighten in this 

manuscript is that there could always be a possibility of equal ranking among the alternatives. 

Hence, to our knowledge, a simple but effective way to determine the unique highest score for each 

object in a MADM is by including additional criteria from the parameter set which is not been 

discussed in any of the related literature works.  

In this paper, we aim to discuss the weighted neutrosophic vector and value function of a 

neutrosophic soft matrix to combine the different components of truth, indeterminacy and falsity 

membership into a single membership value. An application of this matrix in MADM is also given 

by presenting the method, algorithm and numerical illustrations.  

The structure of the manuscript is as follows. In section 2, some of the basic neutrosophic 

definitions are specified. In section 3, the notions of weighted neutrosophic vector and value 

functions are introduced. In section 4, an algorithm with a flowchart of NSM to MADM is 

developed. In section 5, case studies are presented to illustrate the working of the algorithm. This 

manuscript is concluded in section 6. 

 

2. Preliminaries 

In this section first we review some basic concepts and definitions.  

Definition 2.1[9] Let U  be the universal set and E be a set of parameters. The parameters represent 

some selected properties or characteristics of the elements of U.  Let P(U) denote the power set of U. 

A pair (𝐹, 𝐸) is called a soft set over U where F is a mapping 𝐹: 𝐸 → 𝑃(𝑈). It is clear that a soft set is 

a parameterized family of subsets of U.  

Definition 2.2 [13] Let U be the universal set, then a set 𝔸 = {⟨𝑥, 𝑇𝔸(𝑥), 𝐼𝔸(𝑥), 𝐹𝔸(𝑥)⟩: 𝑥 ∈ 𝑈} is 

termed as neutrosophic set where 𝑇𝔸, 𝐼𝔸, 𝐹𝔸: 𝑋 → [0,1]  with 0 ≤ 𝑇𝔸(𝑥) + 𝐼𝔸(𝑥) + 𝐹𝔸(𝑥) ≤ 3  and 

the functions 𝑇𝔸, 𝐼𝔸, 𝐹𝔸 are truth, indeterminacy and falsity membership degrees respectively.  

Definition 2.3 [8] Let U be the universal set and E  be a set of parameters. Consider 𝔸 ⊆ 𝐸. Let 

NS(U) denote the set of all neutrosophic sets of U. The collection (𝐹, 𝔸)  is termed to be the 

neutrosophic soft set (NSS) over U, where F is a mapping given by 𝐹:𝔸 → 𝑁𝑆(𝑈).  

Definition 2.4 [4] Let (𝑁𝔸, 𝐸) be a NSS over the universe U  and E  be a set of parameters and 𝔸 ⊆

𝐸. Then a subset of 𝑈 × 𝐸 is uniquely defined by the relation {(𝑥, 𝑒): 𝑒 ∈ 𝔸, 𝑥 ∈ 𝑁𝔸(𝑒)} and denoted 

by 𝑅𝔸 = (𝑁𝔸, 𝐸) . The relation 𝑅𝔸  is characterized by truth function 𝑇𝔸: 𝑈 × 𝐸 → [0,1] , 

indeterminacy 𝐼𝔸: 𝑈 × 𝐸 → [0,1]and the falsity function 𝐹𝔸: 𝑈 × 𝐸 → [0,1] . 𝑅𝔸  is represented as 

𝑅𝔸 = {(𝑇𝔸(𝑥, 𝑒), 𝐼𝔸(𝑥, 𝑒), 𝐹𝔸(𝑥, 𝑒)): 0 ≤ 𝑇𝔸 + 𝐼𝔸 + 𝐹𝔸 ≤ 3, (𝑥, 𝑒) ∈ 𝑈 × 𝐸}. Now if the set of universe 

𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} and the set of parameters 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}, then 𝑅𝔸 can be represented by a 

matrix as follows: 
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𝑅𝔸 = [𝑎𝑖𝑗]𝑚×𝑛=  

[
 
 
 
 
𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

]
 
 
 
 

 

where 𝑎𝑖𝑗 = (𝑇𝔸(𝑥, 𝑒), 𝐼𝔸(𝑥, 𝑒), 𝐹𝔸(𝑥, 𝑒)) = (𝑇𝑖𝑗
𝔸, 𝐼𝑖𝑗

𝔸 , 𝐹𝑖𝑗
𝔸) . 

The above matrix is called a neutrosophic soft matrix (NSM) of order 𝑚 × n corresponding to the 

neutrosophic set (𝑁𝔸, 𝐸) over U. 

 

3. NSM theory in decision making 

In this section, we define the concepts of weighted neutrosophic vector, score function and total 

score for a neutrosophic soft matrix. Later these notions will be used in MADM process.  

 

Definition: 3.1 Let ℳ  be the collection of all neutrosophic values and 𝑁 = (𝑛1, 𝑛2, . . . , 𝑛𝑛)  be 

neutrosophic vector with components from ℳ . Thus the components of N are 𝑁 =

((𝑛1
𝑇 , 𝑛1

𝐼 , 𝑛1
𝐹), (𝑛2

𝑇 , 𝑛2
𝐼 , 𝑛3

𝐹), . . . , (𝑛𝑛
𝑇 , 𝑛𝑛

𝐼 , 𝑛𝑛
𝐹)). Let 𝑊 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) be a weight vector associated with 

N. 𝑤𝑖  can be considered as the significance attached to 𝑛𝑖; 𝑖 = 1,2, . . . , 𝑛 with 𝑤𝑖 ∈ [0,1], ∑𝑛
𝑖=1 𝑤𝑖 =

1. Then the weighted neutrosophic vector corresponding to N and W denoted by WN is defined as  

𝑊𝑁 = (𝑤1𝑛1, 𝑤2𝑛2, . . . , 𝑤𝑛𝑛𝑛) = ((𝑤1𝑛1
𝑇 , 𝑤1𝑛1

𝐼 , 𝑤1𝑛1
𝐹), (𝑤2𝑛2

𝑇 , 𝑤2𝑛2
𝐼 , 𝑤2𝑛2

𝐹), . . . , (𝑤𝑛𝑛𝑛
𝑇 , 𝑤𝑛𝑛𝑛

𝐼 , 𝑤𝑛𝑛𝑛
𝐹))  

 

Example:3.1 Let 𝑁 = ((0.4,0.3,0.6), (0.2,0.6,0.7), (0.7,0.1,0.5), (0.4,0.2,0.3)) and 𝑊 = (0.1,0.4,0.2,0.3). 

Then 𝑊𝑁 = ((0.04,0.03,0.06), (0.08,0.24,0.28), (0.14,0.02,0.10), (0.12,0.06,0.09))  

 

Definition: 3.2 Score function of a neutrosophic matrix helps to integrate the neutrosophic value 

into a single real number in order to bring out the importance of truth, indeterminacy and falsity 

membership values. 

 

Let 𝐴 = [𝑎𝑖𝑗] = (𝑇𝑖𝑗
𝐴, 𝐼𝑖𝑗

𝐴 , 𝐹𝑖𝑗
𝐴). Then the score function for the element 𝑎𝑖𝑗  is defined as  

 𝑠(𝑎𝑖𝑗) = 𝑠𝑖𝑗 =
(𝑇𝑖𝑗

𝐴+𝐼𝑖𝑗
𝐴)

2
+ 𝐹𝑖𝑗

𝐴 ∀ 𝑖, 𝑗 

Thus the score function for the NSM, 𝐴 = [𝑎𝑖𝑗] is given by  

 𝑆𝐹(𝐴) = [
(𝑇𝑖𝑗

𝐴+𝐼𝑖𝑗
𝐴)

2
+ 𝐹𝑖𝑗

𝐴] = [𝑠𝑖𝑗]. 

𝑆𝐹(𝐴) is also an 𝑚 × 𝑛 matrix, having the same dimension as A and has non-negative entries.  

Definition 3.3 Let 𝑁 = [𝑠𝑖𝑗] be the matrix of score functions of a NSM N.  The  quantity 𝑇𝑖 =

∑𝑛
𝑗=1 𝑠𝑖𝑗  ; 𝑖 = 1,2, . . . , 𝑚 gives the total of the score function values for the 𝑖𝑡ℎ  row of NSM. 𝑇𝑖  

represent the total value for the element 𝑥𝑖  with representation to all the characteristics under 

consideration.  

3.1 Comparison analysis with existing and proposed score functions 

In this subsection, we compare and analyze the method developed in this paper with six of the 

recently developed score functions and methods. The below cited Table 1 highlights the ranking 

difficulty of an existing score function in the neutrosophic environment. It also shows that the new 
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score function can compute the rank of the alternatives even when the existing score function is 

unable to rank the alternatives. 

Table 1. Comparison analysis of score values. 

Neutrosophic 
environment 

Existing & Proposed methods Score value Remarks 

N1 =(0.6,0.2,0.6)  
& 
N2 =(0.6,0.4,0.2)  

 
Sahin [25] 

 

S(N1 ) = 0.3 &   
     S(N2 ) = 0.3 

S(N1 ) = S(N2 ) 
unable to rank 

 
Proposed method 

S(N1 ) = 1 &   
     S(N2 ) = 0.7 

S(N1 ) > S(N2 ) 
able to rank 

N1 =(0.7,0.3,0.1)  
& 
N2 =(0.9,0.4,0.2)  

 
Peng et.al., [24] 

 

S(N1 ) = 0.1 &   
     S(N2 ) = 0.1 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 0.60 &   
     S(N2 ) = 0.85 

S(N2 ) > S(N1 ) 
able to rank 

N1 =(0.9,0.6,0.3)  
& 
N2 =(0.6,0.4,0.2) 

Garg and Nancy [23] 
 

S(N1 ) = 0.26 &   
     S(N2 ) = 0.26 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 1.05 &   
     S(N2 ) = 0.7 

S(N1 ) > S(N2 ) 
able to rank 

N1 =(0.4,0.2,0.6)  
& 
N2 =(0.7,0.6,0.7) 

 
Arockiarani [21] 

 

S(N1 ) = 0.28 &   
     S(N2 ) = 0.28 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 0.9 &   
     S(N2 ) = 1.35 

S(N2 ) > S(N1 ) 
able to rank 

N1 =(0.5,0.7,0.4)  
& 
N2 =(0.4,0.6,0.3) 

 
Ye [26] 

S(N1 ) = 0.55 &   
     S(N2 ) = 0.55 

S(N1 ) = S(N2 ) 
unable to rank 

Proposed method 
S(N1 ) = 1 &   
     S(N2 ) = 0.8 

S(N1 ) > S(N2 ) 
able to rank 

N1 =(0.8,0.3,0.2) 
&  
N2=(0.6,0.3,0.7) 
N3 =(0.9,0.4,0.5)  
& 
N4 =(0.8,0.5,04) 

 
 

Mondal [22] 
 

S(Np ) = 0.65,  
where p = 1,2  &   
     S(Nq ) = 0.65 
where q = 3,4 

S(Np ) = S(Nq ) 
unable to rank 

 
 
 
 

Proposed method 

S(Np ) = 0.95,  
where p = 1,2  &   
     S(Nq ) = 1.1 
where q = 3,4 

S(Nq ) > S(Np ) 
able to rank 

 

 

4. Application of NSM to MADM environment 

 In this section an application of NSM in MADM is explained. An algorithm is developed 

and the working of the same is illustrated with suitable examples. 

 

4.1. Statement of the problem 

Suppose a person is in the progression of stock investment (SI) in the equity market. Let’s assume 

that person seeks the help of a financial advisor organization (FAO). FAO has a panel of 

highly-trained professionals to provide value-added services to the investors to ensure higher 

proficiency, consistency of charges and superior forecast of SI in equity market by analyzing the 

historical data. The FAO, in turn, selects a group of proficient members 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑘} to 
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proceed with the same. Now according to the group let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑝} be the list of selected SIs 

based on historical data analysis . Let 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑞} be the set of selected parameters based on 

which the SIs selection is to be finalized. Assume that weights are assigned for each criterion. Let 

𝑊 = (𝑤1 , 𝑤2, . . . , 𝑤𝑞) and ∑𝑞
𝑖=1 𝑤𝑖 = 1. Let’s assume that the group assesses the SI based on a subset 

of the parameter set. Let 𝐴 = {𝑒1, 𝑒2, . . . , 𝑒𝑙} be the subset of the parameter set E, so that 𝑙 ≤ 𝑞. Each 

of the personnel verifies the listed SI historical records based on the parameter set A and presents his 

forecast result in the form of neutrosophic soft matrices. The respective NSM’s are denoted by 

𝑁1, 𝑁2, . . . , 𝑁𝐾. The crisis is to convert the NSM’s into significant matrices which enables them to 

select the best SI for the investor. Figure 1 illustrates the conceptual structure of the problem. 

 

Figure 1. Conceptual structure of the statement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Methodology 

Let’s assume that the proficient members evaluate the SIs independently without any bias.  

Let 𝑁1, 𝑁2, … ,𝑁𝐾 be the NSMs obtained from the members. Using Definition 3.1, and weight vector 

W the weighted neutrosophic matrices are calculated. The resultant of weighted neutrosophic 

matrices are denoted by 𝑁𝑤
1 , 𝑁𝑤

2 , … , 𝑁𝑤
k  i.e., 𝑁𝑤

r = 𝑊𝑁r = [𝑛𝑖𝑗
𝑟 ]  where  𝑟 = 1,2, … , 𝑘 . Using 

Definition 3.2, convert each of the weighted neutrosophic matrix 𝑁𝑤 
r  value into corresponding 

score function as 𝑆𝐹[𝑁𝑤
r ] = [𝑠𝑖𝑗

𝑟 ] = [
(𝑇𝑖𝑗

𝑟𝐴+𝐼𝑖𝑗
𝑟𝐴)

2
+ 𝐹𝑖𝑗

𝑟𝐴]. Then using the Definition 3.3 the score function 

for the 𝑖th  SI as evaluated by the 𝑟th expert is calculated by adding the values of the 𝑖th  row of the 

score function matrix, ie., the 𝑖th row of the weighted neutrosophic matrix 𝑁𝑤
r . Let us denote this 

sum by the symbol 𝑇i
r. The total score 𝑆𝑇𝑖 for the 𝑖th SI is obtained by summing 𝑇i

r over r. That is 

the total score for the 𝑖th SI 𝑆𝑇𝑖 = ∑𝑘
𝑟=1 𝑇𝑖

𝑟 = 𝑇𝑖
1 + 𝑇𝑖

2 + ⋯ + 𝑇𝑖
k  . The total score is evaluated for all 

the SIs, 𝑖 = 1,2, … , 𝑝. Arrange the 𝑆𝑇𝑖 values in decreasing order. The SI with highest 𝑆𝑇𝑖 value is 

 SIs 

Financial advisor 

organization 
Proficient members 

Analyze historical 

data 

Investor 

Parameters 

Neutrosophic values 

Weight vector 

selects 

approaches 

selects 

predicts goal 

Unique ranking 
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the most suitable one for the investor. If more than one SI are there with equal highest 𝑆𝑇𝑖 value, the 

entire process is repeated by adding one more parameter into the set A. This process is repeated until 

a unique SI with highest 𝑆𝑇𝑖 value is identified. 

 

4.3. Algorithm 

The algorithm for ranking the alternatives of MADM problem based on NSM is given below: 

Step 1: Identify the list of SIs and the list of parameters. 

Step 2: Select a subset of the parameter set. 

Step 3: Present the result in the form of NSMs (𝑁1, 𝑁2, . . . , 𝑁𝐾 ). 

Step 4: Compute the weight order for the NSMs (𝑁𝑊
1 , 𝑁𝑊

2 , … , 𝑁𝑊
k ). 

Step 5: Calculate the score function matrix 𝑆𝐹[𝑁𝑤
r ] = [𝑠𝑖𝑗

𝑟 ] 

Step 6: Calculate the total value 𝑇𝑖
𝑟 from each of the 𝑆𝐹[𝑁𝑤

r ]  matrices. 

Step 7: Evaluate the 𝑆𝑇𝑖 for each SI. 

Step 8: Order the 𝑆𝑇𝑖 values and select the SI with highest 𝑆𝑇𝑖  value as the most suitable one. 

Step 9: If there are more than one SI with equal highest 𝑆𝑇𝑖 value, repeat the process by including  

another parameter into the set A. Continue the process until a unique SI with highest 𝑆𝑇𝑖  is 

identified. 
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4.4. Flowchart 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Case studies 

In this section we present two case studies to illustrate the working of the algorithm. In 5.1 

we present an example where the ranking of the SIs are unique and processed based on a subset of 

the criteria set. In 5.2 an example is given where the initially selected set of parameters does not 

provide unique ranking and there are more than one SIs with equal highest total score. Addition of 
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another parameter yields a clear ranking and the selection is performed by repeating some of the 

steps with enlarged parameter set. 

5.1. Case study I 

A person is in the process of selecting a suitable SI. 

1. Let 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐7) be the set of listed SIs. 

2. Let 𝐸 = (𝑒1, 𝑒2, 𝑒3, 𝑒4) be the set of parameters which form the criteria for selection.  

Here, 𝑒1  = financial profitability projection, 𝑒2  = asset-utilization, 𝑒3  = conservative capital 

structure and 𝑒4 = earnings momentum. 

3. Let the personnel present his forecast result in the form of NSM- 𝑁1,  𝑁2 and 𝑁3 for the subset of 

the criteria set (𝑒1, 𝑒2, 𝑒3) as 

 

       𝑁1 =

[
 
 
 
 
 
 
 
 
(0.245,0.456,0.721) (0.457,0.421,0.431) (0.415,0.821,0.211)

(0.348,0.156,0.627) (0.345,0.653,0.543) (0.618,0.712,0.514)

(0.546,0.765,0.429) (0.765,0.753,0.632) (0.415,0.521,0.416)
(0.267,0.321,0.321) (0.552,0.893,0.723) (0.314,0.612,0.518)

(0.428,0.416,0.891) (0.452,0.213,0.413) (0.231,0.923,0.916)

(0.456,0.932,0.217) (0.569,0.236,0.247) (0.416,0.378,0.612)

(0.324,0.634,0.816) (0.367,0.456,0.912) (0.482,0.231,0.712)
]
 
 
 
 
 
 
 
 

 

 

 𝑁2 =

[
 
 
 
 
 
 
 
 
(0.245,0.348,0.546) (0.456,0.156,0.765) (0.721,0.627,0.429)

(0.457,0.345,0.765) (0.421,0.653,0.753) (0.431,0.543,0.632)

(0.415,0.618,0.415) (0.821,0.712,0.521) (0.211,0.514,0.416)
(0.238,0.416,0.467) (0.734,0.817,0.926) (0.518,0.456,0.267)

(0.314,0.231,0.916) (0.753,0.893,0.213) (0.213,0.765,0.457)

(0.753,0.893,0.213) (0.618,0.415,0.314) (0.451,0.233,0.532)

(0.412,0.824,0.218) (0.614,0.425,0.324) (0.546,0.267,0.428)
]
 
 
 
 
 
 
 
 

 and 

 

      𝑁3 =

[
 
 
 
 
 
 
 
 
(0.238,0.734,0.518) (0.765,0.345,0.734) (0.345,0.457,0.347)

(0.416,0.817,0.456) (0.429,0.653,0.817) (0.456,0.892,0.821)

(0.467,0.926,0.267) (0.156,0.543,0.926) (0.673,0.452,0.342)
(0.914,0.316,0.912) (0.245,0.431,0.211) (0.345,0.763,0.821)

(0.928,0.419,0.745) (0.348,0.345,0.618) (0.543,0.821,0.721)

(0.211,0.518,0.213) (0.245,0.456,0.721) (0.436,0.417,0.556)

(0.156,0.653,0.712) (0.348,0.345,0.618) (0.529,0.673,0.719)
]
 
 
 
 
 
 
 
 

 

4. Let the weight order of neutrosophic soft sets be 𝑊1 = 0.3,𝑊2 = 0.4,𝑊3 = 0.3. Using Definition 

3.1 the results are obtained as  

 

 𝑁𝑤
1 =

[
 
 
 
 
 
 
 
 
(0.074,0.137,0.216) (0.183,0.168,0.172) (0.125,0.246,0.063)

(0.104,0.047,0.188) (0.138,0.261,0.217) (0.185,0.214,0.154)

(0.164,0.230,0.129) (0.306,0.301,0.253) (0.125,0.156,0.125)
(0.080,0.096,0.096) (0.221,0.357,0.289) (0.094,0.184,0.155)

(0.128,0.125,0.267) (0.181,0.085,0.165) (0.069,0.277,0.275)

(0.137,0.280,0.065) (0.228,0.094,0.099) (0.125,0.113,0.184)

(0.097,0.190,0.245) (0.147,0.182,0.365) (0.145,0.069,0.214)
]
 
 
 
 
 
 
 
 

, 
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 𝑁𝑤
2 =

[
 
 
 
 
 
 
 
 
(0.074,0.104,0.164) (0.182,0.062,0.306) (0.216,0.188,0.129)

(0.137,0.104,0.230) (0.168,0.261,0.301) (0.129,0.163,0.190)

(0.125,0.185,0.125) (0.328,0.285,0.208) (0.063,0.154,0.125)
(0.071,0.125,0.140) (0.294,0.327,0.370) (0.155,0.137,0.080)

(0.094,0.069,0.275) (0.301,0.357,0.085) (0.064,0.230,0.137)

(0.226,0.268,0.064) (0.247,0.166,0.126) (0.135,0.070,0.160)

(0.124,0.247,0.065) (0.246,0.170,0.130) (0.164,0.080,0.128)
]
 
 
 
 
 
 
 
 

𝑎𝑛𝑑 

 

 𝑁𝑤
3 =

[
 
 
 
 
 
 
 
 
(0.071,0.220,0.155) (0.306,0.138,0.294) (0.104,0.137,0.104)

(0.125,0.245,0.137) (0.172,0.261,0.327) (0.137,0.268,0.246)

(0.140,0.278,0.080) (0.062,0.217,0.370) (0.202,0.136,0.103)
(0.274,0.095,0.274) (0.098,0.172,0.084) (0.104,0.229,0.246)

(0.278,0.126,0.224) (0.139,0.138,0.247) (0.163,0.246,0.216)

(0.063,0.155,0.064) (0.098,0.182,0.288) (0.131,0.125,0.167)

(0.047,0.196,0.214) (0.139,0.138,0.247) (0.159,0.202,0.216)
]
 
 
 
 
 
 
 
 

 

5. Using Definition 3.2 the score function matrices are obtained as 

 𝑆𝐹(𝑁𝑤
1) =

[
 
 
 
 
 
 
 
0.321 0.348 0.249
0.264 0.417 0.354
0.325 0.556 0.265
0.185 0.578 0.294
0.394 0.298 0.448
0.273 0.260 0.303
0.389 0.529 0.321

]
 
 
 
 
 
 
 

 𝑆𝐹(𝑁𝑤
2) =

[
 
 
 
 
 
 
 
0.253 0.428 0.331
0.350 0.516 0.336
0.279 0.515 0.234
0.238 0.681 0.226
0.357 0.414 0.284
0.311 0.332 0.262
0.251 0.337 0.250

]
 
 
 
 
 
 
 

 𝑆𝐹(𝑁𝑤
3) =

[
 
 
 
 
 
 
 
0.301 0.516 0.224
0.322 0.543 0.449
0.289 0.510 0.271
0.458 0.220 0.413
0.426 0.386 0.421
0.173 0.429 0.295
0.335 0.386 0.396

]
 
 
 
 
 
 
 

 

6. Applying Definition 3.3 the total of the score functions are calculated as 

 

 𝑇𝑖
1 =

[
 
 
 
 
 
 
 
0.918
1.034
1.147
1.057
1.140
0.836
1.238

]
 
 
 
 
 
 
 

, 𝑇𝑖
2 =

[
 
 
 
 
 
 
 
1.012
1.202
1.028
1.145
1.055
0.905
1.839

]
 
 
 
 
 
 
 

 𝑎𝑛𝑑  𝑇𝑖
3 =

[
 
 
 
 
 
 
 
1.041
1.313
1.071
1.090
1.232
0.897
1.117

]
 
 
 
 
 
 
 

 

7. The total value for each candidate is calculated and presented as 

 𝑆𝑇𝑖 =

[
 
 
 
 
 
 
 
2.971
3.549
3.246
3.292
3.427
2.638
3.194

]
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8. Arranging the SIs according to their total score values we obtain the ranking of the SIs as 

Table 2. Tabular representation of SI’s total score values. 

𝒄𝒊   Score   Rank  

𝒄𝟐   3.549   1  

𝑐5   3.427   2  

𝑐4   3.292   3  

𝑐3   3.246   4  

𝑐7   3.194   5  

𝑐1   2.971   6  

𝑐6   2.638   7  

 

 

Figure 2. Score values of SIs. 

 
 

From Table 2 and Figure 2, we obtain the ranking of SIs as   𝑐2  > 𝑐5  >  𝑐4  >  𝑐3  > 𝑐7  >  𝑐1  >  𝑐6 .  

The SI 𝑐2 ranks first and it is the most suitable SI for the investor. 

5.2. Case study II 

Consider the same example as in 5.1. A person would like to select the best SI. 

1. Let 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐7) be the set of top listed SIs. 

2. Let 𝐸 = (𝑒1, 𝑒2, 𝑒3, 𝑒4) be the set of parameters which form the criteria for selection. Here, 𝑒1 = 

financial profitability projection, 𝑒2 = asset-utilization, 𝑒3 = conservative capital structure and 𝑒4 = 

earnings momentum of the SI. 

3. Let the personnel present his forecast result in the form of NSM- 𝑁1,  𝑁2 and 𝑁3 for the subset of 

the criteria set (𝑒1, 𝑒2, 𝑒3) as 
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 𝑁1 =

[
 
 
 
 
 
 
 
 
(0.245,0.456,0.721) (0.457,0.421,0.431) (0.415,0.821,0.211)

(0.247,0.156,0.547) (0.345,0.653,0.543) (0.618,0.712,0.614)

(0.546,0.765,0.429) (0.765,0.753,0.632) (0.415,0.521,0.416)
(0.567,0.552,0.521) (0.652,0.682,0.723) (0.313,0.412,0.568)

(0.429,1.000,0.891) (0.452,0.219,0.407) (0.231,0.922,0.916)

(0.456,0.932,0.217) (0.569,0.236,0.247) (0.416,0.378,0.612)

(0.324,0.634,0.816) (0.367,0.456,0.912) (0.482,0.231,0.712)
]
 
 
 
 
 
 
 
 

, 

 

 

          𝑁2 =

[
 
 
 
 
 
 
 
 
(0.245,0.348,0.546) (0.456,0.156,0.765) (0.721,0.627,0.429)

(0.457,0.345,0.765) (0.421,0.653,0.753) (0.431,0.543,0.632)

(0.415,0.618,0.415) (0.821,0.712,0.521) (0.211,0.514,0.416)
(0.638,0.516,0.467) (0.734,0.817,0.926) (0.518,0.456,0.467)

(0.314,0.231,0.916) (0.753,0.893,0.213) (0.213,0.765,0.457)

(0.753,0.893,0.213) (0.618,0.415,0.314) (0.451,0.233,0.532)

(0.412,0.824,0.218) (0.614,0.425,0.324) (0.546,0.267,0.428)
]
 
 
 
 
 
 
 
 

𝑎𝑛𝑑 

 

 𝑁3 =

[
 
 
 
 
 
 
 
 
(0.238,0.734,0.518) (0.765,0.345,0.734) (0.345,0.457,0.347)

(0.416,0.817,0.456) (0.429,0.753,0.817) (0.456,0.892,0.821)

(0.467,0.926,0.267) (0.156,0.543,0.926) (0.673,0.452,0.342)
(0.714,0.716,0.912) (0.245,0.431,0.211) (0.345,0.763,0.821)

(0.928,0.419,0.745) (0.348,0.345,0.616) (0.543,0.821,0.721)

(0.211,0.518,0.213) (0.245,0.456,0.721) (0.436,0.417,0.556)

(0.156,0.653,0.712) (0.348,0.345,0.618) (0.529,0.673,0.719)
]
 
 
 
 
 
 
 
 

 

 

4. Let the weight order of neutrosophic soft sets be 𝑊1 = 0.3,𝑊2 = 0.4,𝑊3 = 0.3. Using Definition 3.1 

the results are obtained as 

 

 𝑁𝑤
1 =

[
 
 
 
 
 
 
 
 
(0.074,0.137,0.216) (0.183,0.168,0.172) (0.125,0.246,0.063)

(0.074,0.047,0.164) (0.138,0.261,0.217) (0.184,0.214,0.184)

(0.164,0.230,0.129) (0.306,0.301,0.253) (0.125,0.156,0.125)
(0.070,0.166,0.156) (0.261,0.273,0.289) (0.094,0.124,0.170)

(0.129,0.300,0.267) (0.181,0.088,0.163) (0.069,0.277,0.275)

(0.137,0.280,0.065) (0.228,0.094,0.099) (0.125,0.113,0.184)

(0.097,0.190,0.245) (0.147,0.182,0.365) (0.145,0.069,0.213)
]
 
 
 
 
 
 
 
 

, 

 

          𝑁𝑤
2 =

[
 
 
 
 
 
 
 
 
(0.074,0.104,0.164) (0.182,0.062,0.306) (0.216,0.188,0.129)

(0.137,0.104,0.230) (0.168,0.261,0.301) (0.129,0.163,0.190)

(0.125,0.185,0.125) (0.328,0.285,0.208) (0.063,0.154,0.125)
(0.091,0.155,0.140) (0.294,0.327,0.370) (0.155,0.137,0.140)

(0.094,0.069,0.275) (0.301,0.357,0.085) (0.064,0.230,0.137)

(0.226,0.268,0.064) (0.247,0.166,0.126) (0.135,0.070,0.160)

(0.124,0.247,0.065) (0.246,0.170,0.130) (0.164,0.080,0.128)
]
 
 
 
 
 
 
 
 

𝑎𝑛𝑑 
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 𝑁𝑤
3 =

[
 
 
 
 
 
 
 
 
(0.071,0.220,0.155) (0.306,0.138,0.294) (0.104,0.137,0.104)

(0.125,0.245,0.137) (0.172,0.301,0.327) (0.137,0.268,0.246)

(0.140,0.278,0.080) (0.062,0.217,0.370) (0.202,0.136,0.103)
(0.214,0.215,0.274) (0.098,0.172,0.084) (0.104,0.229,0.246)

(0.278,0.126,0.224) (0.139,0.138,0.246) (0.163,0.246,0.216)

(0.063,0.155,0.064) (0.098,0.182,0.288) (0.131,0.125,0.167)

(0.047,0.196,0.214) (0.139,0.138,0.247) (0.159,0.202,0.216)
]
 
 
 
 
 
 
 
 

 

 

5. Using Definition 3.2 the score function matrices are obtained as 

 

𝑉𝐹(𝑁𝑤
1) =

[
 
 
 
 
 
 
 
0.321 0.348 0.249
0.225 0.417 0.384
0.325 0.556 0.265
0.324 0.556 0.279
0.482 0.297 0.448
0.273 0.260 0.303
0.389 0.529 0.321

]
 
 
 
 
 
 
 

𝑉𝐹(𝑁𝑤
2) =

[
 
 
 
 
 
 
 
0.253 0.428 0.331
0.350 0.516 0.336
0.279 0.515 0.234
0.313 0.681 0.286
0.357 0.414 0.284
0.311 0.332 0.262
0.251 0.337 0.250

]
 
 
 
 
 
 
 

 𝑉𝐹(𝑁𝑤
3) =

[
 
 
 
 
 
 
 
0.301 0.516 0.224
0.322 0.563 0.449
0.289 0.510 0.271
0.488 0.220 0.413
0.426 0.385 0.421
0.173 0.429 0.295
0.335 0.386 0.396

]
 
 
 
 
 
 
 

 

6. Applying Definition 3.3 the total of the score functions are calculated as 

 

 𝑇𝑖
1 =

[
 
 
 
 
 
 
 
0.918
1.025
1.147
1.159
1.226
0.836
1.238

]
 
 
 
 
 
 
 

, 𝑇𝑖
2 =

[
 
 
 
 
 
 
 
1.012
1.202
1.028
1.280
1.055
0.905
1.839

]
 
 
 
 
 
 
 

, 𝑇𝑖
3 =

[
 
 
 
 
 
 
 
1.041
1.333
1.071
1.120
1.231
0.897
1.117

]
 
 
 
 
 
 
 

, 

 

 7. The total value for each SI is calculated and presented as  

 𝑆𝑇𝑖 =

[
 
 
 
 
 
 
 
2.971
3.560
3.246
3.560
3.513
2.638
3.194

]
 
 
 
 
 
 
 

 

Table 3. Tabular representation of SI’s total score values. 

𝒄𝒊   Score   Rank  

𝒄𝟐   3.560   1  

𝒄𝟒   3.560   1  

𝑐5   3.513   3  

𝑐3   3.246   4  

𝑐7   3.194   5  

𝑐1   2.971   6  

𝑐6   2.638   7  
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Figure 3. Score values of SIs 

 

From Table 3 and Figure 3, we obtain the ranking of SIs as   𝒄𝟐 = 𝒄𝟒  >  𝑐5  >  𝑐3  > 𝑐7  >  𝑐1  >  𝑐6 .  

As there are more than one SI (𝑐2 and 𝑐4) with the same ranking we add one more parameter 𝑒4 in 

the list and repeat the process. 

 

 𝑁1 =

[
 
 
 
 
 
 
 
 
(0.245,0.456,0.721) (0.457,0.421,0.431) (0.415,0.821,0.211) (0.536,0.665,0.129)

(0.247,0.156,0.547) (0.345,0.653,0.543) (0.618,0.712,0.614) (0.547,0.451,0.321)

(0.546,0.765,0.429) (0.765,0.753,0.632) (0.415,0.521,0.416) (0.357,0.451,0.631)
(0.567,0.552,0.521) (0.652,0.682,0.723) (0.313,0.412,0.568) (0.375,0.753,0.243)

(0.429,1.000,0.891) (0.452,0.219,0.407) (0.231,0.922,0.916) (0.251,0.562,0.726)

(0.456,0.932,0.217) (0.569,0.236,0.247) (0.416,0.378,0.612) (0.426,0.478,0.512)

(0.324,0.634,0.816) (0.367,0.456,0.912) (0.482,0.231,0.712) (0.416,0.252,0.317)
]
 
 
 
 
 
 
 
 

, 

 

               𝑁2 =

[
 
 
 
 
 
 
 
 
(0.245,0.348,0.546) (0.456,0.156,0.765) (0.721,0.627,0.429) (0.546,0.765,0.429)

(0.457,0.345,0.765) (0.421,0.653,0.753) (0.431,0.543,0.632) (0.567,0.551,0.521)

(0.415,0.618,0.415) (0.821,0.712,0.521) (0.211,0.514,0.416) (0.457,0.421,0.431)
(0.638,0.516,0.467) (0.734,0.817,0.926) (0.518,0.456,0.467) (0.345,0.653,0.543)

(0.314,0.231,0.916) (0.753,0.893,0.213) (0.213,0.765,0.457) (0.231,0.922,0.916)

(0.753,0.893,0.213) (0.618,0.415,0.314) (0.451,0.233,0.532) (0.416,0.378,0.612)

(0.412,0.824,0.218) (0.614,0.425,0.324) (0.546,0.267,0.428) (0.456,0.932,0.217)
]
 
 
 
 
 
 
 
 

 

 

 𝑁3 =

[
 
 
 
 
 
 
 
 
(0.238,0.734,0.518) (0.765,0.345,0.734) (0.721,0.627,0.429) (0.546,0.765,0.429)

(0.416,0.817,0.456) (0.429,0.753,0.817) (0.431,0.543,0.632) (0.567,0.551,0.521)

(0.467,0.926,0.267) (0.156,0.543,0.926) (0.211,0.514,0.416) (0.457,0.421,0.431)
(0.714,0.716,0.912) (0.245,0.431,0.211) (0.518,0.456,0.467) (0.345,0.653,0.543)

(0.928,0.419,0.745) (0.348,0.345,0.616) (0.213,0.765,0.457) (0.231,0.922,0.916)

(0.211,0.518,0.213) (0.245,0.456,0.721) (0.451,0.233,0.532) (0.416,0.378,0.612)

(0.156,0.653,0.712) (0.348,0.345,0.618) (0.546,0.267,0.428) (0.456,0.932,0.217)
]
 
 
 
 
 
 
 
 

, 

4. Let the weight order of neutrosophic soft sets be 𝑊1 = 0.3,𝑊2 = 0.4,𝑊3 = 0.15 and 𝑊4 = 0.15. 

Using Definition 3.1 the resultant are obtained as 
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𝑁𝑤
1 =

[
 
 
 
 
 
 
 
 
(0.074,0.137,0.216) (0.183,0.168,0.172) (0.062,0.123,0.032) (0.080,0.100,0.019)

(0.074,0.047,0.164) (0.138,0.261,0.217) (0.093,0.107,0.092) (0.082,0.068,0.048)

(0.164,0.230,0.129) (0.306,0.301,0.253) (0.062,0.078,0.062) (0.054,0.068,0.095)
(0.070,0.166,0.156) (0.261,0.273,0.289) (0.047,0.062,0.085) (0.056,0.113,0.036)

(0.129,0.300,0.267) (0.181,0.088,0.163) (0.035,0.138,0.137) (0.038,0.084,0.109)

(0.137,0.280,0.065) (0.228,0.094,0.099) (0.062,0.057,0.092) (0.064,0.072,0.077)

(0.097,0.190,0.245) (0.147,0.182,0.365) (0.072,0.035,0.107) (0.062,0.038,0.048)
]
 
 
 
 
 
 
 
 

 

 

𝑁𝑤
2 =

[
 
 
 
 
 
 
 
 
(0.074,0.104,0.164) (0.182,0.062,0.306) (0.108,0.094,0.064) (0.082,0.115,0.064)

(0.137,0.104,0.230) (0.168,0.261,0.301) (0.065,0.081,0.095) (0.085,0.083,0.078)

(0.125,0.185,0.125) (0.328,0.285,0.208) (0.032,0.077,0.062) (0.069,0.063,0.065)
(0.091,0.155,0.140) (0.294,0.327,0.370) (0.078,0.068,0.070) (0.052,0.098,0.081)

(0.094,0.069,0.275) (0.301,0.357,0.085) (0.032,0.115,0.069) (0.035,0.138,0.137)

(0.226,0.268,0.064) (0.247,0.166,0.126) (0.068,0.035,0.080) (0.062,0.057,0.092)

(0.124,0.247,0.065) (0.246,0.170,0.130) (0.082,0.040,0.064) (0.068,0.140,0.033)
]
 
 
 
 
 
 
 
 

 

 

𝑁𝑤
3 =

[
 
 
 
 
 
 
 
 
(0.071,0.220,0.155) (0.306,0.138,0.294) (0.052,0.069,0.052) (0.082,0.115,0.064)

(0.125,0.245,0.137) (0.172,0.301,0.327) (0.068,0.134,0.123) (0.085,0.083,0.078)

(0.140,0.278,0.080) (0.062,0.217,0.370) (0.101,0.068,0.051) (0.069,0.063,0.065)
(0.214,0.215,0.274) (0.098,0.172,0.084) (0.052,0.114,0.123) (0.052,0.098,0.081)

(0.278,0.126,0.224) (0.139,0.138,0.246) (0.081,0.123,0.108) (0.035,0.138,0.137)

(0.063,0.155,0.064) (0.098,0.182,0.288) (0.065,0.063,0.083) (0.062,0.057,0.092)

(0.047,0.196,0.214) (0.139,0.138,0.247) (0.079,0.101,0.108) (0.068,0.140,0.033)
]
 
 
 
 
 
 
 
 

 

5. Using Definition 3.2 the score function matrices are obtained as 

𝑉𝐹(𝑁𝑤
1) =

[
 
 
 
 
 
 
 
0.321 0.348 0.124 0.109
0.225 0.417 0.192 0.123
0.325 0.556 0.133 0.155
0.324 0.556 0.140 0.121
0.482 0.297 0.224 0.170
0.273 0.260 0.151 0.145
0.389 0.529 0.160 0.098

]
 
 
 
 
 
 
 

, 𝑉𝐹(𝑁𝑤
2) =

[
 
 
 
 
 
 
 
0.253 0.428 0.165 0.163
0.350 0.516 0.168 0.162
0.279 0.515 0.117 0.131
0.313 0.681 0.143 0.156
0.357 0.414 0.142 0.224
0.311 0.332 0.131 0.151
0.251 0.337 0.125 0.137

]
 
 
 
 
 
 
 

 

𝑉𝐹(𝑁𝑤
3) =

[
 
 
 
 
 
 
 
0.301 0.516 0.112 0.163
0.322 0.563 0.224 0.162
0.289 0.510 0.136 0.131
0.488 0.220 0.206 0.156
0.426 0.385 0.210 0.224
0.173 0.429 0.147 0.151
0.335 0.386 0.198 0.137

]
 
 
 
 
 
 
 

 

6. Applying Definition 3.3 the total of the score functions are calculated as 

  

 𝑇𝑖
1 =

[
 
 
 
 
 
 
 
0.903
0.995
1.170
1.141
1.130
0.829
1.176

]
 
 
 
 
 
 
 

, 𝑇𝑖
2 =

[
 
 
 
 
 
 
1.009
1.196
1.293
1.137
0.925
0.850

]
 
 
 
 
 
 

𝑎𝑛𝑑𝑇𝑖
3 =

[
 
 
 
 
 
 
 
1.092
1.271
1.065
1.070
1.245
0.901
1.055

]
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7. The total value for each SI is calculated and presented as 

 

 𝑆𝑇𝑖 =

[
 
 
 
 
 
 
 
3.004
3.423
3.277
3.504
3.554
2.655
3.081

]
 
 
 
 
 
 
 

 

8. Arranging the SIs according to their total score values we obtain the ranking of the SIs as 

Table 4. Tabular representation of SI’s total score values. 

𝒄𝒊   Score   Rank  

𝒄𝟓   3.554   1  

𝑐4   3.504   2  

𝑐2   3.423   3  

𝑐3   3.277   4  

𝑐7   3.081   5  

𝑐1   3.004   6  

𝑐6   2.655   7  

 

Figure 4. Score values of SIs 

 

From Table 4 and Figure 4, we obtain the ranking of SIs as   𝑐5  > 𝑐4  >  𝑐2  >  𝑐3  > 𝑐7  >  𝑐1  >  𝑐6 .  

The SI 𝑐5 ranks first and it is the most suitable SI for the investor. 

6. Conclusions 

The proposed NSM computational solution supports decision-makers in solving the complex 

decision-making problem faced in today’s ambiguity situation. In this paper, the weight vector and 

score function are introduced with illustrative examples. By applying the score function we solve the 

MADM problems in the neutrosophic environment and transforming the values of truth, 

indeterminacy and falsity into a single membership value to obtain a more precise, efficient, and 

realistic solution. An application of NSM in MADM is also explained. An algorithm is developed for 
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this purpose and two examples are provided to illustrate the working of the algorithm. Our future 

work is to extend the concept of MADM problems in real-life psychology applications by using 

standard or hybrid neutrosophic and plithogenic tools. 
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Abstract: The purpose of the present work was to study the real life problems using neutrosophic 

nano topological graph theory. Most real-life situations need some sort of approximation to fit 

mathematical models. The beauty of using neutrosophic nano topology in approximation is 

achieved via approximation for qualitative sub graphs without coding or using assumption. By 

certain nano equivalence relation, we are formalizing the structural equivalence of basic circuit of 

the LED light from the graphs and their corresponding neutrosophic nano topologies generated by 

them.  

Keywords: Neutrosophic nano topology; Neutrosophic nano neighborhood; Neutrosophic nano 
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1. Introduction 

There are several reasons for the acceleration of interest in graph theory. It has become 

fashionable to mention that there are applications of graph theory in some areas of Physics, 

Chemistry, Communication Science and Computer Technology. The theory is also intimately related 

to many branches of Mathematics, including Group Theory, Matrix Theory, Numerical Analysis, 

Probability, Topology and Combinatorics. 

A graph (resp., directed graph or digraph) [21],   consists of a vertex set 

 and an edge set  of un-ordered (resp., ordered) pairs of elements of . To avoid 

ambiguities, we assume that the vertex and edge sets are disjoint. We say that two vertices  and w 

of a graph (resp., digraph) G are adjacent if there is an edge of the form  (resp.,  or ) 

joining them, and the vertices  and ware then incident with such an edge. A sub graph of a graph 

 is a graph, each of whose vertices belong to  and each of whose edges belongs to . 

Many theories like, Theory of Fuzzy sets [22], Theory of Intuitionistic fuzzy sets [7], Theory of 

Neutrosophic sets [20] and The Theory of Interval Neutrosophic sets can be considered as tools for 

dealing with uncertainties. However, all of these theories have their own difficulties which are 

pointed out. In 1965, Zadeh [22] introduced fuzzy set theory as a mathematical tool for dealing with 

uncertainties where each element had a degree of membership. Later on fuzzy topology was 

introduced by Chang [10] in 1986. The Intuitionistic fuzzy set was introduced by Atanassov [7] in 

1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of 

non-membership of each element. After this intuitionistic fuzzy topology was introduced by Coker 

[11]. 
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The neutrosophic set was introduced by Smarandache [20] as a generalization of intuitionistic 

fuzzy set. In 2012, Salama and Alblowi [18] introduced the concept of Neutrosophic topological 

spaces as a generalization of intuitionistic fuzzy topological space and a neutrosophic set besides the 

degree of membership, the degree of indeterminacy and the degree of non-membership of each 

element. In 2014 Salama, Smarandache and Valeri [19] introduced the concept of neutrosophic 

closed sets and neutrosophic continuous functions. Smarandache’s neutrosophic concept have wide 

range of real time applications for the fields of [1-6] Information Systems, Computer Science, 

Artificial Intelligence, Applied Mathematics, decision making. Mechanics, Electrical & Electronic, 

Medicine and Management Science etc, Rough set theory is introduced by Pawlak [17] as a new 

mathematical tool for representing reasoning and decision-making dealing with vagueness and 

uncertainty.  

This theory provides the approximation of sets by means of equivalence relations and is 

considered as one of the first non-statistical approaches in data analysis. A rough set can be 

described by a pair of definable sets called lower and upper approximations. The lower 

approximation is the greatest definable set contained in the given set of objects while the upper 

approximation is the smallest definable set that contains the given set. Rough set concept can be 

defined quite generally by means of topological operations, interior and closure, called 

approximations. In 2013, a new topology called Nano topology was introduced by Lellis Thivagar 

[13] which is an extension of rough set theory. He also introduced Nano topological spaces which 

were defined in terms of approximations and boundary region of a subset of a universe using an 

equivalence relation on it. The elements of a Nano topological space are called the Nano open sets 

and its complements are called the Nano closed sets. Nano means something very small. Nano 

topology thus literally means the study of very small surface. The fundamental ideas in Nano 

topology are those of approximations and indiscernibility relation. 

Some properties of nano topology induced by graph were investigated by Arafa Nasef [8] et al. 

single valued neutrosophic graphs were introduced by Said Broumi [9] et al. in which they defined 

degree, order, size and neighborhood of single valued neutrosophic graph. The aim of this paper is 

to deal with some practical problems by utilizing neutrosophic nano topology. Nano 

homeomorphism [14] between two nano topological spaces are said to be topologically equivalent. 

Using this concept, we are formalizing the structural equivalence of basic circuit of the LED light 

from the graphs and their corresponding neutrosophic nano topologies generated by them. 

2. Preliminaries 

Definition 2.1. [13] Let  be a non-empty finite set of objects called the universe and  be an 

equivalence relation on  named as indiscernibility relation. Elements belonging to the same 

equivalence class are said to be indiscernible with one another. The pair  is said to be the 

approximation space. Let . 

(i) The lower approximation of  with respect to  is the set of all objects, which can be for certain 

classified as  with respect to  and is denoted by  . That is, 

 where  denotes the equivalence class determined by . 

(ii) The upper approximation of  with respect to  is the set of all objects, which can be possibly 

classified as  with respect to  and is denoted by . That is, 

.  

(iii) The boundary region of  with respect to  is the set of all objects which can be classified 

neither as  nor as not  with respect to  and it is denoted by BR(X). That is, 

. 



Neutrosophic Sets and Systems, Vol. 31, 2020 244  

T. Nandhini, M. Vigneshwaran and S. Jafari, Structural equivalence between electrical circuits via neutrosophic nano 

topology induced by digraphs  

Definition 2.2. [20] A neutrosophic set   is an object of the following form 

= where ,  and  denote the degree of 

membership, the degree of indeterminacy and the degree of non-membership for each element 

to the set , respectively. 

Definition 2.3. [18] A neutrosophic topology in a nonempty set  is a family    of neutrosophic 

sets in  satisfying the following axioms: 

(i)  0N, 1N ; 

(ii)  for any ,  ; 

(iii)   for any arbitrary family  :  . 

Definition 2.4. [15] Let  be a universe and  be an equivalence relation on  and Let  be a 

neutrosophic subset of . Then the neutrosophic nano topology is defined by    

, where 

(i). . 

(ii)

(iii) , where , , , 

, ,  

Definition 2.5. [8] Let  and  be a neutrosophic nano topological spaces, then 

the mapping is said to be a neutrosophic nano continuous if the inverse 

image of every neutrosophic nano closed set in  is neutrosophic nano closed in . 

Definition 2.6. [14] Let  and  be a neutrosophic nano topological spaces, then 

the mapping is said to be a neutrosophic nano homeomorphism if 

(i)  is one to one and onto. 

(ii)  is neutrosophic nano continuous. 

(iii)  is neutrosophic nano open. 

Definition 2.7. [14] Let  and  be any two graphs. They are isomorphic if there exist a 

neutrosophic nano homeomorphism for every sub graph 

of . 

Definition 2.8. [14]  is said to be neutrosophic nano neighborhood of  if it is defined by 

  is a neutrosophic nano neighborhood of . 

Definition 2.9. [14] Let  be a neutrosophic nano graph,  a neutrosophic nano neighborhood 

of  in  and  a neutrosophic nano sub graph of , then  is a neutrosophic nano 

topology induced by graph . It is denoted by 

Definition 2.10. [9] A single valued neutrosophic digraph  is of the form where, 

and the functions , , denote the 

truth-membership function, a indeterminacy-membership function and falsity-membership function 

of the element , respectively and ,   

. 
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  provided that and the 

functions , ,   are defined by 

 

 

 

Where ,  denote the truth-membership function, a indeterminacy membership function 

and falsity-membership function of the respectively, where 

, , . 

Definition 2.11. [14] If  is a directed graph and , then:  is in-vertex of  if .  

is out-vertex of  if . The in-degree of a vertex  is the number of vertices  such that 

. The out-degree of a vertex  is the number of vertices u such that . 

Throughout this paper the word graph means directed simple graph. 

3. Identifying Structural equivalence between LED light via neutrosophic nano topology 

Definition 3.1. Let  be a neutrosophic nano graph, . Then we define the neutrosophic 

nano neighborhood of  as follows   

Definition 3.2. Let  be a neutrosophic nano graph,  a neutrosophic nano sub graph of  

and  a neutrosophic nano neighborhood of  in . Then we define,  

The lower approximation operation as follows:  such that 

.  

The upper approximation operation as follows:  such that 

. 

(iii)   The boundary region is defined as  

Algorithm 

Step:1 Taken two different electrical circuits of LED light denoted as  and . 

Step:2 Convert the electrical circuits  and  to  and . 

Step:3 Check whether  and  are homeomorphism corresponding neutrosophic nano 

topologies induced from their vertices. 

Step:4 Check whether  is isomorphic to  and  is isomorphic to 

 then both graphs are isomorphic. 

Step:5 Otherwise, we conclude that both the electrical circuits are entirely different. 

Remark 3.3. Using the above algorithm to check that two electrical circuits are structurally 

equivalent. 

Step:1 Consider the following basic circuit of the LED light. Using the above algorithm, we can 

prove whether these two circuits have functional similarities via neutrosophic nano topology 

induced by the vertices of its neutrosophic nano sub graphs (Figure 1). 
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E1          E2 

Step:2 Convert the basic circuit  and  into neutrosophic nano graphs  and  

respectively. (Figure 2). 

 

Step:3 Let  and  be two neutrosophic nano graphs. 

Then  and , then the neighborhood of both graphs are 

, ,  , , and ,  

Then the one to one mapping is defined as follows: . , ,  

 

Here  is a bijection between every pair of vertices  and , the path between every pair of 

vertices are equal. 

Now, we prove that  is open map. Let us consider the two vertices,  and 

, then the neutrosophic nano topology of these two vertices are   

and . Hence the function 

are homeomorphism. Then the function  

 is a neutrosophic nano homeomorphism. This holds 

for every sub graph  of . 

Step:4 From the above given neutrosophic nano topology, it is concluded that all the sub graphs are 

neutrosophic nano homeomorphism. Hence the two different graphs are isomorphic, that is 

structural equivalence from the table 3. 

Step:5 Observation: If all the sub graphs are neutrosophic nano homeomorphism then the two 

graphs are called neutrosophic nano isomorphism, which are structural equivalence. Using the 

above structural equivalence technique, we can check whether two circuits are equivalent and we 

can also extend our theory to many industrial products. 
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Table:1 Possible sub graph of  
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Table:2 Possible sub graph of  
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Table:3 Neutrosophic Nano Isomorphic Table 
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Conclusion: 

The purpose of the present work was to make headway for the application of neutrosophic 

nano topology via graph theory. We believe that neutrosophic nano topological graph structure will 

be an important base for modification of knowledge extraction and processing. 

The aim of this paper was to generate neutrosophic nano topological structure on the power set 

of vertices of simple neutrosophic digraphs, by using new definition neutrosophic neighbourhood.  

Based on the neutrosophic neighborhood, we define the approximations of the subgraphs of a 

graph. A new neutrosophic nano topological graph have been used to analyze the symbolic circuit in 

this paper. By means of structural equivalence on neutrosophic nano topology induced by graph we 

have framed an algorithm for detecting patent infringement suit. 
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—————————————————————————————————————————-

1. Introduction

Zadeh [13] introduced the notion of fuzzy sets. After that there have been a number of

generalizations of this fundamental concept. The study of fuzzy topological spaces was first

initiated by Chang [6] in the year 1968. Atanassov [12] introduced the notion of intuitionistic

fuzzy sets. This notion was extended to intuitionistic L-fuzzy setting by Atanassov and Sto-

eva [20], which currently holds the name “intuitionistic L-topological spaces”. Using the notion

of intuitionistic fuzzy sets, Coker [7] introduced the notion of intuitionistic fuzzy topological

space. The concept of generalized fuzzy closed set was introduced by G. Balasubramanian

and P. Sundaram [11]. In various recent papers, F. Smarandache generalizes intuitionistic

fuzzy sets (IFSs) and other kinds of sets to neutrosophic sets (NSs). F. Smarandache and

A. Al Shumrani also defined the notion of neutrosophic topology on the non-standard inter-

val [2,9,14,16]. Also, ( [8,15,17]) introduced the metric topology and neutrosophic geometric

and studied various properties. Recently, Wadei Al-Omeri and Smarandache [18,19] introduce

Wadei F. Al-Omeri, Saeid Jafari and Florentin Smarandache, Neutrosophic Fixed Point Theorems and Cone

Metric Spaces
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and study the concepts of neutrosophic open sets and its complements in neutrosophic topolog-

ical space, continuity in neutrosophic topology, and obtain some characterizations concerning

neutrosophic connectedness and neutrosophic mapping.

This paper is arranged as follows. In Section 2, we will recall some notions which will be

used throughout this paper. In Section 3, neutrosophic Cone Metric Space and investigate its

basic properties. In Section 4, we study the neutrosophic Fixed Point Theorems and study

some of their properties. Finally, Banach contraction theorem and some fixed point results on

neutrosophic cone metric space are stated and proved.

2. Preliminaries

Definition 2.1. [4] Let Σ be a non-empty fixed set. A neutrosophic set (briefly NS) B

is an object having the form B = {〈r, ξB(r), %B(r), ηB(r)〉 : r ∈ Σ}, where ξB(r), %B(r),

and ηB(r) which represent the degree of membership function (namely ξB(r)), the degree of

indeterminacy (namely %B(r)), and the degree of non-membership (namely ηB(r) ) respectively,

of each element r ∈ Σ to the set B.

A neutrosophic set B = {〈r, ξB(r), %B(r), ηB(r)〉 : r ∈ Σ} can be identified to an ordered

triple 〈ξB(r), %B(r)

, ηB(r)〉 in c0−, 1+b on Σ.

Remark 2.1. [4] For the sake of simplicity, we shall use the symbol B = {r, ξB(r),

%B(r), ηB(r)} for the NS B = {〈r, ξB(r), %B(r), ηB(r)〉 : r ∈ Σ}.

Definition 2.2. [5] Let B = 〈ξB(r), %B(r), ηB(r)〉 be an NS on Σ. The complement of

B(brieflyC(B)), are defined as three types of complements

(1) C(B) = {〈r, ηB(r), 1− %B(r), ξB(r)〉 : r ∈ Σ} ,

(2) C(B) = {〈r, 1− ξB(r), 1− ηB(r)〉 : r ∈ Σ}
(3) C(B) = {〈r, ηB(r), %B(r), ξB(r)〉 : r ∈ Σ}

We have the following NSs (see [4]) which will be used in the sequel:

(1) 0N = {〈r, 0, 0, 1〉 : r ∈ Σ} or

(2) 0N = {〈r, 0, 1, 1〉 : r ∈ Σ} or

(3) 0N = {〈r, 0, 0, 0〉 : r ∈ Σ} or

(4) 0N = {〈r, 0, 1, 0〉 : r ∈ Σ}

2- 1N may be defined as four types:

(1) 1N = {〈r, 1, 1, 1〉 : r ∈ Σ} or

(2) 1N = {〈r, 1, 0, 0〉 : r ∈ Σ} or

(3) 1N = {〈r, 1, 1, 0〉 : r ∈ Σ} or
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(4) 1N = {〈r, 1, 0, 1〉 : r ∈ Σ}

Definition 2.3. [4] Let x 6= ∅, and generalized neutrosophic sets (GNSs) B and Γ be in

the form B = {r, ξB(r), %B(r), ηB(r)}, Γ = {r, ξΓ(r), %Γ(r), ηΓ(r)}. We think of two possible

definitions A ⊆ Γ.

(1) B ⊆ Γ⇔ ξB(r) ≤ ξΓ(r), %B(r) ≥ %Γ(r), and ηB(r) ≤ ηΓ(r)

(2) B ⊆ Γ⇔ ξB(r) ≤ ξΓ(r), %B(r) ≥ %Γ(r), and ηB(r) ≥ ηΓ(r).

Definition 2.4. [4] Let {Bj : j ∈ J} be an arbitrary family of an NSs in Σ. Then

(1) ∩Bj defined as two types:

- ∩Bj = 〈r, ∧
j∈J

ξBj(r), ∧
j∈J

%Bj(r), ∨
j∈J

ηBj(r)〉 < Type 1 >

- ∩Bj = 〈r, ∧
j∈J

ξBj(r), ∨
j∈J

%Bj(r), ∨
j∈J

ηBj(r)〉 < Type 2 >.

(2) ∪Bj defined as two types:

- ∪Bj = 〈r, ∨
j∈J

ξBj(r), ∨
j∈J

%Bj(r), ∧
j∈J

ηBj(r)〉 < Type 1 >

- ∪Bj = 〈r, ∨
j∈J

ξBj(r), ∧
j∈J

%Bj(r), ∧
j∈J

ηBj(r)〉 < Type 2 >

Definition 2.5. [3] A neutrosophic topology (briefly NT ) and a non empty set Σ is a family

Υ of neutrosophic subsets of Σ satisfying the following axioms

(1) 0N , 1N ∈ Υ

(2) S1 ∩ S2 ∈ Υ for any S1, S2 ∈ Υ

(3) ∪Si ∈ Υ, ∀ {Si|i ∈ I} ⊆ Υ.

The pair (Σ,Υ) is called a neutrosophic topological space (briefly NTS ) and any neutrosophic

set in Υ is defined as neutrosophic open set ( NOS for short) in Σ. The elements of Υ are

called open neutrosophic sets. A neutrosophic set S is closed if f its C(S) is neutrosophic open.

For any NTS A in (Σ,Υ) ( [21]), we have Int(Ac) = [Cl(A)]c and Cl(Ac) = [Int(A)]c.

Definition 2.6. A subset ω of Ω is called a cone if

(1) For non-empty ω is closed, and ω 6= 0,

(2) If both u ∈ ω and −u ∈ ω then u = 0,

(3) If u, v ∈ S, u, v ≥ 0 and x, y ∈ ω then ux+ vy ∈ ω.

Throughout this paper, we assume that all cones have non-empty interior. For any cone, x ≺ y
will stand for x 4 y and x 6= y, while x� y will stand for y − x ∈ Int(ω). a partial ordering

4 on Ω via ω is defined by x 4 y iff y − x ∈ ω.

Definition 2.7. A cone metric space (briefly CMS) an ordered (Σ, d), where Σ is any set and

d : Σ× Σ 7−→ Ω is a mapping satisfying:

(1) d(s1, s2) = d(s2, s1) for all s1, s2 ∈ Σ,
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(2) d(s1, s2) = 0 iff s1 = s2,

(3) 0 4 d(s1, s2) for all s1, s2 ∈ Σ,

(4) d(s1, s3) 4 d(s1, s2) + d(s2, s3) for all s1, s2, s3 ∈ Σ.

Definition 2.8. Let (Σ, d) be a CMS. Then, for each c1 � 0 and c2 � 0, c1, c2 ∈ Ω, there

exists c� 0, c ∈ Ω such that c� c1 and c� c2.

Definition 2.9. A binary operation
⊗

: [0, 1] × [0, 1] −→ [0, 1] is a continuous t-norm if
⊗

satisfies the following conditions:

(1)
⊗

is continuous,

(2)
⊗

is commutative and associative,

(3) m1
⊗
m2 ≤ m3

⊗
m4 whenever m1 ≤ m3 and m2 ≤ m4 ∀m1, m2, m3, m4 ∈ [0, 1],

(4) m1
⊗

1 = m1 ∀m1 ∈ [0, 1].

Definition 2.10. A binary operation � : [0, 1]× [0, 1] −→ [0, 1] is a continuous t-conorm if �
satisfies the following conditions:

(1) � is continuous,

(2) � is commutative and associative,

(3) m1 �m2 ≤ m3 �m4 whenever m1 ≤ m3 and m2 ≤ m4 ∀m1, m2, m3, m4 ∈ [0, 1],

(4) m1 � 1 = m1 ∀m1 ∈ [0, 1].

Definition 2.11. Let Σ be a non-empty set. The mappings G : Σ×Σ −→ Σ and H : Σ −→ Σ

are called commutative if H(G(x, y)) = G(H(x), H(y)) ∀x, y ∈ Σ.

Definition 2.12. Let Σ 6= ∅. An element x ∈ Σ is called a common fixed point of mappings

G : Σ× Σ −→ Σ and H : Σ −→ Σ if x = H(x) = G(x, x).

Definition 2.13. If U and V are two maps then, a pair of maps is called weakly compatible

(briefly WCP) pair if they commute at (CP).

Definition 2.14. Let Σ be a set, G, H self maps of Σ. A point x in Σ is called a coincidence

point (briefly CP) of G and H if and only if G(x) = H(x). We call w = G(x) = H(x) a point

of coincidence of G and H.

Definition 2.15. Two self maps G and H of a set Σ are sporadically weakly compatible of Σ.

If G and H have a unique point of coincidence, z = G(u) = H(v), then z is the unique common

fixed point of G and H.

Lemma 2.2. Two self maps G and H of a set Σ are sporadically weakly compatible of Σ. then

z is the unique common fixed point of G and H, if z = G(u) = H(u) G and H have a unique

point of coincidence.

Wadei F. Al-Omeri, Saeid Jafari and Florentin Smarandache, Neutrosophic Fixed Point
Theorems and Cone Metric Spaces



Neutrosophic Sets and Systems, Vol. 31, 2020 254

Definition 2.16. A pair of maps G and H which G and H commute of a set Σ are sporadically

weakly compatible iff there is a point x in Σ which is a coincidence point of G and H.

3. neutrosophic Cone Metric Space

Definition 3.1. A 3-tuple (Σ,Ξ,Θ,
⊗
, �) is said to be a neutrosophic CMS if ω is a neutro-

sophic cone metric (briefly NCMS) of Ω, Σ is an arbitrary set, � is a neutrosophic continuous

t-conorm ,
⊗

is a neutrosophic continuous t-norm, ∀ε1, ε2, ε3 ∈ Σ and m, n ∈ Int(ω) (that

is n � 0Θ, s � 0Θ), and Ξ, Θ are neutrosophic set on Σ2 × Int(ω) satisfying the following

conditions:

(1) Ξ(ε1, ε2, ε3) + Θ(ε1, ε2, ε3) ≤ 1Θ;

(2) Ξ(ε1, ε2, ε3) > 0Θ;

(3) Ξ(ε1, ε2, ε3) = 1 iff ε1 = ε2;

(4) Ξ(ε1, ε2, ε3) = Ξ(ε2, ε1,m);

(5) Ξ(ε1, ε2, ε3)
⊗

Ξ(ε2, ε3, n) ≤ Ξ(ε1, ε3,m+ n);

(6) Ξ(ε1, ε2, .) : Int(ω) −→c0−, 1+b is neutrosophic continuous;

(7) Θ(ε1, ε2, ε3) < 0Θ;

(8) Θ(ε1, ε2, ε3) = 0Θ if and only if ε1 = ε2;

(9) Θ(ε1, ε2, ε3) = Θ(ε2, ε3, r);

(10) Θ(ε1, ε2, ε3) �Θ(ε2, ε3, n) ≥ Θ(ε1, ε3,m+ n);

(11) Θ(ε1, ε2, .) : Int(ω) −→c0−, 1+b is neutrosophic continuous.

Then (Ξ,Θ) is called a neutrosophic cone metric on Σ. The functions Θ(ε1, ε2,m) and

Ξ(ε1, ε2,m) denote the degree of non-nearness and the degree of nearness between ε1 and

ε2 with respect to n, respectively.

Example 3.2. Let Ω = R, ω = [0,∞) and a � b = max{a, b}, a
⊗
b = min{a, b}, then every

neutrosophic metric space (Σ,Ξ,Θ) becomes a NCMS.

Example 3.3. If we take ω be an any cone, a
⊗
b = min{a, b}, Σ = Θ, Ξ,Θ : Σ2×Int(ω) −→

c0−, 1+b defined by

Ξ(ε1, ε2, t) =


ε1
ε2
, if ε1 ≤ ε2,

ε1
ε2
, if ε2 ≤ ε1,

Θ(ε1, ε2, t) =


ε2 − ε1
ε2

, if ε1 ≤ ε2,

ε1 − ε2
ε2

, if ε2 ≤ ε1,

for all ε1, ε2 ∈ Σ and r � 0Θ. Then (Σ,Ξ,Θ,
⊗
, �) is a NCMS.
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Definition 3.4. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS, {ε1n} be a sequence in Σ and ε1 ∈ Σ. Then

{ε1n} is said to converge to ε1 if for any s ∈ (0, 1) and any m� 0Θ ∃ a natural number n0 such

that Ξ(ε1n, x,m) > 1 − s,Θ(ε1n, ε1,m) ≤ s for all n ≥ n0. We denote this by limε1n→∞ = ε1

or ε1n → ε1 as →∞.

Definition 3.5. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS. For m � 0Θ, the open ball Γ(x, s,m)

with radius s ∈ (0, 1) and center ε1 is defined by Γ(ε1, s,m) = {ε2 ∈ Σ : Ξ(ε1, ε2,m) >

1− s,Θ(ε1, ε2,m) < s}.

Definition 3.6. The neutrosophic cone metric CMS (Σ,Ξ,Θ,

trosophic CMS if every Cauchy sequence in NCMS (Σ,Ξ,Θ) is convergent.

⊗
, �) is called complete neu-

Definition 3.7. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS. A subset P of Σ is said to be FC-bounded

if ∃ s ∈ (0, 1) and m� θ such that Ξ(ε1, ε2, t) > 1−m,Θ(ε1, ε2,m) < s for all ε1, ε2 ∈ P .

Definition 3.8. Let (Σ,Ξ,Θ,
⊗
, �) be a neutrosophic CMS and h : Σ → Σ is a self map-

ping. Then h is said to be neutrosophic cone contractive if there exists c ∈ (0, 1) such that

1
Ξ(h(ε1),h(ε2),m) − 1 ≤ c( 1

Ξ(ε1,ε2,m) − 1)

Θ(h(ε1), h(ε2),m) ≤ cΘ(ε1, ε2,m)

for each ε1, ε2 ∈ Σ and m� 0Θ. The constant c is called the contractive constant of h.

Lemma 3.9. If for two points ε1, ε2 ∈ Σ and c ∈ (0, 1) such that Ξ(ε1, ε2, cm) ≥ Ξ(ε1, ε2,m),

Θ(ε1, ε2, cm) ≥ Θ(ε1, ε2,m) then ε1 = ε2.

Theorem 3.10. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS. Define T = {K ⊆ Σ : ε1 ∈

Kiff there exists s ∈ (0, 1)andm � 0Θsuch thatL(ε1, s,m) ⊆ K} , then T is a neutrosophic

topology on Σ.

Proof. If ε1 is empty, then ∅ = L(ε1, s,m) ⊆ ∅. Hence the empty set belong to T Since for any

ε1 ∈ Σ, any s ∈ (0, 1) and any m� 0Θ, L(ε1, s,m) ⊆ Σ, then Σ ∈ T .

Let K,L ∈ T and ε1 ∈ K ∩ L. Then ε1 ∈ K and ε1 ∈ L, so there exist m1 � 0Θ; m2 � 0Θ

and m1,m2 ∈ (0, 1) such that L(ε1, s1,m1) ⊆ K and L(ε1, s2,m2) ⊆ L.

By Proposition 2.8, for m1 � 0; m2 � 0, there exists m � 0Θ such that m � m1; r � m2

and take s = min{m1,m2}. Then L(ε1, s,m) ⊆ Σ L(ε1, s1,m1)∩L(ε1, s2,m2) ⊆ K ∩L. Thus

K ∩ L ∈ T . Let Ki ∈ T for each i ∈ I and ε1 ∈ ∪i∈IKi. Then there exists i0 ∈ I such that

ε1 ∈ Ki0. So, there exist r � 0Θ and s ∈ (0, 1) such that L(ε1, s,m) ⊆ Ki0 . SinceKi0 ⊆ ∪i∈IKi,

L(ε1, s,m) ⊆ ∪i∈IKi. Thus ∪i∈IKi ∈ T . Hence, T is a neutrosophic topology on Σ.

Theorem 3.11. If (Σ,Ξ,Θ,
⊗
, �) is a NCMS, then the neutrosophic topology (Σ, T ) is Haus-

dorff.
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Proof. Let (Σ,Ξ,Θ,

Then 0 < Ξ(ε1, ε2,m) < 1Θ and 0 < Θ(ε1, ε2,m) < 1Θ. Let Ξ(ε1, ε2,m) = s1, Θ(ε1, ε2,m) = s2

⊗
, �) be a neutrosophic CMS. Let ε1, ε2 be two distinct points of Σ.

and s = max{s1, s2}. Then for each s0 ∈ (s, 1), there exists s3 and s4 such that s3
⊗
s3 ≥ s0

and (1Θ − s4) � (1Θ − s4) ≤ (1Θ − s0). Put s4 = max{s3, s4} and consider the open balls

L(ε1, 1Θ − s5,m/2) and L(ε2, 1Θ − s5,m/2).

Then clearly L(x, 1Θ − s5,m = 2) ∩ L(ε2, 1− s5,m/2) = ∅
. Suppose that L(x, 1Θ − s5,m = 2) ∩ L(ε2, 1 − s5,m/2) 6= ∅. Then there exists ε3 ∈
L(x, 1Θ − s5,m = 2) ∩ L(ε2, 1Θ − s5,m/2).

s1 =Ξ(ε1, ε2,m)

≥Ξ(ε1, ε3,m/2)
⊗

Ξ(ε3, ε2,m/2)

≥s5

⊗
s5

≥s3

⊗
s3

≥s0 > s1

and

s2 =n(ε1, ε2,m)

≥n(ε1, ε3,m/2)
⊗

n(ε3, ε2,m/2)

≥(1Θ − s5) � (1Θ − s5)

≥(1Θ − s4) � (1Θ − s4)

≤1Θ − s0 < s2

This is a contradiction. Hence ((Σ,Ξ,Θ,
⊗
, �) is Hausdorff.

Theorem 3.12. Let (Σ,Ξ,Θ,
⊗
, �) be a NCMS, ε1 ∈ Σ and (ε1n) a sequence in Σ. Then

(ε1n) converges to ε1 if and only if Ξ(ε1n, ε1,m) → 1 and Θ(ε1n, ε1,m) → 0 as n → 1Θ, for

each m� 0Θ.

Proof. Let (ε1n)→ ε1. Then, for each m� 0Θ and s ∈ (0, 1), there exists a natural number n0

such that Ξ(ε1n, ε1,m) > 1Θ−s, Θ(ε1n, ε1,m) < s for all n� n0. We have 1−Ξ(ε1n, ε1,m) < m

and Ξ(ε1n, ε1,m) < m. Hence Ξ(ε1n, ε1,m) → 1 and Θ(ε1n, ε1,m) → 0 as n → 1. Conversely,

Suppose that Ξ(ε1n, ε1,m) → 1Θ as n → 1Θ. Then, for each m � 0Θ and s ∈ (0, 1), there

exists a natural number n0 such that 1Θ−Ξ(ε1n, ε1,m) < s and Θ(ε1n, ε1,m) < s for all n ≥ n0.

In that case, Ξ(ε1n, ε1,m) > 1Θ − s and Θ(ε1n, ε1,m) < s Hence (ε1n)→ ε1 as n→ 1Θ.
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4. Neutrosophic Fixed Point Theorems

Theorem 4.1. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS in which neutrosophic cone contrac-

tive sequences are Cauchy. Let H a neutrosophic cone contractive mapping. Then H has a

unique fixed point. Where H : Σ→ Σ with c as the contractive constant.

Proof. Let ε1 ∈ Σ and fix ε1n = Hn(x), n ∈ Θ For m� 0Θ, we have

1

Ξ(H(ε1),H2(ε1),m)
− 1Θ ≤ c(

1

Ξ(ε1, ε11,m)
− 1Θ),

Θ(H(ε1),H2(ε1),m) ≤ cΘ(ε1, ε11,m).

And by induction

1

Ξ(ε1n+1, ε1n+2,m)
− 1 ≤ c( 1

Ξ(ε1, ε1n+1,m)
− 1)

,

Θ(ε1n+1, ε1n+2,m) ≤ cΘ(ε1, ε1n+1,m) for all n ∈ Θ.

Then (ε1n) is a neutrosophic contractive sequence, by assumptions (ε1n) converges to ε2 and

it is a Cauchy sequence, for some ε2 ∈ Σ. By Theorem 3.12, we have

1

Ξ(H(ε2),H(ε1n),m)
− 1 ≤ c( 1

Ξ(ε2, ε1n,m)
− 1)→ 0

Θ(H(ε2),H(ε1n),m) ≤ cΘ(ε2, ε1n,m)→ o

as n→ 1. Then for each m� 0Θ,

lim
n→∞

Ξ(H(ε2),H(ε1n),m) = 1, lim
n→∞

Θ(H(ε2),H(ε1n),m) = 0Θ,
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and hence limn→∞H(ε1n) = H(ε2), i.e.,limn→∞ ε1n+1 = H(ε2) and H(ε2) = ε2. To show

uniqueness. Let H(kkk) = ε3 for some ε3 ∈W . For m� 0Θ, we have

1

Ξ(ε2, ε3,m)
− 1 =

1

Ξ(H(ε2),H(ε3),m)
− 1

≤ c(
1

Ξ(ε2, ε3,m)
− 1)

=c(
1

Ξ(H(ε2),H(ε3),m)
− 1)

≤c2(
1

Ξ(ε2, ε3,m)
− 1)

≤... ≤ cn(
1

Ξ(ε2, ε3,m)
− 1)→ 0 asn→∞. (4.1)

Θ(ε2, ε3,m) =Θ(H(ε2),H(ε3),m)

≤c(Θ(ε2, ε3,m)

=cΘ(H(ε2),H(ε3),m)

≤c2Θ(ε2, ε3,m)

≤... ≤ cnΘ(ε2, ε3,m)→ 0 asn→∞. (4.2)

Hence Ξ(ε2, ε3,m) = 1Θ and Θ(ε2, ε3,m) = 0Θ and ε2 = ε3.

Theorem 4.2. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS, for G be self mappings of Σ and

let K,L,G. Let {K,G} and {L,G} are pairs be sporadically weakly compatible. If there exists

c ∈ (0, 1) such that

Ξ(Kε1 , Lε2 , c(m)) ≥ min{Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m)

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)}.
(4.3)

Θ(Kε1 , Lε2 , c(m)) ≤ max{Θ(G(ε1),G(ε2), r),Θ(G(ε1),K(ε1),m)

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2), r),Θ(L(ε2), G(ε1),m)}.
(4.4)

for all ε1, ε2 ∈ Σ and for all r � 0Θ, there exists a unique point z ∈ Σ such that K(z) =

G(z) = z and a unique point y ∈ Σ such that L(y) = G(y) = y. Moreover y = z, so that there

is a unique common fixed point of K,L,G and G.

Proof. Let the pairs {K,G} and {L,G} be sporadically weakly compatible, so there are points

ε1, ε2 ∈ Σ such that K(ε1) = G(ε1) and L(ε2) = G(ε2). We claim that K(ε1) = L(ε2). By
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inequality 4.3,

Ξ(Kε1 , Lε2 , c(m)) ≥min{Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m),

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)}

=min{Ξ(K(ε1), L(ε2), r),Ξ(K(ε1),K(ε1),m),

Ξ(L(ε2), L(ε2),m),Ξ(K(ε1), L(ε2), r), L(L(ε2),K(ε1),m)}

=Ξ(Kε1 , Lε2 ,m). (4.5)

Θ(Kε1 , Lε2 , c(m)) ≤max{Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m),

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m)}

= max{Θ(K(ε1), L(ε2),m),Θ(K(ε1),K(ε1),m),

Θ(L(ε2), L(ε2),m),Θ(K(ε1), L(ε2),m),Θ(L(ε2),K(ε1),m)}

= Θ(Kε1 , Lε2 ,m). (4.6)

By Lemma 3.9, K(ε1) = L(ε2), i.e. K(ε1) = L(ε1) = L(ε2) = G(ε2). Suppose that there is

another point y such that K(y) = G(y) and by 4.3, we have K(y) = G(y) = L(ε2) = G(ε2).

Thus K(ε1) = K(y) and z = K(ε1) = G(ε1) is the unique point of coincidence of K and G. By

Lemma 2.2, z is the unique common fixed point of K and G. Similarly there is a only point

y ∈ Σ such that y = L(y) = G(y). Assume that z 6= y, we have

Ξ(z, y, c(m)) = Ξ(K(z), L(y), c(m))

≥min{Ξ(G(z),G(y), r),Ξ(G(z),K(y),m),Ξ(L(y),G(y),m)

Ξ(K(z),G(y),m),Ξ(L(y), G(z),m)}

=min{Ξ(z, y,m),Ξ(z, y,m),Ξ(y, y,m),Ξ(z, y,m),Ξ(y, z,m)}

=Ξ(z, y,m). (4.7)

Θ(z, y, c(r)) = Θ(K(z), L(y), c(m))

≥min{Θ(G(z),G(y),m),Θ(G(z),K(y),m),Θ(L(y),G(y),m)

Θ(K(z),G(y), r),Θ(L(y), G(z),m)}

=min{Θ(z, y,m),Θ(z, y,m),Θ(y, y,m),Θ(z, y,m),Θ(y, z,m)}

=Θ(z, y,m). (4.8)

by Lemma 2.2 and y is a common fixed point of K,L,G and G. Then we have y = z. The

uniqueness of the fixed point come from 4.6.
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Theorem 4.3. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS and K,L,G and G be self-mappings

of Σ. Let the pairs {K,G} and {L,G} be sporadically weakly compatible. If there exists

c ∈ (0, 1) such that

Ξ(K(ε1), L(ε2), c(m)) ≥ φ[min{Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m)

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)}].
(4.9)

Θ(K(ε1), L(ε2), c(m)) ≤ ζ[max{Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m)

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m)}].
(4.10)

for all ε1, ε2 ∈ Σ and φ, ζ :c0−, 1+b→c0−, 1+b such that ζ(m) < m, φ(m) > m, for all

0Θ � r < 1Θ, thus there is a unique common fixed point of K,L,G and G.

Proof. The proof follows from Theorem 4.4

Theorem 4.4. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS and K,L,G and G be self-mappings

of Σ. Let {K,G} and {L,G} are pairs be sporadically weakly compatible. If ∃c ∈ (0, 1) such

that

Ξ(K(ε1), L(ε2), c(m)) ≥ φ(Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m)

Ξ(L(ε2),G(ε2),m),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m)),
(4.11)

Θ(K(ε1), L(ε2), c(m)) ≤ ζ(Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m)

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m)).
(4.12)

for all ε1, ε2 ∈ Σ and φ, ζ : c0−, 1+5b→c0−, 1+b such that φ(r, 1Θ, 1Θ,m,m) > m,

ζ(m, 0Θ, 0Θ,m,m) < m for all 0 � m < 1 then there exists a unique common fixed point

of K,L,G and G.

Proof. Let {K,G} and {L,G} are pairs be sporadically weakly compatible. There are points

ε1, ε2 ∈ Σ such that K(ε1) = G(ε1) and L(ε2) = G(ε2).

We claim that K(ε1) = L(ε2). By inequalities (4.11) and (4.12), we have

Ξ(K(ε1), L(ε2), c(m)) ≥ φ(Ξ(G(ε1),G(ε2),m),Ξ(G(ε1),K(ε1),m),

Ξ(L(ε2),G(ε2),mr),Ξ(K(ε1),G(ε2),m),Ξ(L(ε2), G(ε1),m))

=φ(Ξ(K(ε1), L(ε2),m),Ξ(K(ε1),K(ε1),m),

Ξ(L(ε2), L(ε2),m),Ξ(K(ε1), L(ε2), r), L(L(ε2),K(ε1),m))

=φ((Ξ(K(ε1), L(ε2),m), 1Θ, 1Θ,Ξ(K(ε1), L(ε1),m),Ξ(L(ε2),K(ε2),m))

>Ξ(K(ε1), L(ε2),m).
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Θ(K(ε1), L(ε2), c(m)) ≤ ζ(Θ(G(ε1),G(ε2),m),Θ(G(ε1),K(ε1),m),

Θ(L(ε2),G(ε2),m),Θ(K(ε1),G(ε2),m),Θ(L(ε2), G(ε1),m))

=ζ(Θ(K(ε1), L(ε2),m),Θ(K(ε1),K(ε1),m),

Θ(L(ε2), L(ε2),m),Θ(K(ε1), L(ε2),m), L(L(ε2),K(ε1),m))

=ζ((Θ(K(ε1), L(ε2),m), 0Θ, 0Θ,Θ(K(ε1), L(ε1),m),Θ(L(ε2),K(ε2),m))

<Θ(K(ε1), L(ε2),m).

a contradiction, therefore K(ε1) = L(ε2), i.e. K(ε1) = G(ε1) = L(ε2) = G(ε2). Suppose that

there is a another point y such that K(y) = G(y). Then by 4.11 we have K(y) = G(y) =

L(ε2) = G(ε2), so K(ε1) = K(y) and z = K(ε1) = G(ε1) is the unique point of coincidence. z

is a unique common fixed point of K and G, by Lemma 2.2. Similarly, for K and G there is a

unique point y ∈ Σ such that y = L(y) = G(y). Thus for K,L,G, y is a common fixed point

and G. For the uniqueness fixed point holds from (4.11).

Theorem 4.5. Let (Σ,Ξ,Θ,
⊗
, �) be a complete NCMS and K,L,G and G be self-mappings

of Σ. Let the pairs {K,G} and {L,G} be sporadically weakly compatible. If there exists

c ∈ (0, 1) for all ε1, ε2 ∈ Σ and m� 0Θ satisfying

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)⊗
Ξ(L(ε2),G(ε2),m)

⊗
Ξ(K(ε1),G(ε2),m)

(4.13)

ΞΘ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1),G(ε2),m)
⊗

Θ(K(ε1), G(ε1),m)⊗
Θ(L(ε2),G(ε2),m)

⊗
Θ(K(ε1),G(ε2),m)

(4.14)

then there exists a unique common fixed point of K,L,G and G.

Proof. Let the pairs {K,G} and {L,G} are sporadicallyweakly compatible, there are points

ε1, ε2 ∈ Σ such that K(ε1) = G(ε1) and L(ε2) = G(ε2).

We claim that K(ε1) = L(ε2). By inequalities (4.13) and (4.14), we have

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1), L(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)⊗
Ξ(L(ε2), L(ε2),m)

⊗
Ξ(K(ε1), L(ε2),m)

=Ξ(K(ε1), L(ε2),m)
⊗

Ξ(K(ε1),K(ε1),m)
⊗

Ξ(L(ε2), L(ε2),m)⊗
Ξ(K(ε1), L(ε2),m)

≥Ξ(K(ε1), L(ε2),m)
⊗

1Θ

⊗
1Θ

⊗
Ξ(K(ε1), L(ε2),m)

≥Ξ(K(ε1), L(ε2),m)
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Θ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1), L(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2), L(ε2),m) �Θ(K(ε1), L(ε2),m)

=Θ(K(ε1), L(ε2),m) �Θ(K(ε1),K(ε1),m) �Θ(L(ε2), L(ε2),m) �Θ(K(ε1), L(ε2),m)

≤Θ(K(ε1), L(ε2),m) � 0Θ � 0Θ �Θ(K(ε1), L(ε2),m)

≤Θ(K(ε1), L(ε2),m)

By Lemma 3.9, we have K(ε1) = L(ε2), i.e. K(ε1) = G(ε1) = L(ε2) = G(ε2). Suppose

that there is a another point y such that K(y) = G(y). Then by (4.13, 4.14), we have

K(y) = G(y) = L(ε2) = G(ε2). Thus K(ε1) = K(y) and z = K(ε1) = G(ε1) is the unique

point of coincidence ofK andG. Then there is a unique point y ∈ Σ such that y = L(y) = G(y).

Thus z is a common fixed point of K,L,G and G.

Theorem 4.6. Let (Σ,Ξ,Θ,
⊗
, �) be a complete neutrosophic CMS and G and K,L,G be

self-mappings of Σ. Let {K,G} and {L,G} are the pairs be sporadically weakly compatible. If

∃c ∈ (0, 1) for all ε1, ε2 ∈ Σ and r � 0Θ satisfying

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(L(ε2), G(ε2), 2m)

⊗
Ξ(K(ε1),G(ε2),m)

(4.15)

Θ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1),G(ε2), r)
⊗

Θ(K(ε1), G(ε1),m)
⊗

Θ(L(ε2),G(ε2),m)⊗
Θ(L(ε2), G(ε2), 2m)

⊗
Θ(K(ε1),G(ε2),m)

(4.16)

then for K,L,G and G there exists a unique common fixed point.

Proof. We have,

Ξ(K(ε1), L(ε2), c(m)) ≥ Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(L(ε2), G(ε2), 2m)

⊗
Ξ(K(ε1),G(ε2),m)

=Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(G(ε1),G(ε1),m)

⊗
Ξ(H(ε1), L(ε1),m)

⊗
Ξ(K(ε1),G(ε2),m)

≥Ξ(G(ε1),G(ε2),m)
⊗

Ξ(K(ε1), G(ε1),m)
⊗

Ξ(L(ε2),G(ε2),m)⊗
Ξ(K(ε1),G(ε2),m)

Θ(K(ε1), L(ε2), c(m)) ≤ Θ(G(ε1),G(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2),G(ε2),m)

�Θ(L(ε2), G(ε2), 2m) �Θ(K(ε1),G(ε2),m)

=Θ(G(ε1),G(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2),G(ε2),m)

�Θ(G(ε1),G(ε1),m) �Θ(H(ε1), L(ε1),m) �Θ(K(ε1),G(ε2),m)

≤Θ(G(ε1),G(ε2),m) �Θ(K(ε1), G(ε1),m) �Θ(L(ε2),G(ε2),m) �Θ(K(ε1),G(ε2),m)
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and therefore by Theorem 4.5, K,L,G and G have a common fixed point.

Theorem 4.7. Let (Σ,Ξ,Θ,
⊗
, �) be a complete neutrosophic CMS and K, L be self-

mappings of Σ. Let K and L be sporadically weakly compatible. If ∃ a point c ∈ (0, 1) for all

ε1, ε2 ∈ Σ and r � 0Θ

Ξ(L(ε1), L(ε2), c(m)) ≥ aΞ(K(ε1),K(ε2),m) + bmin{Ξ(K(ε1),K(ε2),m),

Ξ(L(ε1),K(ε1),m),Ξ(L(ε2),K(ε2),m)}
(4.17)

Θ(L(ε1), L(ε2), c(m)) ≤ aΘ(K(ε1),K(ε2),m) + bmax{Θ(K(ε1),K(ε2),m),

Θ(L(ε1),K(ε1),m),Θ(L(ε2),K(ε2),m)}
(4.18)

for all ε1, ε2 ∈ Σ, where a, b > 0Θ, a + b > 1Θ. Then K and L have a unique common fixed

point.

Proof. Let the pairs {K,L} be sporadicallyweakly compatible, so there is a point ε1 ∈ Σ such

that K(ε1) = L(ε1). Suppose that there exists another point ε2 ∈ Σ for which K(ε2) = L(ε2).

We claim that G(ε1) = L(ε2). By inequalities (4.17) and (4.18), we have

Ξ(L(ε1), L(ε2), c(m)) ≥ aΞ(K(ε1),K(ε2),m) + bmin{Ξ(K(ε1),K(ε2),m),

Ξ(L(ε1),K(ε1), r),Ξ(L(ε2),K(ε2),m)}

=aΞ(L(ε1), L(ε2),m) + bmin{Ξ(L(ε1), L(ε2),m),

Ξ(L(ε1), L(ε1),m),Ξ(L(ε2), L(ε2),m), }

=a+ bΞ(L(ε1), L(ε2),m)

Θ(L(ε1), L(ε2), c(m)) ≤ aΘ(K(ε1),K(ε2),m) + bmax{Θ(K(ε1),K(ε2),m),

Θ(L(ε1),K(ε1),m),Θ(L(ε2),K(ε2), r)}

=aΘ(L(ε1), L(ε2),m) + bmax{Θ(L(ε1), L(ε2),m),

Θ(L(ε1), L(ε1),m),Θ(L(ε2), L(ε2),m), }

=a+ bΘ(L(ε1), L(ε2),m)

a contradiction, since a + b > 1Θ. Therefore L(ε1) = L(ε2). Therefore K(ε1) = K(ε2) and

K(ε1) is unique. From Lemma 2.2, K and L have a unique fixed point.

5. Conclusion

In this paper, the concept of neutrosophic CMS is introduced. Some fixed point theorems

on neutrosophic CMS are stated and proved.
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Abstract. The notion of neutrosophic quadruple a-ideal is introduced, and related properties are investigated.

Relations between a neutrosophic quadruple p-ideal, a neutrosophic quadruple q-ideal, a neutrosophic quadru-

ple a-ideal and a neutrosophic quadruple closed ideal are discussed. Conditions for the neutrosophic quadruple

(A, B)-set Nq(A, B) to be a neutrosophic quadruple a-ideal are provided.

Keywords: Neutrosophic quadruple BCK/BCI-number, neutrosophic quadruple BCK/BCI-algebra, neutro-

sophic quadruple (closed) ideal, neutrosophic quadruple p(q, a)-ideal.

—————————————————————————————————————————-

1. Introduction

Neutrosophic sets (NSs) proposed by (Smarandache, 1998, 1999, 2002, 2005, 2006, 2010),

which is a generalization of fuzzy sets and intuitionistic fuzzy set, is a powerful tool to deal

with incomplete, indeterminate and inconsistent information which exist in the real world

(see [28–30]). Recently, this concept has been applied more actively to many areas (see [1],

[2], [3], [4]). Neutrosophic algebraic structures in BCK/BCI-algebras are discussed in the

papers [6–11, 15–18, 20, 23, 27, 32]. Smarandache [31] considered an entry (i.e., a number, an

idea, an object etc.) which is represented by a known part (a) and an unknown part (bT, cI, dF )

where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex

numbers, and then he introduced the concept of neutrosophic quadruple numbers. Jun et

al. [19] used neutrosophic quadruple numbers based on a set, and constructed neutrosophic

quadruple BCK/BCI-algebras. They investigated several properties, and considered (closed,

positive implicative) ideal in neutrosophic quadruple BCI-algebra. Given subsets A and B of a

BCK/BCI-algebra, they considered the setNQ(A,B) which consists of neutrosophic quadruple
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BCK/BCI-numbers with a condition. They provided conditions for the set NQ(A,B) to be a

(closed, positive implicative) ideal of a neutrosophic quadruple BCK/BCI-algebra. Muhiuddin

et al. [24] introduced the concept of implicative neutrosophic quadruple BCK-algebras, and

investigated several properties. Muhiuddin et al. [25, 26] discuss neutrosophic quadruple p-

ideals and neutrosophic quadruple q-ideals.

In this paper, we consider the neutrosophic quadruple version of an a-ideal in a BCI-algebra.

We discuss relations between a neutrosophic quadruple p-ideal, a neutrosophic quadruple q-

ideal, a neutrosophic quadruple a-ideal and a neutrosophic quadruple closed ideal. We provide

conditions for the neutrosophic quadruple (A,B)-set Nq(A,B) to be a neutrosophic quadruple

a-ideal.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki (see [13]

and [14]) and was extensively investigated by several researchers.

By a BCI-algebra, we mean a set X with a special element 0 and a binary operation ∗ that

satisfies the following conditions:

(I) (∀x, y, z ∈ X) (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X) ((x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X) (x ∗ x = 0),

(IV) (∀x, y ∈ X) (x ∗ y = 0, y ∗ x = 0 ⇒ x = y).

If a BCI-algebra X satisfies the following identity:

(V) (∀x ∈ X) (0 ∗ x = 0),

then X is called a BCK-algebra. Any BCK/BCI-algebra X satisfies the following conditions:

(∀x ∈ X) (x ∗ 0 = x) , (1)

(∀x, y, z ∈ X) (x ≤ y ⇒ x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x) , (2)

(∀x, y, z ∈ X) ((x ∗ y) ∗ z = (x ∗ z) ∗ y) , (3)

(∀x, y, z ∈ X) ((x ∗ z) ∗ (y ∗ z) ≤ x ∗ y) (4)

where x ≤ y if and only if x ∗ y = 0.

Any BCI-algebra X satisfies the following conditions (see [12]):

(∀x, y ∈ X)(x ∗ (x ∗ (x ∗ y)) = x ∗ y), (5)

(∀x, y ∈ X)(0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y)), (6)

(∀x, y ∈ X)(0 ∗ (0 ∗ (x ∗ y)) = (0 ∗ y) ∗ (0 ∗ x)). (7)
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A nonempty subset S of a BCK/BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S for

all x, y ∈ S. A subset I of a BCK/BCI-algebra X is called

• an ideal of X if it satisfies:

0 ∈ I, (8)

(∀x ∈ X) (∀y ∈ I) (x ∗ y ∈ I ⇒ x ∈ I) . (9)

• a closed ideal of X (see [12]) if it is an ideal of X which satisfies:

(∀x ∈ X)(x ∈ I ⇒ 0 ∗ x ∈ I). (10)

• a p-ideal of X (see [33]) if it satisfies (8) and

(∀x, y, z ∈ X)(y ∈ I, (x ∗ z) ∗ (y ∗ z) ∈ I ⇒ x ∈ I). (11)

• a q-ideal of X (see [21]) if it satisfies (8) and

(∀x, y, z ∈ X)(x ∗ (y ∗ z) ∈ I, y ∈ I ⇒ x ∗ z ∈ I). (12)

• an a-ideal of X (see [21]) if it satisfies (8) and

(∀x, y, z ∈ X)((x ∗ z) ∗ (0 ∗ y) ∈ I, z ∈ I ⇒ y ∗ x ∈ I). (13)

Note that a subset of a BCI-algebra is a closed ideal if and only if it is both an ideal and a

subalgebra.

Recall that a subset I of a BCI-algebra X is a p-ideal of X if and only if I is an ideal of X

which satisfies the following condition:

(∀x ∈ X)(0 ∗ (0 ∗ x) ∈ I ⇒ x ∈ I). (14)

We refer the reader to the books [12, 22] for further information regarding BCK/BCI-

algebras, and to the site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information

regarding neutrosophic set theory.

We consider neutrosophic quadruple numbers based on a set instead of real or complex

numbers.

Let X be a set. A neutrosophic quadruple X-number is an ordered quadruple (a, xT, yI, zF )

where a, x, y, z ∈ X and T, I, F have their usual neutrosophic logic meanings (see [5]).

The set of all neutrosophic quadruple X-numbers is denoted by Nq(X), that is,

Nq(X) := {(a, xT, yI, zF ) | a, x, y, z ∈ X},

and it is called the neutrosophic quadruple set based on X. If X is a BCK/BCI-algebra, a

neutrosophic quadruple X-number is called a neutrosophic quadruple BCK/BCI-number and

we say that Nq(X) is the neutrosophic quadruple BCK/BCI-set.
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˜

Let X be a BCK/BCI-algebra. We define a binary operation � on Nq(X) by

(a, xT, yI, zF ) � (b, uT, vI, wF ) = (a ∗ b, (x ∗ u)T, (y ∗ v)I, (z ∗ w)F )

for all (a, xT, yI, zF ), (b, uT, vI, wF ) ∈ Nq(X). Given a1, a2, a3, a4 ∈ X, the neutrosophic

quadruple BCK/BCI-number (a1, a2T, a3I, a4F ) is denoted by ã, that is,

a = (a1, a2T, a3I, a4F ),

and the zero neutrosophic quadruple BCK/BCI-number (0, 0T, 0I, 0F ) is denoted by 0̃, that

is,

0̃ = (0, 0T, 0I, 0F ).

Then (Nq(X);�, 0̃) is a BCK/BCI-algebra (see [19]), which is called neutrosophic quadruple

BCK/BCI-algebra, and it is simply denoted by Nq(X).

We define an order relation “�” and the equality “=” on Nq(X) as follows:

x̃� ỹ ⇔ xi ≤ yi for i = 1, 2, 3, 4,

x̃ = ỹ ⇔ xi = yi for i = 1, 2, 3, 4

for all x̃, ỹ ∈ Nq(X). It is easy to verify that “�” is an equivalence relation on Nq(X).

Let X be a BCK/BCI-algebra. Given nonempty subsets A and B of X, consider the set

Nq(A,B) := {(a, xT, yI, zF ) ∈ Nq(X) | a, x ∈ A & y, z ∈ B},

which is called the neutrosophic quadruple (A,B)-set (briefly, neutrosophic quadruple (A,B)-

set).

The set NQ(A,A) is denoted by Nq(A), and it is called the neutrosophic quadruple A-set

(briefly, neutrosophic quadruple A-set).

3. Neutrosophic quadruple a-ideals

Definition 3.1. Given nonempty subsets A and B of X, if the neutrosophic quadruple (A,B)-

set Nq(A,B) is an a-ideal of a neutrosophic quadruple BCI-algebra Nq(X), we say Nq(A,B)

is a neutrosophic quadruple a-ideal of Nq(X).

Example 3.2. Consider a BCI-algebra X = {0, a, b, c} with the binary operation ∗, which is

given in Table 1.

Then the neutrosophic quadruple BCI-algebra Nq(X) has 256 elements. Consider subsets

A = {0, a} and B = {0, b} of X. Then

Nq(A,B) = {β̃0, β̃1, β̃2, β̃3, β̃4, β̃5, β̃6, β̃7, β̃8, β̃9, β̃10, β̃11, β̃12, β̃13, β̃14, β̃15}

where

β̃0 = (0, 0T, 0I, 0F ), β̃1 = (0, 0T, 0I, bF ), β̃2 = (0, 0T, bI, 0F ),
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Table 1. Cayley table for the binary operation “∗”

∗ 0 a b c

0 0 a b c

a a 0 c b

b b c 0 a

c c b a 0

˜ ˜ ˜

β̃3 = (0, 0T, bI, bF ), β̃4 = (0, aT, 0I, 0F ), β̃5 = (0, aT, 0I, bF ),

β̃6 = (0, aT, bI, 0F ), β̃7 = (0, aT, bI, bF ), β̃8 = (a, 0T, 0I, 0F ),

β̃9 = (a, 0T, 0I, bF ), β̃10 = (a, 0T, bI, 0F ), β̃11 = (a, 0T, bI, bF ),

β̃12 = (a, aT, 0I, 0F ), β̃13 = (a, aT, 0I, bF ),

β̃14 = (a, aT, bI, 0F ), β̃15 = (a, aT, bI, bF ).

It is routine to verify that Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X).

Proposition 3.3. For any nonempty subsets A and B of a BCI-algebra X, if the neutrosophic

quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X), then the following

assertions are valid.

(x̃� z) � (0̃ � y) ∈ Nq(A,B) ⇒ ỹ � (x̃� z) ∈ Nq(A,B), (15)

˜x̃� (0̃ � y) ∈ Nq(A,B) ⇒ ỹ � x̃ ∈ Nq(A,B)

˜ ˜

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

˜

(16)

for all x̃, ỹ, z̃ ∈ Nq(X).

Proof. Assume that Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X) for any nonempty

subsets A and B of a BCI-algebra X. Suppose that (x̃ � z) � (0̃ � y) ∈ Nq(A,B) for any

elements x̃ = (x1, x2T, x3I, x4F ), ỹ = (y1, y2T, y3I, y4F ) and z̃ = (z1, z2T, z3I, z4F ) of

Nq(X). Then

((x̃� z) � ((x̃� z) � (0̃ � y))) � (0̃ � y)

= ((x̃� z) � (0̃ � y)) � ((x̃� z) � (0̃ � y))

= 0̃ ∈ Nq(A,B).

Since Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X), it follows that ỹ � (x̃ � z) ∈
Nq(A,B). Finally, (16) is induced by taking z̃ = 0̃ in (15).

Lemma 3.4 ( [21]). In a BCI-algebra, every a-ideal is a closed ideal.

Lemma 3.5 ( [19]). If A and B are closed ideals of a BCI-algebra X, then the neutrosophic

quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple closed ideal of Nq(X).
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We consider relations between a neutrosophic quadruple a-ideal and a neutrosophic quadru-

ple closed ideal.

Theorem 3.6. For any nonempty subsets A and B of a BCI-algebra X, if the neutrosophic

quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X), then it is a neu-

trosophic quadruple closed ideal of Nq(X).

Proof. Assume that Nq(A,B) is a neutrosophic quadruple a-ideal of a neutrosophic quadruple

BCI-algebra Nq(X) where A and B are nonempty subsets of X. Since 0̃ = (0, 0T, 0I, 0F ) ∈
Nq(A,B), we have 0 ∈ A ∩ B. Let x, y, z ∈ X be such that (x ∗ z) ∗ (0 ∗ y) ∈ A ∩ B and

z ∈ A ∩B. Then (z, zT, zI, zF ) ∈ Nq(A,B) and

((x, xT, xI, xF ) � (z, zT, zI, zF )) � (0̃ � (y, yT, yI, yF ))

= (x ∗ z, (x ∗ z)T, (x ∗ z)I, (x ∗ z)F ) � (0 ∗ y, (0 ∗ y)T, (0 ∗ y)I, (0 ∗ y)F )

= ((x ∗ z) ∗ (0 ∗ y), ((x ∗ z) ∗ (0 ∗ y))T, ((x ∗ z) ∗ (0 ∗ y))I, ((x ∗ z) ∗ (0 ∗ y))F )

∈ Nq(A,B).

Hence

(y ∗ x, (y ∗ x)T, (y ∗ x)I, (y ∗ x)F ) = (y, yT, yI, yF ) � (x, xT, xI, xF ) ∈ Nq(A,B),

that is, y ∗ x ∈ A ∩ B. Therefore A and B are a-ideals of X. Using Lemmas 3.4 and 3.5,

Nq(A,B) is a neutrosophic quadruple closed ideal of Nq(X).

The converse of Theorem 3.6 is not true as seen in the following example.

Example 3.7. Consider a BCI-algebra X = {0, 1, a} with the binary operation ∗, which is

given in Table 2.

Table 2. Cayley table for the binary operation “∗”

∗ 0 1 a

0 0 0 a

1 1 0 a

a a a 0

Then the neutrosophic quadruple BCI-algebra Nq(X) has 81 elements. If we take A = {0}
and B = {0}, then

Nq(A,B) = {0̃}
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˜ ˜

˜ ˜

˜

which is a neutrosophic quadruple closed ideal ofNq(X). But it is not a neutrosophic quadruple

a-ideal of Nq(X) because if we take 1̃ = (0, 1T, 1I, 0F ) ∈ Nq(X) then

(0̃ � 0̃) � (0̃ � 1̃) = 0̃ ∈ Nq(A,B),

but 1̃ � 0̃ = 1̃ /∈ Nq(A,B).

We provide conditions for the neutrosophic quadruple (A,B)-set Nq(A,B) to be a neutro-

sophic quadruple a-ideal.

Theorem 3.8. If A and B are a-ideals of a BCI-algebra X, then the neutrosophic quadruple

(A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X).

Proof. Suppose that A and B are a-ideals of a BCI-algebra X. Obviously, 0̃ ∈ Nq(A,B).

Let x̃ = (x1, x2T, x3I, x4F ), ỹ = (y1, y2T, y3I, y4F ) and z̃ = (z1, z2T, z3I, z4F ) be elements of

Nq(X) be such that (x̃� z) � (0̃ � y) ∈ Nq(A,B) and z̃ ∈ Nq(A,B). Then zi ∈ A, zj ∈ B for

i = 1, 2; j = 3, 4, and

(x̃� z) � (0̃ � y) = ((x1, x2T, x3I, x4F ) � (z1, z2T, z3I, z4F ))�

((0, 0T, 0I, 0F ) � (y1, y2T, y3I, y4F ))

= (x1 ∗ z1, (x2 ∗ z2)T, (x3 ∗ z3)I, (x4 ∗ z4)F )�

(0 ∗ y1, (0 ∗ y2)T, (0 ∗ y3)I, (0 ∗ y4)F )

= ((x1 ∗ z1) ∗ (0 ∗ y1), ((x2 ∗ z2) ∗ (0 ∗ y2))T,

((x3 ∗ z3) ∗ (0 ∗ y3))I, ((x4 ∗ z4) ∗ (0 ∗ y4))F )

∈ Nq(A,B),

that is, (xi ∗ zi) ∗ (0 ∗ yi) ∈ A and (xj ∗ zj) ∗ (0 ∗ yj) ∈ B for i = 1, 2 and j = 3, 4. It follows

from (13) that yi ∗ xi ∈ A and yj ∗ xj ∈ B for i = 1, 2 and j = 3, 4. Thus

y � x̃ = (y1 ∗ x1, (y2 ∗ x2)T, (y3 ∗ x3)I, (y4 ∗ x4)F ) ∈ Nq(A,B),

and therefore Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X).

Corollary 3.9. If A is an a-ideal of a BCI-algebra X, then the neutrosophic quadruple A-set

Nq(A) is a neutrosophic quadruple a-ideal of Nq(X).

Theorem 3.10. Let A and B be ideals of a BCI-algebra X such that

(∀x, y ∈ X)(x ∗ (0 ∗ y) ∈ A ∩B ⇒ y ∗ x ∈ A ∩B). (17)

Then the neutrosophic quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of

Nq(X).
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˜ ˜ ˜

˜

˜ ˜

˜

Proof. Obviously 0̃ ∈ Nq(A,B). Let x̃ = (x1, x2T, x3I, x4F ), ỹ = (y1, y2T, y3I, y4F ) and

z = (z1, z2T, z3I, z4F ) be elements of Nq(X) be such that (x̃� z) � (0̃ � y) ∈ Nq(A,B) and

z ∈ Nq(A,B). Then z1, z2 ∈ A, z3, z4 ∈ B and

(x̃� z) � (0̃ � y) = ((x1, x2T, x3I, x4F ) � (z1, z2T, z3I, z4F ))�

(0̃ � (y1, y2T, y3I, y4F ))

= (x1 ∗ z1, (x2 ∗ z2)T, (x3 ∗ z3)I, (x4 ∗ z4)F )�

(0 ∗ y1, (0 ∗ y2)T, (0 ∗ y3)I, (0 ∗ y4)F )

= ((x1 ∗ z1) ∗ (0 ∗ y1), ((x2 ∗ z2) ∗ (0 ∗ y2))T,

((x3 ∗ z3) ∗ (0 ∗ y3))I, ((x4 ∗ z4) ∗ (0 ∗ y4))F )

∈ Nq(A,B),

that is, (xi ∗ zi) ∗ (0 ∗ yi) ∈ A and (xj ∗ zj) ∗ (0 ∗ yj) ∈ B for i = 1, 2 and j = 3, 4. Note that

(xk ∗ (0 ∗ yk)) ∗ ((xk ∗ zk) ∗ (0 ∗ yk)) ≤ xk ∗ (xk ∗ zk) ≤ zk

for k = 1, 2, 3, 4. Since z1, z2 ∈ A and z3, z4 ∈ B, we have xi ∗ (0 ∗ yi) ∈ A and xj ∗ (0 ∗ yj) ∈ B
for i = 1, 2 and j = 3, 4. It follows from (17) that yi ∗ xi ∈ A and yj ∗ xj ∈ B for i = 1, 2 and

j = 3, 4. Hence

y � x̃ = (y1, y2T, y3I, y4F ) � (x1, x2T, x3I, x4F )

= (y1 ∗ x1, (y2 ∗ x2)T, (y3 ∗ x3)I, (y4 ∗ x4)F ) ∈ Nq(A,B).

Therefore Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X).

Corollary 3.11. Let A be an ideal of a BCI-algebra X such that

(∀x, y ∈ X)(x ∗ (0 ∗ y) ∈ A ⇒ y ∗ x ∈ A). (18)

Then the neutrosophic quadruple A-set Nq(A) is a neutrosophic quadruple a-ideal of Nq(X).

Theorem 3.12. Let A and B be ideals of a BCI-algebra X such that

(∀x, y, z ∈ X)((x ∗ z) ∗ (0 ∗ y) ∈ A ∩B ⇒ y ∗ (x ∗ z) ∈ A ∩B). (19)

Then the neutrosophic quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of

Nq(X).

Proof. If we put z = 0 in (19) and use (1), then we can induce the condition (17). Thus

Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X) by Theorem 3.10.
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Corollary 3.13. Let A be an ideal of a BCI-algebra X such that

(∀x, y, z ∈ X)((x ∗ z) ∗ (0 ∗ y) ∈ A ⇒ y ∗ (x ∗ z) ∈ A). (20)

Then the neutrosophic quadruple A-set Nq(A) is a neutrosophic quadruple a-ideal of Nq(X).

We discuss relations between a neutrosophic quadruple a-ideal, a neutrosophic quadruple

p-ideal and a neutrosophic quadruple q-ideal.

Lemma 3.14 ( [25]). Let A and B be ideals of X such that

(∀x ∈ X)(0 ∗ (0 ∗ x) ∈ A (resp., B) ⇒ x ∈ A (resp., B)). (21)

Then Nq(A,B) is a neutrosophic quadruple p-ideal of Nq(X).

Theorem 3.15. For any nonempty subsets A and B of a BCI-algebra X, if the neutrosophic

quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X), then it is a neu-

trosophic quadruple p-ideal of Nq(X).

Proof. Assume that Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X). Then A and B

are a-ideals of X (see Proof of Theorem 3.6) and 0̃ ∈ Nq(A,B). For i = 1, 2 and j = 3, 4, let

xi, xj ∈ X be such that 0 ∗ (0 ∗ xi) ∈ A and 0 ∗ (0 ∗ xj) ∈ B. Then

(0̃ � 0̃) � (0̃ � x̃) = 0̃ � (0̃ � x̃)

= (0 ∗ (0 ∗ x1), (0 ∗ (0 ∗ x2))T, (0 ∗ (0 ∗ x3))I, (0 ∗ (0 ∗ x4))F ) ∈ Nq(A,B),

and so

(x1, x2T, x3I, x4F ) = (x1 ∗ 0, (x2 ∗ 0)T, (x3 ∗ 0)I, (x4 ∗ 0)F )

= (x1, x2T, x3I, x4F ) � (0, 0T, 0I, 0F )

= x̃� 0̃ ∈ Nq(A,B)

Hence xi ∈ A and xj ∈ B. It follows from Lemma 3.14 that Nq(A,B) is a neutrosophic

quadruple p-ideal of Nq(X).

The following example shows that the converse of Theorem 3.15 is not true in general.

Example 3.16. Consider a BCI-algebra X = {0, a, b} with the binary operation ∗, which is

given in Table 3.

Then the neutrosophic quadruple BCI-algebra Nq(X) has 81 elements. If we take A = {0}
and B = {0}, then Nq(A,B) = {0̃} is a neutrosophic quadruple p-ideal of Nq(X). For two
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Table 3. Cayley table for the binary operation “∗”

∗ 0 a b

0 0 b a

a a 0 b

b b a 0

elements (a, aT, aI, aF ) and (b, bT, bI, bF ) of Nq(X), we have

((a, aT, aI, aF ) � (0, 0T, 0I, 0F )) � ((0, 0T, 0I, 0F ) � (b, bT, bI, bF ))

= (a ∗ 0, (a ∗ 0)T, (a ∗ 0)I, (a ∗ 0)F ) � (0 ∗ b, (0 ∗ b)T, (0 ∗ b)I, (0 ∗ b)F )

= (a, aT, aI, aF ) � (a, aT, aI, aF ) = 0̃ ∈ Nq(A,B).

But

(b, bT, bI, bF ) � (a, aT, aI, aF ) = (b ∗ a, (b ∗ a)T, (b ∗ a)I, (b ∗ a)F )

= (a, aT, aI, aF ) /∈ Nq(A,B).

Hence Nq(A,B) is not a neutrosophic quadruple a-ideal of Nq(X).

Lemma 3.17 ( [26]). Let A and B be ideals of a BCI-algebra X such that

(∀x, y ∈ X)(x ∗ (0 ∗ y) ∈ A ∩B ⇒ x ∗ y ∈ A ∩B). (22)

Then the neutrosophic quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple q-ideal of

Nq(X).

Theorem 3.18. For any nonempty subsets A and B of a BCI-algebra X, if the neutrosophic

quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X), then it is a neu-

trosophic quadruple q-ideal of Nq(X).

Proof. Assume that Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X). Then A and B

are a-ideals of X (see Proof of Theorem 3.6) and 0̃ ∈ Nq(A,B). For i = 1, 2 and j = 3, 4, let

xi, yi, xj , yj ∈ X be such that xi ∗ (0 ∗ yi) ∈ A and xj ∗ (0 ∗ yj) ∈ B. Since

0 ∗ (0 ∗ (yk ∗ (0 ∗ xk))) ∗ (xk ∗ (0 ∗ yk))

= ((0 ∗ (0 ∗ yk)) ∗ (0 ∗ (0 ∗ (0 ∗ xk)))) ∗ (xk ∗ (0 ∗ yk))

= ((0 ∗ (0 ∗ yk)) ∗ (0 ∗ xk)) ∗ (xk ∗ (0 ∗ yk))

≤ (xk ∗ (0 ∗ yk)) ∗ (xk ∗ (0 ∗ yk)) = 0 ∈ A ∩B
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˜

˜

for k = 1, 2, 3, 4, we have 0 ∗ (0 ∗ (yi ∗ (0 ∗xi))) ∈ A and 0 ∗ (0 ∗ (yj ∗ (0 ∗xj))) ∈ B. Since every

a-ideal is a p-ideal, it follows from (14) that yi ∗ (0 ∗ xi) ∈ A and yj ∗ (0 ∗ xj) ∈ B. Thus

y � (0̃ � x̃) = (y1, y2T, y3I, y4F ) � ((0, 0T, 0I, 0F ) � (x1, x2T, x3I, x4F ))

= (y1, y2T, y3I, y4F ) � (0 ∗ x1, (0 ∗ x2)T, (0 ∗ x3)I, (0 ∗ x4)F )

= (y1 ∗ (0 ∗ x1), (y2 ∗ (0 ∗ x2))T, (y3 ∗ (0 ∗ x3))I, (y4 ∗ (0 ∗ x4))F )

∈ Nq(A,B),

which implies from (16) that

(x1 ∗ y1, (x2 ∗ y2)T, (x3 ∗ y3)I, (x4 ∗ y4)F )

= (x1, x2T, x3I, x4F ) � (y1, y2T, y3I, y4F )

= x̃� y ∈ Nq(A,B),

that is, xi ∗ yi ∈ A and xj ∗ yj ∈ B for i = 1, 2 and j = 3, 4. Using Lemma 3.17, we know that

Nq(A,B) is a neutrosophic quadruple q-ideal of Nq(X).

Corollary 3.19. For any nonempty subset A of a BCI-algebra X, if the neutrosophic quadru-

ple A-set Nq(A) is a neutrosophic quadruple a-ideal of Nq(X), then it is a neutrosophic quadru-

ple q-ideal of Nq(X).

Consider the neutrosophic quadruple BCI-algebraNq(X) in Example 3.7. If we take A = {0}
and B = {0, 1}, then Nq(A,B) = {0̃, 1̃, 2̃, 3̃}, where 0̃ = (0, 0T, 0I, 0F ), 1̃ = (0, 0T, 0I, 1F ),

2̃ = (0, 0T, 1I, 0F ) and 3̃ = (0, 0T, 1I, 1F ), is a neutrosophic quadruple q-ideal of Nq(X). But

it is not a neutrosophic quadruple a-ideal of Nq(X) since

(0̃ � 0̃) � (0̃ � (1, 0T, 1I, 0F )) = 0̃ ∈ Nq(A,B)

and (1, 0T, 1I, 0F )� 0̃ = (1, 0T, 1I, 0F ) /∈ Nq(A,B). This shows that the converse of Theorem

3.18 is not be true in general.

Lemma 3.20 ( [26]). For any nonempty subsets A and B of a BCI-algebra X, if the neutro-

sophic quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple q-ideal of Nq(X), then it is

both a neutrosophic quadruple subalgebra and a neutrosophic quadruple ideal of Nq(X).

Theorem 3.21. Given nonempty subsets A and B of a BCI-algebra X, the neutrosophic

quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X) if and only if

Nq(A,B) is both a neutrosophic quadruple p-ideal and a neutrosophic quadruple q-ideal of

Nq(X).
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Proof. If Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X), then Nq(A,B) is both a

neutrosophic quadruple p-ideal and a neutrosophic quadruple q-ideal of Nq(X) by Theorems

3.15 and 3.18.

Conversely, suppose that Nq(A,B) is both a neutrosophic quadruple p-ideal and a neutro-

sophic quadruple q-ideal of Nq(X). Then Nq(A,B) is a neutrosophic quadruple subalgebra of

Nq(X) by Lemma 3.20, and A and B are both a p-ideal and a q-ideal of X. For i = 1, 2 and

j = 3, 4, let xi ∗ (0 ∗ yi) ∈ A and xj ∗ (0 ∗ yj) ∈ B for xi, yi, xj , yj ∈ X. Then xi ∗ yi ∈ A and

xj ∗ yj ∈ B since A and B are q-ideals of X. Recall that

(0 ∗ (yk ∗ xk)) ∗ (xk ∗ yk) = ((0 ∗ yk) ∗ (0 ∗ xk)) ∗ (xk ∗ yk)

= ((0 ∗ (xk ∗ yk)) ∗ yk) ∗ (0 ∗ xk)

= (((0 ∗ xk) ∗ (0 ∗ yk)) ∗ yk) ∗ (0 ∗ xk)

= (0 ∗ (0 ∗ yk)) ∗ yk = 0 ∈ A ∩B

for k = 1, 2, 3, 4. Hence 0 ∗ (yi ∗ xi) ∈ A and 0 ∗ (yj ∗ xj) ∈ B, and so 0 ∗ (0 ∗ (yi ∗ xi)) ∈ A and

0∗ (0∗ (yj ∗xj)) ∈ B. Since A and B are p-ideals of X, it follows from (14) that yi ∗xi ∈ A and

yj ∗ xj ∈ B. Therefore Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X) by Theorem

3.10.

Lemma 3.22 ( [26]). Let A,B, I and J be ideals of a BCI-algebra X such that I ⊆ A and

J ⊆ B. If I and J are q-ideals of X, then the neutrosophic quadruple (A,B)-set Nq(A,B) is

a neutrosophic quadruple q-ideal of Nq(X).

Lemma 3.23 ( []). If A and B are p-ideals of a BCI-algebra X, then the neutrosophic quadru-

ple (A,B)-set Nq(A,B) is a neutrosophic quadruple p-ideal of Nq(X).

Theorem 3.24. Let A,B, I and J be ideals of a BCI-algebra X such that I ⊆ A and J ⊆
B. If I and J are a-ideals of X, then the neutrosophic quadruple (A,B)-set Nq(A,B) is a

neutrosophic quadruple a-ideal of Nq(X).

Proof. Assume that I and J are a-ideals of X. Then I and J are both p-ideals and q-ideals of

X. Thus neutrosophic quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple q-ideal of

Nq(X) by Lemma 3.22. Let 0 ∗ (0 ∗ x) ∈ A ∩B for x ∈ X. Then

(0 ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ x) = (0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ x)) = 0 ∈ I ∩ J.
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Since

(0 ∗ (0 ∗ (x ∗ (0 ∗ (0 ∗ x))))) ∗ ((0 ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ x))

= ((0 ∗ (0 ∗ x)) ∗ (0 ∗ (0 ∗ (0 ∗ (0 ∗ x))))) ∗ ((0 ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ x))

≤ ((0 ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ x)) ∗ ((0 ∗ (0 ∗ (0 ∗ x))) ∗ (0 ∗ x))

= 0 ∈ I ∩ J,

it follows that 0 ∗ (0 ∗ (x ∗ (0 ∗ (0 ∗ x)))) ∈ I ∩ J . Since I and J are p-ideals of X, we have

x ∗ (0 ∗ (0 ∗ x)) ∈ I ∩ J ⊆ A ∩ B by (14), and so x ∈ A ∩ B. This shows that A and B are

p-ideals of X, and thus Nq(A,B) is a neutrosophic quadruple p-ideal of Nq(X) by Lemma

3.23. Therefore Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X) by Theorem 3.21.

Corollary 3.25. Let A and I be ideals of a BCI-algebra X such that I ⊆ A. If I is an

a-ideal of X, then the neutrosophic quadruple A-set Nq(A) is a neutrosophic quadruple a-ideal

of Nq(X).

Corollary 3.26. If the zero ideal {0} is an a-ideal of a BCI-algebra X, then the neutrosophic

quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X) for every ideals

A and B of X.

Theorem 3.27. Let A,B, I and J be ideals of a BCI-algebra X such that I ⊆ A, J ⊆ B and

(∀x, y ∈ X)(x ∗ (0 ∗ y) ∈ I ∩ J ⇒ y ∗ x ∈ I ∩ J). (23)

Then the neutrosophic quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of

Nq(X).

Proof. Let x, y, z ∈ X be such that (x ∗ z) ∗ (0 ∗ y) ∈ I ∩ J and z ∈ I ∩ J . Note that

(x ∗ (0 ∗ y)) ∗ ((x ∗ z) ∗ (0 ∗ y)) ≤ x ∗ (x ∗ z) ≤ z ∈ I ∩ J.

Hence x ∗ (0 ∗ y) ∈ I ∩ J , and so y ∗ x ∈ I ∩ J by (23). Thus I and J are a-ideals of X. It

follows from Theorem 3.24 that Nq(A,B) is a neutrosophic quadruple a-ideal of Nq(X).

Corollary 3.28. Let A and I be ideals of a BCI-algebra X such that I ⊆ A and

(∀x, y ∈ X)(x ∗ (0 ∗ y) ∈ I ⇒ y ∗ x ∈ I). (24)

Then the neutrosophic quadruple A-set Nq(A) is a neutrosophic quadruple a-ideal of Nq(X).
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Theorem 3.29. Let A,B, I and J be ideals of a BCI-algebra X such that I ⊆ A, J ⊆ B and

(∀x, y, z ∈ X)((x ∗ z) ∗ (0 ∗ y) ∈ I ∩ J ⇒ y ∗ (x ∗ z) ∈ I ∩ J). (25)

Then the neutrosophic quadruple (A,B)-set Nq(A,B) is a neutrosophic quadruple a-ideal of

Nq(X).

Proof. If we put z = 0 in (25) and use (1), then (23) is valid. Therefore Nq(A,B) is a

neutrosophic quadruple a-ideal of Nq(X) by Theorem 3.27.

Corollary 3.30. Let A and I be ideals of a BCI-algebra X such that I ⊆ A and

(∀x, y, z ∈ X)((x ∗ z) ∗ (0 ∗ y) ∈ I ⇒ y ∗ (x ∗ z) ∈ I). (26)

Then the neutrosophic quadruple A-set Nq(A) is a neutrosophic quadruple a-ideal of Nq(X).

4. Conclusions

We have applied the notion of neutrosophic quadruple set to an a-ideal in a BCI-algebra.

We have introduced the concept of neutrosophic quadruple a-ideal of neutrosophic quadruple

BCI-algebras, and have investigated several properties. The notions of neutrosophic quadruple

p-ideal, neutrosophic quadruple q-ideal and neutrosophic quadruple closed ideal have been

introduced by Smarandache, Muhiuddin, Al-Kenani, Jun, etc. We have discussed relations

between a neutrosophic quadruple p-ideal, a neutrosophic quadruple q-ideal, a neutrosophic

quadruple a-ideal and a neutrosophic quadruple closed ideal. We have provided conditions for

the neutrosophic quadruple (A,B)-set Nq(A,B) to be a neutrosophic quadruple a-ideal. We

have shown that every neutrosophic quadruple a-ideal is a neutrosophic quadruple closed ideal,

and heve provided example to show that the converse is false. Using the ideas and results of

this paper, we will study the structure of various algebraic systems in the future.
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Abstract. The notion of neutrosophic set theory is applied to lattice implication algebras, and the concept of

neutrosophic LI-ideals and neutrosophic lattice ideals in a lattice implication algebra are introduced. Several

properties are investigated. Relationships between a neutrosophic LI-ideal and a neutrosophic lattice ideal are

established, and conditions for a neutrosophic lattice ideal to be a neutrosophic LI-ideal are provided. Char-

acterizations of a neutrosophic LI-ideal are discussed. The properties of implication homomorphism of lattice

implication algebras related to neutrosophic LI-ideals are studied.

Keywords: Lattice implication algebra; neutrosophic LI-ideals; neutrosophic lattice ideal; implication homo-

morphism.

—————————————————————————————————————————-

1. Introduction

Smarandache in [1, 2] introduced the notion of neutrosophic set, which is a more general

platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval-valued

(intuitionistic) fuzzy set. Then the neutrosophic components T, I, F were introduced, which

represent the membership, indeterminacy, and non-membership values respectively, where

[0, 1] is the non-standard unit interval, and the neutrosophic set was defined. Then some ex-

amples were given from mathematics, physics, philosophy, and applications of the neutrosophic

set. Afterward, the neutrosophic set operations (complement, intersection, union, difference,

Cartesian product, inclusion, and n-ary relationship) were introduced, some generalizations

and comments on them, and finally, the distinctions between the neutrosophic set and the

intuitionistic fuzzy set. Jun and his colleagues in [3] applied the notion of neutrosophic set

theory to BCK/BCI-algebras, and their properties and relations are investigated. Then in [4],

the notion of interval neutrosophic length of a range neutrosophic set was introduced. More-

over, in [5], interval neutrosophic ideals were defined, and some properties were investigated.
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Then in [6], they represented different kinds of interval neutrosophic ideals and studied some

features and found the relation among them.

Borzooei et al. [7–10], appliad the neutrosophic sets to logical algebras and defined the

concept of a commutative generalized neutrosophic ideal in a BCK-algebra, and proved some

related properties. Characterizations of a commutative generalized neutrosophic ideal are

considered. Also, some equivalence relations on the family of all commutative generalized

neutrosophic ideals in BCK-algebras are introduced. Also, Jun in [11] introduced the no-

tion of LI-ideals, Li-maximal ideals and prime LI-ideals of lattice implication algebras, and

investigated some properties of them and studied the relation among them. Since everything

in the world is full of indeterminacy, and application of this notion in decision making and

multicriteria decision-making method etc. We decide applied the notion of neutrosophic set

theory to lattice implication algebras. We introduce the concept of neutrosophic LI-ideals

and neutrosophic lattice ideals of a lattice implication algebra, and investigate several prop-

erties. We discuss relationship between a neutrosophic LI-ideal and a neutrosophic lattice

ideal. We provide conditions for a neutrosophic lattice ideal to be a neutrosophic LI-ideal. We

consider characterizations of a neutrosophic LI-ideal. We study the properties of implication

homomorphism of lattice implication algebras related to neutrosophic LI-ideals.

2. Preliminaries

By a lattice implication algebra we mean a bounded lattice (L,∨,∧, 0, 1) with order-reversing

involution “ ′ ” and a binary operation “ → ” satisfying the following axioms:

(I1) u→ (v → w) = v → (u→ w),

(I2) u→ u = 1,

(I3) u→ v = v′ → u′,

(I4) u→ v = v → u = 1⇒ u = v,

(I5) (u→ v)→ v = (v → u)→ u,

(L1) (u ∨ v)→ w = (u→ w) ∧ (v → w),

(L2) (u ∧ v)→ w = (u→ w) ∨ (v → w),

for all u, v, w ∈ L. A lattice implication algebra L is called a lattice H-implication algebra if it

satisfies:

(∀u, v, w ∈ L)(u ∨ v ∨ ((u ∧ v)→ w) = 1). (1)

We can define a partial ordering ≤ on L by condition u ≤ v if and only if u→ v = 1.

In a lattice implication algebra L, the following conditions hold (see [20]):

(a1) 0→ u = 1, 1→ u = u and u→ 1 = 1.

(a2) u→ v ≤ (v → w)→ (u→ w).
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(a3) u ≤ v implies v → w ≤ u→ w and w → u ≤ w → v.

(a4) u′ = u→ 0.

(a5) u ∨ v = (u→ v)→ v.

(a6) ((v → u)→ v′)′ = u ∧ v = ((u→ v)→ u′)′.

(a7) u ≤ (u→ v)→ v.

Let L1 and L2 be two lattice implication algebras. A mapping f : L1 → L2 is called an

implication homomorphism ( [19]) if f(u→ v) = f(u)→ f(v) for all u, v ∈ L1. Moreover, if f

satisfies the following conditions:

f(u ∨ v) = f(u) ∨ f(v), f(u ∧ v) = f(u) ∧ f(v), f(u′) = (f(u))′

for all u, v ∈ L1, then f is called a lattice implication homomorphism. For an implication

homomorphism f : L1 → L2, the kernel of f, written kerf, is defined as follows:

kerf := {u ∈ L1 | f(u) = 0}.

Note that if an implication homomorphism f : L1 → L2 satisfies f(0) = 0, then f is a lattice

implication homomorphism ( [19]).

Definition 2.1 ( [15]). A nonempty subset G of L is called an LI-ideal of L if it satisfies the

following statements:

(i) 0 ∈ G,
(ii) (∀u ∈ L) (∀v ∈ G) ((u→ v)′ ∈ G =⇒ u ∈ G).

Lemma 2.2 ( [15]). Every LI-ideal G of L satisfies the following implication:

(∀u ∈ G) (∀v ∈ L) (v ≤ u =⇒ v ∈ G).

Let L be a non-empty set. A neutrosophic set (NS) in L (see [1]) is a structure of the form:

A∼ := {〈u;AT (u), AI(u), AF (u)〉 | u ∈ L},

where AT : L → [0, 1] is a truth membership function, AI : L → [0, 1] is an indeterminate

membership function, and AF : L → [0, 1] is a false membership function. For the sake of

simplicity, we shall use the symbol A∼ = (AT , AI , AF ) for the neutrosophic set, it means

A∼ := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ L}.

Given a neutrosophic set A∼ = (AT , AI , AF ) in a lattice implication algebra L. Then we

consider the following sets.

L(AT ;α) := {u ∈ L | AT (u) ≥ α},

L(AI ;β) := {u ∈ L | AI(u) ≥ β},

L(AF ; γ) := {u ∈ L | AF (u) ≤ γ},
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which are called neutrosophic level subsets of L.

We refer the reader to the books [21] for additional details lattice implication algebras,

and to the site “http://fs.gallup.unm.edu/neutrosophy.htm” for further information regarding

neutrosophic set theory.

3. Neutrosophic LI-ideals

From now on, we let L as lattice implication algebra unless otherwise state.

Definition 3.1. A neutrosophic set A∼ = (AT , AI , AF ) in L is called a neutrosophic LI-ideal

of L if the following assertions are valid.

(∀u ∈ L)
(
AT (0) ≥ AT (u), AI(0) ≥ AI(u), AF (0) ≤ AF (u)

)
(2)

and

(∀x, y ∈ L)

 AT (u) ≥ min{AT ((u→ v)′), AT (v)}
AI(u) ≥ min{AI((u→ v)′), AI(v)}
AF (u) ≤ max{AF ((u→ v)′), AF (v)}

 (3)

The set of all neutrosophic LI-ideals of L is denoted by NLI(L).

Example 3.2. Let L = {0, a, b, c, d, 1} be a poset with Hasse diagram and Cayley tables as

follows:

r
0
JJ 


r��d r crJ
J br

a

r1
x x′

0 1

a c

b d

c a

d b

1 0

→ 0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1

Define the operations ∨ and ∧ on L as follows:

u ∨ v := (u→ v)→ v, u ∧ v := ((u′ → v′)→ v′)′,

for all u, v ∈ L. Then L is a lattice implication algebra (see [15]). Suppose A∼ = (AT , AI ,

AF ) is a neutrosophic set in L defined by Table 1.

Table 1. Tabular representation of A∼ = (AT , AI , AF )

L 0 a b c d 1

AT (u) 0.9 0.5 0.5 0.7 0.5 0.5

AI(u) 0.8 0.3 0.3 0.3 0.3 0.3

AF (u) 0.2 0.4 0.6 0.6 0.4 0.6

It is routine to verify that A∼ = (AT , AI , AF ) ∈ NLI(L).
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Proposition 3.3. Every neutrosophic LI-ideal A∼ = (AT , AI , AF ) of L satisfies the following

assertions.

(∀u, v ∈ L)

x ≤ y ⇒


AT (u) ≥ AT (v)

AI(u) ≥ AI(v)

AF (u) ≤ AF (v)

 . (4)

Proof. Let A∼ ∈ NLI(L) and u, v ∈ L such that u ≤ v. Since (u→ v)′ = 0, we have,

AT (u) ≥ min{AT ((u→ v)′), AT (v)} = min{AT (0), AT (v)} = AT (v),

AI(u) ≥ min{AI((u→ v)′), AI(v)} = min{AI(0), AI(v)} = AI(v),

AF (u) ≤ max{AF ((u→ v)′), AF (v)} = max{AF (0), AF (v)} = AF (v).

Proposition 3.4. Every neutrosophic LI-ideal A∼ = (AT , AI , AF ) of L satisfies the following

assertions.

(∀u, v, w ∈ L)

u ≤ v′ → w ⇒


AT (u) ≥ min{AT (v), AT (w)}
AI(u) ≥ min{AI(v), AI(w)}
AF (u) ≤ max{AF (v), AF (w)}

 . (5)

Proof. Suppose A∼ ∈ NLI(L) such that for all u, v, w ∈ L, u ≤ v′ → w. Then

1 = u→ (v′ → w) = w′ → (u→ v) = (u→ v)′ → w,

and so ((u→ v)′ → w)′ = 0. By (2) and (3), we get that

AT (u) ≥ min{AT ((u→ v)′), AT (v)}

≥ min{min{AT (((u→ v)′ → w)′), AT (w)}, AT (v)}

= min{min{AT (0), AT (w)}, AT (v)}

= min{AT (w), AT (v)},

AI(u) ≥ min{AI((u→ v)′), AI(v)}

≥ min{min{AI(((u→ v)′ → w)′), AI(w)}, AI(v)}

= min{min{AI(0), AI(w)}, AI(v)}

= min{AI(w), AI(v)},

R.A. Borzooei, M. Sabetkish, Y. B. Jun Neutrosophic LI-ideals in lattice implication
algebras.



Neutrosophic Sets and Systems, Vol. 31, 2020 287

and

AF (u) ≥ max{AF ((u→ v)′), AF (v)}

≤ max{max{AF (((u→ v)′ → w)′), AF (w)}, AF (v)}

= max{max{AF (0), AF (w)}, AF (v)}

= max{AF (w), AF (v)}.

Therefore, (3.4) holds.

Definition 3.5. A neutrosophic set A∼ = (AT , AI , AF ) in L is called a neutrosophic lattice

ideal of L if it satisfies (4) and

(∀u, v ∈ L)

 AT (u ∨ v) ≥ min{AT (u), AT (v)}
AI(u ∨ v) ≥ min{AI(u), AI(v)}
AF (u ∨ v) ≤ max{AF (u), AF (v)}

 (6)

Example 3.6. Let L be the lattice implication algebra as in Example 3.2 and A∼ = (AT , AI ,

AF ) be a neutrosophic set in L which is defined by Table 2.

Table 2. Tabular representation of A∼ = (AT , AI , AF )

L 0 a b c d 1

AT (u) 0.7 0.4 0.4 0.4 0.7 0.4

AI(u) 0.8 0.5 0.5 0.5 0.8 0.5

AF (u) 0.3 0.6 0.6 0.6 0.3 0.6

It is easy to see that A∼ = (AT , AI , AF ) is a neutrosophic lattice ideal of L.

We discussthe between a neutrosophic LI-ideal and a neutrosophic lattice ideal.

Theorem 3.7. Every neutrosophic LI-ideal is a neutrosophic lattice ideal.

Proof. Let A∼ = (AT , AI , AF ) ∈ NLI(L). The condition (4) is valid in Proposition 3.3. Since

((u ∨ v)→ v)′ = (((u→ v)→ v)→ v)′ = (u→ v)′ ≤ (u′)′ for all u, v ∈ L, by (4) and (3), we

have

AT (u ∨ v) ≥ min{AT (((u ∨ v)→ v)′), AT (v)} ≥ min{AT (u), AT (v)},

AI(u ∨ v) ≥ min{AI(((u ∨ v)→ v)′), AI(v)} ≥ min{AI(u), AI(v)},

and

AF (u ∨ v) ≤ max{AF (((u ∨ v)→ v)′), AF (v)} ≤ max{AF (u), AF (v)}.
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Therefore, A∼ = (AT , AI , AF ) ∈ NLI(L).

The converse of Theorem 3.7 is not true in general as seen in the following example.

Example 3.8. Let L be the lattice implication algebra as in Example 3.2 and A∼ = (AT , AI ,

AF ) be a neutrosophic set in L defined by Table 3.

Table 3. Tabular representation of A∼ = (AT , AI , AF )

L 0 a b c d 1

AT (x) 0.8 0.4 0.4 0.4 0.8 0.4

AI(x) 0.6 0.3 0.3 0.3 0.6 0.3

AF (x) 0.3 0.5 0.5 0.5 0.3 0.5

Then A∼ = (AT , AI , AF ) ∈ L, but A∼ /∈ NLI(L) beacuse AT (a) = 0.4 < 0.8 = min{AT ((a→
d)′), AT (d)}.

We investigate that under which condition, a neutrosophic lattice ideal can be a neutrosophic

LI-ideal.

Theorem 3.9. In a lattice H-implication algebra L, every neutrosophic lattice ideal is a neu-

trosophic LI-ideal.

Proof. Let A∼ = (AT , AI , AF ) be a neutrosophic lattice ideal of a lattice H-implication algebra

L. Moreover, since 0 ≤ u for all u ∈ L, it follows from (4) that AT (0) ≥ AT (u), AI(0) ≥ AI(u)

and AF (0) ≤ AF (u). Also, from u ≤ u ∨ v for all u, v ∈ L, by (4) and (6) we get that,

AT (u) ≥ AT (u ∨ v) = AT (v ∨ (u′ ∨ v)′) = AT (v ∨ (u→ v)′) ≥ min{AT (v), AT ((u→ v)′)},

AI(u) ≥ AI(u ∨ v) = AI(v ∨ (u′ ∨ v)′) = AI(v ∨ (u→ v)′) ≥ min{AI(v), AI((u→ v)′)},

and

AF (u) ≤ AF (u ∨ v) = AF (v ∨ (u′ ∨ v)′) = AF (v ∨ (u→ v)′) ≤ max{AF (v), AF ((u→ v)′)}.

Therefore, A∼ = (AT , AI , AF ) ∈ NLI(L).

We consider characterizations of a neutrosophic LI-ideal.

Theorem 3.10. Given a neutrosophic set A∼ = (AT , AI , AF ) in L, the following statements

are equivalent.

(1) A∼ = (AT , AI , AF ) is a neutrosophic LI-ideal of L.

(2) A∼ = (AT , AI , AF ) satisfies (5).
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(3) A∼ = (AT , AI , AF ) satisfies (4) and

(∀u, v ∈ L)

 AT (u′ → v) ≥ min{AT (u), AT (v)}
AI(u′ → v) ≥ min{AI(u), AI(v)}
AF (u′ → v) ≤ max{AF (u), AF (v)}

 . (7)

(4) A∼ = (AT , AI , AF ) satisfies (2) and

(∀u, v, w ∈ L)

 AT (u′ → w) ≥ min{AT ((u→ v)′), AT (v′ → w)}
AI(u′ → w) ≥ min{AI((x→ v)′), AI(v′ → w)}
AF (u′ → w) ≤ max{AF ((x→ v)′), AF (v′ → w)}

 . (8)

(5) A∼ = (AT , AI , AF ) satisfies (2) and

(∀u, v, w ∈ L)

 AT ((u→ w)′) ≥ min{AT ((u→ v)′), AT ((v → w)′)}
AI((u→ w)′) ≥ min{AI((u→ v)′), AI((v → w)′)}
AF ((u→ w)′) ≤ max{AF ((u→ v)′), AF ((v → w)′)}

 . (9)

Proof. Suppose A∼ = (AT , AI , AF ) ∈ NLI(L). Then A∼ = (AT , AI , AF ) satisfies (5)

by Proposition (3.4). Let A∼ = (AT , AI , AF ) be a neutrosophic set in L which satisfies the

condition (3.4). Since 0 ≤ u′ → u for all u ∈ L, we have AT (0) ≥ min{AT (u), AT (u)} = AT (u),

AI(0) ≥ min{AI(u), AI(u)} = AI(u), and AF (0) ≤ max{AF (u), AF (u)} = AF (u). Since u ≤
((u→ v)′)′ → v for all u, v ∈ L, it follows from (3.4) that AT (u) ≥ min{AT ((u→ v)′), AT (v)},
AI(u) ≥ min{AI((u → v)′), AI(v)}, and AF (u) ≤ max{AF ((u → v)′), AF (v)}. Thus A∼ =

(AT , AI , AF ) ∈ NLI(L). Let u, v ∈ L such that u ≤ v. Then u ≤ v = v ∨ v ≤ v′ → v,

and so AT (u) ≥ min{AT (v), AT (v)} = AT (v), AI(u) ≥ min{AI(v), AI(v)} = AI(v), and

AF (u) ≤ max{AF (v), AF (v)} = AF (v) by (3.4). Hence A∼ = (AT , AI , AF ) satisfies (4). Since

u′ → v ≤ u′ → v for all u, v ∈ L, it follows from (3.4) that AT (u′ → v) ≥ min{AT (u), AT (v)},
AI(u′ → v) ≥ min{AI(u), AI(v)}, and AF (x′ → v) ≤ max{AF (u), AF (v)}. Hence (7) holds.

Suppose A∼ = (AT , AI , AF ) satisfies (4) and (7). Since 0 ≤ u for all u ∈ L, (2) is induced

by (4). Moreover, from u ≤ ((u→ v)′)′ → v for all u, v ∈ L, we get that,

u′ → w ≤ (((u→ v)′)′ → v)′ → w = ((u→ v)′)′ → (v′ → w).

Thus

AT (u′ → w) ≥ AT (((u→ v)′)′ → (v′ → w)) ≥ min{AT ((u→ v)′), AT (v′ → w)},

AI(u′ → w) ≥ AI(((u→ v)′)′ → (v′ → w)) ≥ min{AI((u→ v)′), AI(v′ → w)},

and

AF (u′ → w) ≤ AF (((u→ v)′)′ → (v′ → w)) ≤ max{AF ((u→ v)′), AF (v′ → w)}.

Hence A∼ = (AT , AI , AF ) satisfies (8).
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Assume A∼ = (AT , AI , AF ) satisfies (2) and (8). Let u, v ∈ L such that u ≤ v. Let w = 0

in (8) Then

AT (u) = AT (u′ → 0) ≥ min{AT ((u→ v)′), AT (v′ → 0)} = min{AT (0), AT (v)} = AT (v),

AI(u) = AI(u′ → 0) ≥ min{AI((u→ v)′), AI(v′ → 0)} = min{AI(0), AI(v)} = AI(v),

and

AF (u) = AF (u′ → 0) ≤ max{AF ((u→ v)′), AF (v′ → 0)} = max{AF (0), AF (v)} = AF (v).

Therefore, A∼ = (AT , AI , AF ) satisfies (5).

Suppose A∼ = (AT , AI , AF ) ∈ NLI(L). Since

((u→ w)′ → (v → w)′)′ → (u→ v)′ = (u→ v)→ ((v → w)→ (u→ w)) = 1,

we have, ((u→ w)′ → (v → w)′)′ ≤ (u→ v)′ for all u, v, w ∈ L. By (3) and (4), we get that

AT ((u→ w)′) ≥ min{AT (((u→ w)′ → (v → w)′)′), AT ((v → w)′)} ≥ min{AT ((u→ v)′), AT ((v → w)′)},

AI((u→ w)′) ≥ min{AI(((u→ w)′ → (v → w)′)′), AI((v → w)′)} ≥ min{AI((u→ v)′), AI((v → w)′)},

and

AF ((u→ w)′) ≤ max{AF (((u→ w)′ → (v → w)′)′), AF ((v → w)′)} ≤ max{AF ((u→ v)′), AF ((v → w)′)}

for all u, v, w ∈ L. Thus A∼ = (AT , AI , AF ) satisfies (9).

Let A∼ = (AT , AI , AF ) be a neutrosophic set in L satisfying (2) and (9). Since (u→ 0)′ = u for all

u ∈ L, we have

AT (u) = AT ((u→ 0)′) ≥ min{AT ((u→ v)′), AT ((v → 0)′)} = min{AT ((u→ v)′), AT (v)},

AI(u) = AI((u→ 0)′) ≥ min{AI((u→ v)′), AI((v → 0)′)} = min{AI((u→ v)′), AI(v)},

and

AF (u) = AF ((u→ 0)′) ≤ max{AF ((u→ v)′), AF ((v → 0)′)} = max{AF ((u→ v)′), AF (v)}

for all u, v ∈ L. Therefore A∼ = (AT , AI , AF ) ∈ NLI(L).

Theorem 3.11. A neutrosophic set A∼ = (AT , AI , AF ) is a neutrosophic LI-ideal of L if and

only if the nonempty neutrosophic level sets L(AT ;α), L(AI ;β) and L(AF ; γ) are LI-ideals of

L for all α, β, γ ∈ [0, 1].

Proof. Suppose A∼ = (AT , AI , AF ) ∈ NLI(L) and α, β, γ ∈ [0, 1] such that L(AT ;α), L(AI ;β)

and L(AF ; γ) are nonempty. It is clear that 0 ∈ L(AT ;α), 0 ∈ L(AI ;β) and 0 ∈ L(AF ; γ).

Let u, v, a, b,m, n ∈ L such that (u → v)′ ∈ L(AT ;α), v ∈ L(AT ;α), (a → b)′ ∈ L(AI ;β),
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b ∈ L(AI ;β), (m → n)′ ∈ L(AF ; γ), and n ∈ L(AF ; γ). Then AT ((u → v)′) ≥ α, AT (v) ≥ α,

AI((a→ b)′) ≥ β, AI(b) ≥ β, AF ((m→ n)′) ≤ γ, and AF (n) ≤ γ. By (2), we have

AT (u) ≥ min{AT (u→ v)′, AT (v)} ≥ α,

AI(a) ≥ min{AI(a→ b)′, AI(b)} ≥ β,

and

AF (m) ≤ max{AF (m→ n)′, AF (n)} ≤ γ.

Hence, u ∈ L(AT ;α), a ∈ L(AI ;β) and u ∈ L(AF ; γ). Therefore, L(AT ;α), L(AI ;β) and

L(AF ; γ) are LI-ideals of L.

Conversely, let A∼ = (AT , AI , AF ) be a neutrosophic set in L in which the nonempty

neutrosophic level sets L(AT ;α), L(AI ;β) and L(AF ; γ) are LI-ideals of L for all α, β, γ ∈ [0, 1].

For any u, a,m ∈ L, let AT (u) = α, AI(a) = β and AF (m) = γ. Then u ∈ L(AT ;α),

a ∈ L(AI ;β) and m ∈ L(AF ; γ), that is, L(AT ;α), L(AI ;β) and L(AF ; γ) are nonempty sets.

Hence 0 ∈ L(AT ;α), 0 ∈ L(AI ;β) and 0 ∈ L(AF ; γ) by assumption, and so AT (0) ≥ α =

AT (u), AI(0) ≥ β = AI(a) and AF (0) ≤ γ = AF (m). Suppose there exist a, b ∈ L such that

AT (a) < min{AT ((a→ b)′), AT (b)}. Then

AT (a) < α0 < min{AT ((a→ b)′), AT (b)},

where α0 = 1
2(AT (a) + min{AT ((a→ b)′), AT (b)}). Thus a /∈ L(AT ;α0), (a→ b)′ /∈ L(AT ;α0)

and b ∈ L(AT ;α0), which is a contradiction. Hence, AT (u) ≥ min{AT ((u → v)′), AT (v)} for

all u, v ∈ L. Similarly, we can verify that AI(u) ≥ min{AI((u → v)′), AI(v)} for all u, v ∈ L.

Now, suppose

AF (m) > max{AF ((m→ n)′), AF (n)},

for some m,n ∈ L. Let γ0 := 1
2(AF (m) + max{AF ((m→ n)′), AF (n)}). Then

AF (m) > γ0 ≥ max{AF ((m→ n)′), AF (n)},

and so (m → n)′ ∈ L(AF ; γ0), n ∈ L(AF ; γ0), but m /∈ L(AF ; γ0), which is a contradiction.

Hence

AF (m) ≤ max{AF ((m→ n)′), AF (n)}

for all u, v ∈ L. Therefore A∼ = (AT , AI , AF ) ∈ NLI(L).

Corollary 3.12. If A∼ = (AT , AI , AF ) ∈ NLI(L), then L(AT ;α) ∩ L(AI ;β) ∩ L(AF ; γ) is

an LI-ideal of L for all α, β, γ ∈ [0, 1].

Proof. Straightforward.
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Let f : L1 → L2 be an implication homomorphisms of lattice implication algebras. For any

neutrosophic set A∼ = (AT , AI , AF ) in L2, we define a new neutrosophic set Af
∼ = (Af

T , A
f
I ,

Af
F ) in L1 by Af

T (u) = AT (f(u)), Af
I (u) = AI(f(u)) and Af

F (u) = AF (f(u)) for all u ∈ L1.

Theorem 3.13. Let f : L1 → L2 be an implication homomorphism of lattice implication

algebras with f(0) = 0. If A∼ = (AT , AI , AF ) ∈ NLI(L2), then Af
∼ = (Af

T , A
f
I , A

f
F )

∈ NLI(L1).

Proof. Let u, v ∈ L1. Then Af
T (u) = AT (f(u)) ≤ AT (0) = AT (f(0)) = Af

T (0), Af
I (u) =

AI(f(u)) ≤ AI(0) = AI(f(0)) = Af
I (0), and Af

F (u) = AF (f(u)) ≥ AF (0) = AF (f(0)) =

Af
F (0). Thus,

Af
T (u) = AT (f(u)) ≥ min{AT ((f(u)→ f(v))′), AT (f(v))}

= min{AT ((f(u→ v))′), AT (f(v))}

= min{AT (f((u→ v)′)), AT (f(v))}

= min{Af
T ((u→ v)′), Af

T (v)},

Af
I (u) = AI(f(u)) ≥ min{AI((f(u)→ f(v))′), AI(f(v))}

= min{AI((f(u→ v))′), AI(f(v))}

= min{AI(f((u→ v)′)), AI(f(v))}

= min{Af
I ((u→ v)′), Af

I (v)},

and

Af
F (u) = AF (f(u)) ≤ max{AF ((f(u)→ f(v))′), AF (f(v))}

= max{AF ((f(u→ v))′), AF (f(v))}

= max{AF (f((u→ v)′)), AF (f(v))}

= max{Af
F ((u→ v)′), Af

F (v)}.

Therefore, Af
∼ = (Af

T , A
f
I , A

f
F ) ∈ NLI(L1).

Example 3.14. Let L = {0, a, b, 1} be a poset with Hasse diagram and Cayley tables as

follows:

rr rr

0

a b

1

�
�
A
A
�
�
A
A

x x′

0 1

a b

b a

1 0

→ 0 a b 1

0 1 1 1 1

a b 1 b 1

b a a 1 1

1 0 a b 1
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Defin the operations ∨ and ∧ on L as follows:

u ∨ v := (u→ v)→ v and u ∧ v := ((u′ → v′)→ v′)′,

for all u, v ∈ L. Then L is a lattice implication algebra (see [21]). Define a function f : L→ L

by f(0) = 0, f(a) = b, f(b) = a and f(1) = 1. Then f is an implication homomorphism . Let

A∼ = (AT , AI , AF ) be a neutrosophic set in L defined by Table 4.

Table 4. Tabular representation of A∼ = (AT , AI , AF )

L 0 a b 1

AT (x) 0.9 0.5 0.3 0.3

AI(x) 0.8 0.2 0.5 0.2

AF (x) 0.2 0.7 0.4 0.7

It is routine to verify that A∼ = (AT , AI , AF ) ∈ NLI(L). The neutrosophic set Af
∼ = (Af

T ,

Af
I , A

f
F ) is described by Table 5.

Table 5. Tabular representation of Af
∼ = (Af

T , A
f
I , A

f
F )

L 0 a b 1

Af
T (x) 0.9 0.3 0.5 0.3

Af
I (x) 0.8 0.5 0.2 0.2

Af
F (x) 0.2 0.4 0.7 0.7

It is routine to verify that Af
∼ = (Af

T , A
f
I , A

f
F ) ∈ NLI(L).

We give additional condition for dealing with the converse of Theorem 3.13.

Theorem 3.15. Let f : L1 → L2 be an implication epimorphism of lattice implication algebras

with f(0) = 0. If Af
∼ = (Af

T , A
f
I , A

f
F ) ∈ NLI(L1), then A∼ = (AT , AI , AF ) ∈ NLI(L2).

Proof. Let u ∈ L2. Then there exists a ∈ L1 such that f(a) = u. Hence

AT (u) = AT (f(a)) = Af
T (a) ≤ Af

T (0) = AT (f(0)) = AT (0),

AI(u) = AI(f(a)) = Af
I (a) ≤ Af

I (0) = AI(f(0)) = AI(0),

and

AF (u) = AF (f(a)) = Af
F (a) ≥ Af

F (0) = AF (f(0)) = AF (0).
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Let u, v ∈ L2. Then f(a) = u and f(b) = v for some a, b ∈ L1. It follows that

AT (u) = AT (f(a)) = Af
T (a) ≥ min{Af

T ((a→ b)′), Af
T (b)}

= min{AT (f((a→ b)′)), AT (f(b))}

= min{AT ((f(a)→ f(b))′), AT (f(b))}

= min{AT ((u→ v)′), AT (v)},

AI(u) = AI(f(a)) = Af
I (a) ≥ min{Af

I ((a→ b)′), Af
I (b)}

= min{AI(f((a→ b)′)), AI(f(b))}

= min{AI((f(a)→ f(b))′), AI(f(b))}

= min{AI((u→ v)′), AI(v)},

and

AF (u) = AF (f(a)) = Af
F (a) ≤ max{Af

F ((a→ b)′), Af
F (b)}

= max{AF (f((a→ b)′)), AF (f(b))}

= max{AF ((f(a)→ f(b))′), AF (f(b))}

= max{AF ((u→ v)′), AF (v)}.

Therefore, A∼ = (AT , AI , AF ) is a neutrosophic LI-ideal of L2.

4. Conclusions

We have applied the notion of neutrosophic set theory to lattice implication algebras. We

have introduced the concepts of neutrosophic LI-ideals and neutrosophic lattice ideals of a

lattice implication algebra, and investigated several properties. We have discussed the re-

lationship between a neutrosophic LI-ideal and a neutrosophic lattice ideal, and provided

conditions for a neutrosophic lattice ideal to be a neutrosophic LI-ideal. We have considered

the characterizations of a neutrosophic LI-ideal. We have studied the properties of implication

homomorphism of lattice implication algebras related to neutrosophic LI-ideals.

5. Future research work

Probing more profound, the results in this paper also provide a strong foundation for future

work in logical algebric structure and in neutrosophic set. One area of future work is in

combining some other kind of subalgebra like filter, implicative filter etc with neutrosophic

sets. Another area is in applying the results studied here to the other algebric structures like

BCI/BCK algebras. Future work will be in these two areas.
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Abstract. Spatial information often deals with regions which are vague or incompletely determined. Under-

standing vagueness, indeterminacy and imprecision are the most important in GIS. Smarandache’s neutrosophic

set is a computational method to tackle problems involving incomplete, infinite and reliable data. The definition

of soft sets was introduced by Molodtsov as a new mathematical method to tackle uncertainty. Maji presented

the Neutrosophic Soft Set theory. This paper provides concepts of a neurtrosophic soft spatial region for its

possible application in GIS. The notions of neutrosophic soft α-open, neutrosophic soft pre-open, neutrosophic

soft semi-open and neutrosophic soft β-open sets are introduced.

Keywords: Neutrosophic soft set; neutrosophic soft topology; neutrosophic soft connected; neutrosophic soft

spatial region; GIS.

—————————————————————————————————————————-

1. Introduction

Many real-life issues deal with uncertainties in economics, engineering, environment, so-

cial sciences, medical sciences, and business management. There are difficulties with classical

mathematical modeling in solving the uncertainties in these data. Theories such as fuzzy

set[1], rough set[2] and intuitionist fuzzy set[3] are used to prevent difficulties in dealing with

uncertainty. But all of these hypotheses have some difficulties in addressing the indeterminate

or contradictory data problems. Smarandache[4] described the neutrosophical set as a math-

ematical method for dealing with indeterminate and inaccurate problems in nature. There is

a lot of use in all fields, such as IT, information systems and decision support systems.
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Abdel-Basset[5] has developed a Novel Intelligent Medical Decision Support Model based

on soft computing and IoT as the use of neutrosophical sets for decision-making. In[6] the

researchers developed neutrosophic multi-criterion approach to help healthcare professionals

predict illness. In[7] a solution is proposed to Neutrosophic Linear Fractional Programming

Problem (NLFP) in the case of triangular neutrosophic number costs of the objective function,

capital and engineering coefficients. In[8] the researchers suggest the method to help the patient

and doctor know whether the patient is having a heart failure through neutrophic multi-criteria

decision making (NMCDM).

The neutrosophical topological space theory was proposed in [9]. Further neutrosophic

topological space was studied in [10]. Subsequently, the sets were added similar to the neutro-

sophic open and neutrosophic closed sets. Neutrosophic semi-open set[NSO] and neutrosophic

semi-closed sets[NSC] have been introduced by Iswaraya et.al.[11]. Imran et.al.[12] proposed

neutrosophic semi-α open sets and analysed their basic properties. Arokiarani et.al.[13] stud-

ied about neutrosophic semi-open (resp. pre-open and α-open) functions and examined their

relations. Rao et.al.[14] proposed neutrosophic pre-open sets.

In [15] the researchers investigate new kind of neutrosophic continuity in neutrosophic topo-

logical spaces known as Neutrosophicαgs continuity maps and also the properties and char-

acterization Neutrosophic αgs Irresolute Maps were examined. Anitha et.al.[16] proposed the

concept of NGSR-closed sets and NGSR-open sets. NGSR continuous and NGSR-contra con-

tinuous mappings are also further studied. Dhavaseelan et.al. [17] introduced neutrosophic

almost α-contra-continuous function and studied their properties. In [18] the authors intro-

duced neutrosophic generalized b–closed sets and Neutrosophic generalized b-continuity in

Neutrosophic topological spaces.

Molodstov[19] introduced the soft set theory as a computational method for tackling inse-

curity. Maji[20] combined the concept of soft set and neutrosophic set together by introducing

the current mathematical framework called neutrosophic soft set. In[21] neutrosophic soft

set was applied in making decision. Several researchers[22, 23, 24, 25, 26] applied in various

mathematical systems the concept of neutrosophic soft sets. Bera[27] introduced neurosophic

soft topological spaces. Neutrosophic spatial region as introduced by A.A.Salama[28]. This

paper explores the theory and some of its features of neutrosophic soft topological space. The

notions of neutrosophic soft α-open, neutrosophic soft pre-open, neutrosophic soft semi-open

and neutrosophic soft β-open sets are introduced. Furthermore, for possible application in

GIS, the simple neutrosophic soft region is introduced.
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2. Preliminaries

Definition 2.1. ([19]). (F,E) is a soft set in X where F : E → P(Y ) is a mapping where

P(Y ) is a power set of Y . We express (F,E) by F .˜ F̃ = {(e, F (e)) : e ∈ E}.

Definition 2.2. ([4]). A neutrosophic set(NS) A on Y is defined as: A = {<
y, TA(y), IA(y), FA(y) >: y ∈ Y } where T, I, F : Y −→]−0, 1+[ and −0 ≤ TA(y) + IA(y) +

FA(y) ≤ 3+

Definition 2.3. Let Y be an set and E be parameter set. Let P(Y ) denotes the set of all

neutrosophic soft set(NSS) of Y . Then (F,E) is called a NSS over Y where F : E → P(Y ) is

a mapping. We express the NSS (F,E) by FN .˜
That is, F̃N = {(e, {< y, T

F̃N (e)
(y), I

F̃N (e)
(y), F

F̃N (e)
(y) >: y ∈ Y })e ∈ E}

Definition 2.4. The complement of the NSS F̃N is denoted by (F̃N )c and is defined by

F̃ c
N = {(e, {< y, F

F̃N (e)
(y), I

F̃N (e)
(y), T

F̃N (e)
(y) >: y ∈ Y })e ∈ E}

Definition 2.5. For any two NSS F̃N and G̃N over Y , F̃N is a neutrosophic soft subset of

G̃N if T
F̃N (e)

(y) ≤ T
G̃N (e)

(y) ; I
F̃N (e)

(y) ≤ I
G̃N (e)

(y) ; F
F̃N (e)

(y) ≥ F
G̃N (e)

(y); for all e ∈ E and

y ∈ Y .

Definition 2.6. A NSS F̃N over Y is said to be null NSS if T
F̃N (e)

(y) = 0 ; I
F̃N (e)

(y) = 0 ;

F
F̃N (e)

(y) = 1; for all e ∈ E and y ∈ Y . It is denoted by Φ̃N .

Definition 2.7. A NSS F̃N over Y is said to be absolute NSS if T
F̃N (e)

(y) = 1 ; I
F̃N (e)

(y) = 1

; F
F̃N (e)

(y) = 0; for all e ∈ E and y ∈ Y . It is denoted by ỸN

Definition 2.8. The union of two NSS F̃N and G̃N is denoted by F̃N ∪ G̃N and is defined

by H̃N = F̃N ∪ G̃N , where the truth-membership, indeterminacy-membership and falsity

membership of H̃N are as follows

T
H̃N (e)

(y) =


T
F̃N (e)

(y) if e ∈ A−B

T
G̃N (e)

(y) if e ∈ B −A

max{T
F̃N (e)

(y), T
G̃N (e)

(y)} if e ∈ A ∩B

I
H̃N (e)

(y) =


I
F̃N (e)

(y) if e ∈ A−B

I
G̃N (e)

(y) if e ∈ B −A
I
F̃N (e)

(y)+I
G̃N (e)

(y)}

2 if e ∈ A ∩B
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F
H̃N (e)

(y) =


F
F̃N (e)

(y) if e ∈ A−B

F
G̃N (e)

(y) if e ∈ B −A

min{F
F̃N (e)

(y), F
G̃N (e)

(y)} if e ∈ A ∩B

Definition 2.9. The intersection of two NSS F̃N and G̃N is denoted by F̃N ∩ G̃N and is

defined by H̃N = F̃N ∩ G̃N , where the truth-membership, indeterminacy-membership and

falsity membership of H̃N are as follows

T
H̃N (e)

(y) = min{T
F̃N (e)

(y), T
G̃N (e)

(y)},

I
H̃N (e)

(y) =
I
F̃N (e)

(y) + I
G̃N (e)

(y)}

2
,

F
H̃N (e)

(y) = may{F
F̃N (e)

(y), F
G̃N (e)

(y)}

3. Neutrosophic soft topological space

Definition 3.1. Let NSS(Y,E) be the family of all NSS over Y and τN ⊂ NSS(Y,E). Then˜
τ̃N is called neutrosophic soft topology(NST) on (Y,E) if the following conditions are satisfied:

(i) Φ̃N , ỸN ∈ τ̃N
(ii) τ̃N is closed under arbitrary union.

(iii) τ̃N is closed under finite intersection.

Then the triplet (Y, τ̃N , E) is called neutrosophic soft topological space(NSTS). The mem-

bers of τ̃N are called neutrosophic soft open sets in (Y, τ̃N , E). A NSS F̃N in NSS(Y,E) is

soft closed in (Y, τ̃N , E) if its complement (F̃N )c is neutrosophic soft open set in (Y, τ̃N , E).

The neutrosophic soft closure of F̃N is the NSS, Nscl(F̃N ) = ∩{G̃N : G̃N is neutrosophic

soft closed and F̃N ⊆ G̃N}.
The neutrosophic soft interior of F̃N is the NSS, Nsint(F̃N ) = ∪{ÕN : ÕN is neutrosophic

soft closed and ÕN ⊆ F̃N}.
It is easy to see that F̃N is neutrosophic soft open if and only if F̃N = Nsint(F̃N ) and

neutrosophic soft closed if and only if F̃N = Nscl(F̃N ).

Theorem 3.2. Let (Y, τ̃N , E) be a NSTS over (Y,E) and F̃N and G̃N ∈ NSS(Y,E) then

(i) Nsint(F̃N ) ⊂ F̃N and Nsint(F̃N ) is the largest open set.

(ii) F̃N ⊂ F̃N implies Nsint(F̃N ) ⊂ Nsint(F̃N )

(iii) Nsint(F̃N ) is an neutrosophic soft open set. That is Nsint(F̃N ) ∈ τ̃N
(iv) F̃N is neutrosophic soft open iff Nsint(F̃N ) = F̃N

(v) Nsint(Nsint(F̃N )) = Nsint(F̃N )

(vi) Nsint(Φ̃N ) = Φ̃N and Nsint(ỸN ) = ỸN

(vii) Nsint(F̃N ∩ G̃N ) = Nsint(F̃N ) ∩Nsint(G̃N )
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(viii) Nsint(F̃N ) ∪Nsint(G̃N ) ⊂ Nsint(F̃N ∪ G̃N )

Theorem 3.3. Let (Y, τ̃N , E) be a NSTS (Y,E) and F̃N and G̃N ∈ NSS(Y,E) then

(i) F̃N ⊂ Nscl(F̃N ) and Nscl(F̃N ) is the smallest closed set

(ii) F̃N ⊂ F̃N implies Nscl(F̃N ) ⊂ Nscl(F̃N )

(iii) Nscl(F̃N ) is neutrosophic soft closed set. That is Nscl(F̃N ) ∈ (τ̃N )c

(iv) F̃N is neutrosophic soft closed iff Nscl(F̃N ) = F̃N

(v) Nscl(Nscl(F̃N )) = Nscl(F̃N )

(vi) Nscl(Φ̃N ) = Φ̃N and Nscl(ỸN ) = ỸN

(vii) Nscl(F̃N ∪ G̃N ) = Nscl(F̃N ) ∪Nscl(G̃N )

(viii) Nscl(F̃N ) ∩Nscl(G̃N ) ⊂ Nscl(F̃N ∩ G̃N )

4. Neutrosophic soft nearly open sets

Definition 4.1. Let (Y, τ̃N , E) be a NSTS and F̃N be a neutrosophic soft open set in (Y,E),

then F̃N is called

(i) Neutrosophic soft α-open iff F̃N ⊆ Nsint(Nscl(Nsint(F̃N )))

(ii) Neutrosophic soft pre-open iff F̃N ⊆ Nsint(Nscl(F̃N ))

(iii) Neutrosophic soft semi-open iff F̃N ⊆ Nscl(Nsint(F̃N ))

(iv) Neutrosophic soft β-open iff F̃N ⊆ Nscl(Nsint(Nscl(F̃N )))

(v) Neutrosophic soft regular-open iff F̃N = Nsint(Nscl(F̃N ))

Definition 4.2. Let (Y, τ̃N , E) be a NSTS and F̃N ∈ NSS(Y,E), then F̃N is called

(i) Neutrosophic soft α-closed iff Nscl(Nsint(Nscl(F̃N ))) ⊆ F̃N

(ii) Neutrosophic soft pre-closed iff Nscl(Nsint(F̃N )) ⊆ F̃N

(iii) Neutrosophic soft semi-clsed iff Nsint(Nscl(F̃N )) ⊆ F̃N

(iv) Neutrosophic soft β-closed iff Nsint(Nscl(Nsint(F̃N ))) ⊆ F̃N

(v) Neutrosophic soft regular-closed iff F̃N = Nscl(Nsint(F̃N ))

5. Neutrosophic soft region

Topological relationships have played a significant role during space search, analysis and

reasoning through Geographical information systems (GIS) and Geospatial databases. The

topological relations between smooth, unstable and fuzzy spatial regions have been developed

on the basis of the nine-intersection model. In the past couple of decades a lot of emphasis has

been given to the topological relationship research issue, particularly between uncertain spa-

tial regions. Nevertheless, formal representation and calculation of topological links between

unknown regions remains an open issue and needs further investigation. We discuss further
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definitions and proposals for a neutrosophic soft topological region, which provide an theo-

retical framework for the modeling of neutrosophic soft topology relations among uncertain

regions.

Definition 5.1. Let (Y, τ̃N , E) be a NSTS over (Y,E) and F̃N ∈ NSS(Y,E). Then neutro-

sophic soft boundary of F̃N is defined by ∂F̃N = Nscl(F̃N ) ∩Nscl((F̃N )c)

Definition 5.2. Let (Y, τ̃N , E) be a NSTS over (Y,E). Then the neutrosophic soft exterior

of F̃N ∈ NSS(Y,E) is denoted by (F̃N )o and is defined by (F̃N )o = Nsint((F̃N )c)

Theorem 5.3. Let F̃N and G̃N be two NSS over (Y,E). Then

(i) (F̃N )o = Nsint((F̃N )c)

(ii) (F̃N ∪ G̃N )o = (F̃N )o ∩ (G̃N )o

(iii) (F̃N )o ∪ (G̃N )o ⊂ (F̃N ∩ G̃N )o

Theorem 5.4. Let (Y, τ̃N , E) be a NSTS over (Y,E) and F̃N , G̃N ∈ NSS(Y,E). Then

(i) (∂F̃N )c = Nsint(F̃N ) ∪Nsint((F̃N )c)

(ii) Nscl(F̃N ) = Nsint(F̃N ) ∪ ∂F̃N

(iii) ∂F̃N = Nscl(F̃N ) ∩Nscl((F̃N )c)

(iv) ∂F̃N ∩Nsint(F̃N ) = Φ̃N

(v) ∂(∂(∂(F̃N ))) = ∂(∂(F̃N ))

Definition 5.5. Let (Y, τ̃N , E) be a NSTS over (Y,E). Then a pair of non-empty neutrosophic

soft open sets F̃N , G̃N is called a neutrosophic soft separation of (Y, τ̃N , E) if ỸN = F̃N ∪ G̃N

and F̃N ∩ G̃N = Φ̃N

Definition 5.6. A NSTS (Y, τ̃N , E) is said to be neutrosophic soft connected if there does not

exist a neutrsophic soft separation of (Y, τ̃N , E). Otherwise (Y, τ̃N , E) is said to be neutrosophic

soft disconnected.

Now we shall describe a model for basic spatial neutrosophic soft region based on neutro-

sophic soft connectedness.

Definition 5.7. Let (Y, τ̃N , E) be a NSTS. A spatial neutrosophic soft region in (Y,E) is a

non empty neutrosophic soft subset F̃N such that

(i) Nsint(F̃N ) is neutrosophic soft connected.

(ii) F̃N = Nscl(Nsint(F̃N ))

6. Conclusion

The neutrosophic soft4-intersection model can be implemented as an application to GIS

for neutrosophic soft topological relationships between neutrosophic soft regions with sharp
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neutrosophical soft boundaries and for neutrosophic soft regions with broad neutrosophical soft

boundaries. These models can be used to formulate spatial database consistency constraints

and can also be used in information systems such as mobile robots and route navigation

systems.
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Abstract. Some clarifications of a previous paper with the same title are presented here to avoid any 

reading conflict [1]. Also, corrections of some typo errors are underlined. Each modification is 

explained with details for making the reader able to understand the main concept of the paper. Also, 

some suggested modifications advanced by Singh et al. [3] (Journal of Intelligent & Fuzzy Systems, 

2019, DOI:10.3233/JIFS-181541) are discussed. It is observed that Singh et al. [3] have constructed 

their modifications on several mathematically incorrect assumptions. Consequently, the reader 

must consider only the modifications which are presented in this research.    

 

   

1. Clarifications and Corrected Errors  

 

In Section 5 and Step 3 of the proposed NLP method [1], the trapezoidal neutrosophic number was 

presented in the following form:  

𝑎̃=〈(𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2 , 𝑎𝑢 ); 𝑇𝑎̃ , 𝐼𝑎̃, 𝐹𝑎̃〉 , 

where 𝑎𝑙 , 𝑎𝑚1 , 𝑎𝑚2, 𝑎𝑢  are the lower bound, the first and second median values and the upper 

bound for trapezoidal neutrosophic number, respectively. Also,  𝑇𝑎̃  , 𝐼𝑎̃, 𝐹𝑎̃  are the truth, 

indeterminacy and falsity degrees of the trapezoidal neutrosophic number. The ranking function 

for that trapezoidal neutrosophic number is as follows:  

𝑅(𝑎̃) = |(
−

1

3
(3𝑎𝑙−9𝑎𝑢)+2(𝑎𝑚1−𝑎𝑚2)

2
) × (𝑇𝑎̃ − 𝐼𝑎̃ −  𝐹𝑎̃)|       (8) 

The previous ranking function is only for maximization problems. 

But, if NLP problem is a minimization problem, then ranking function for that trapezoidal 

neutrosophic number is as follows: 

𝑅(𝑎̃) = |(
(𝑎𝑙+𝑎𝑢)−3(𝑎𝑚1+𝑎𝑚2)

−4
) × (𝑇𝑎̃ − 𝐼𝑎̃ − 𝐹𝑎̃)|        (9) 

If reader deals with a symmetric trapezoidal neutrosophic number which has the following form:  

𝑎̃=〈( 𝑎𝑚1, 𝑎𝑚2 ); 𝛼, 𝛽〉, 

where 𝛼 = 𝛽, 𝛼, 𝛽 ≥ 0, then the ranking function for that number will be as follows: 

𝑅(𝑎̃) = |(
(𝑎𝑚1+𝑎𝑚2)+2(𝛼+𝛽)

2
) × (𝑇𝑎̃ − 𝐼𝑎̃ −  𝐹𝑎̃)|.      (10) 

We applied Eq. (10) directly in Example 1, but we did not illustrated it in the original work [1], and 

this caused a reading conflict. After handling typo errors in Example 1, the crisp model of the 

problem will be as follows: 

Maximize 𝑍 =18𝑥1+19𝑥2+20𝑥3 

Subject to 

12𝑥1+13𝑥2+12𝑥3 ≤ 502, 

14𝑥1+13𝑥3 ≤ 486, 

12𝑥1+15𝑥2 ≤ 490, 

𝑥1,𝑥2,𝑥3 ≥ 0. 

mailto:smarand@unm.edu
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The initial simplex form will be as in Table 1. 

 
Table 1 Initial simplex form 

Basic variables 𝑥1 𝑥2 𝑥3 𝑠4 𝑠5 𝑠6 RHS 

𝑠4 12 13 12 1 0 0 502 

𝑠5 14 0 13 0 1 0 486 

𝑠6 12 15 0 0 0 1 490 

Z -18 -19 -20 0 0 0 0 

The optimal simplex form will be as in Table 2. 

 

Table 2 Optimal form 

Basic variables 𝑥1 𝑥2 𝑥3 𝑠4 𝑠5 𝑠6 RHS 

𝑥2 -12/169 1 0 1/13 -12/169 0 694/169 

𝑥3 14/13 0 1 0 1/13 0 486/13 

𝑠6 2208/169 0 0 -15/13 180/169 1 72400/169 

Z 370/169 0 0 19/13 32/169 0 139546/169 

 

The obtained optimal solution is 𝑥1 = 0, 𝑥2 = 4.11, 𝑥3 = 37.38. 

The optimal value of the NLPP is 𝑧̃ ≈ (13,15,2,2)𝑥1 + (12,14,3,3)𝑥2 + (15,17,2,2)𝑥3 = (13,15,2,2) ∗

0 + (12,14,3,3) ∗ 4.11 + (15,17,2,2) ∗ 37.38 =  

(49.32,57.54,12.33,12.33) + (560.70,635.46,74.76,74.7) = (610.02,693,87.09,87.09).  

𝑧̃ ≈ (610.02,693,87.09,87.09), which is in the symmetric trapezoidal neutrosophic number form. 

Since the traditional form of  𝑎̃ =〈( 𝑎𝑚1, 𝑎𝑚2 ); 𝛼, 𝛽〉 is:  

𝑎̃ =〈(𝑎𝑚1 − 𝛼, 𝑎𝑚1, 𝑎𝑚2, 𝑎𝑚2 + 𝛽)〉, 

where 𝑎𝑚1 − 𝛼 = 𝑎𝑙  , 𝑎𝑚2 + 𝛽 = 𝑎𝑢, then the optimal value of the NLPP can also be written as 𝑧̃ ≈ 

(522.93,610.02,693,780.09). 

 

The reader must also note that one can transform the symmetric trapezoidal neutrosophic numbers 

from Example 1 in [1] to its traditional form, and use Eq. (8) for solving the problem, obtaining the 

same result. By comparing the result with other existing models mentioned in the original research 

[1], the proposed model is the best. 

By using Eq. (8) and solving Example 2 in [1], the crisp model will be as follows: 

Maximize 𝑍 =25𝑥1+48𝑥2 

Subject to 

13𝑥1+28𝑥2 ≤ 31559, 

26𝑥1+9𝑥3 ≤ 16835, 

21𝑥1+15𝑥2 ≤ 19624, 

𝑥1,𝑥2 ≥ 0. 

The initial simplex form will be as in Table 3. 

 

Table 3 Initial simplex form 

Basic variables 𝑥1 𝑥2 𝑠3 𝑠4 𝑠5 RHS 

𝑠3 13 28 1 0 0 31559 

𝑠4 26 9 0 1 0 16835 

𝑠5 21 15 0 0 1 19624 

Z -25 -48 0 0 0 0 

The optimal simplex form will be as in Table 4. 
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Table 4 Optimal simplex form 

Basic variables 𝑥1 𝑥2 𝑠3 𝑠4 𝑠5 RHS 

𝑥2 0 1 7/131 0 -13/393 407627/393 

𝑠4 0 0 67/131 1 -611/393 969250/393 

𝑥1 1 0 -5/131 0 28/393 76087/393 

Z 0 0 211/131 0 76/393 21468271/393 

 

The optimal value of objective function is 54627. 

By using Eq. (9) and solving Example 3 in [1], the crisp model will be as follows: 

Minimize 𝑍 =6𝑥1+10𝑥2 

Subject to 

2𝑥1+5𝑥2 ≥ 6, 

3𝑥1+4𝑥2 ≥ 3, 

𝑥1,𝑥2 ≥ 0. 

The optimal simplex form will be as in Table 5. 

 

Table 5 Optimal simplex form 

Basic variables 𝑥1 𝑥2 𝑠3 𝑠4 RHS 

𝑠4 -7/5 0 -4/5 1 0 

𝑥2 2/5 1 -1/5 0 10 

Z -2 0 -2 0 12 

 

Hence, the optimal solution has the value of variables: 

𝑥1 = 0, 𝑥2 = 1.2, Z = 12. 

The obtained result is better than Saati et al. [2] method. 

By correcting typo errors which percolated in the Case study in [1], the problem formulation model 

will be as follows: 

Maximize 𝑍 = 9̃𝑥1+12̃𝑥2+15̃𝑥3+11̃𝑥4 

Subject to 

0.5𝑥1 + 1.5𝑥2 + 1.5𝑥3 + 𝑥4 ≤ 1500̃, 

3𝑥1 + 𝑥2 + 2𝑥3 + 3𝑥4 ≤ 2350̃, 

2𝑥1 +  4𝑥2 + 𝑥3 + 2𝑥4 ≤ 2600̃, 

0.5𝑥1 + 1𝑥2 + 0.5𝑥3 + 0.5𝑥4 ≤ 1200̃, 

𝑥1 ≤ 150̃, 

𝑥2 ≤ 100̃, 

𝑥3 ≤ 300̃, 

𝑥4 ≤ 400̃, 

𝑥1,𝑥2, 𝑥3, 𝑥4 ≥ 0. 

The values of each trapezoidal neutrosophic number remain the same [1].  

By using Eq. (8) and solving the Case study, the crisp model will be as follows: 

Maximize 𝑍 = 10𝑥1+10𝑥2+12𝑥3+9𝑥4 

Subject to 

0.5𝑥1 + 1.5𝑥2 + 1.5𝑥3 + 𝑥4 ≤ 1225, 

3𝑥1 + 𝑥2 + 2𝑥3 + 3𝑥4 ≤ 1680, 

2𝑥1 +  4𝑥2 + 𝑥3 + 2𝑥4 ≤ 2030, 

0.5𝑥1 + 1𝑥2 + 0.5𝑥3 + 0.5𝑥4 ≤ 945, 

𝑥1 ≤ 122, 

𝑥2 ≤ 87, 

𝑥3 ≤ 227, 

𝑥4 ≤ 297, 

𝑥1,𝑥2, 𝑥3, 𝑥4 ≥ 0. 
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By solving the previous model using simplex approach, the results are as follows: 

𝑥1 = 122, 𝑥2 = 87, 𝑥3 = 227, 𝑥4 =
773

3
, 𝑍 = 7133. 

 

2. A Note on the modifications suggested by Singh et al. [3] 

 

This part illustrates how Singh et al. [3] constructed their modifications of Abdel-Basset et al.’s 

method [1] on wrong concepts. The errors in Singh et al.’s [3] modifications reflects the 

misunderstanding of Abdel-Basset et al.’s method [1].  

 

In the second paragraph of the introductory section, Singh et al. [3] assert that “in Abdel-Basset et 

al.’s method [1], firstly, a neutrosophic linear programming problem (NLPP) is transformed into a 

crisp linear programming problem (LPP) by replacing each parameter of the NLPP, represented by 

a trapezoidal neutrosophic number with its equivalent defuzzified crisp value”. However, this is 

not true, since the neutrosophic linear programming problem (NLPP) is transformed into a crisp 

linear programming problem (LPP) by replacing each parameter of the NLPP, represented by a 

trapezoidal neutrosophic number with its equivalent deneutrosophic crisp value. The 

deneutrosophication process means transforming a neutrosophic value to its equivalent crisp value. 

In Section 2, Step 1 Singh et al. [3] alleged that Abdel-Basset et al.’s method [1] for comparing two 

trapezoidal neutrosophic numbers is based on maximization and minimization of problem, which 

is again not true.  

In Section 3 and Definition 4, Abdel-Basset et al. [1] illustrated that the method for comparing two 

trapezoidal neutrosophic numbers is as follows: 

1. If 𝑅(𝐴̃) > 𝑅(𝐵̃) then 𝐴̃ > 𝐵̃, 

2. If 𝑅(𝐴̃) < 𝑅(𝐵̃) then 𝐴̃ < 𝐵̃, 

3. If 𝑅(𝐴̃) = 𝑅(𝐵̃) then 𝐴̃ = 𝐵̃. 

 

There is well known that if 𝑎𝑙 =  𝑎𝑚1 = 𝑎𝑚2 = 𝑎𝑢 , then the trapezoidal number  

𝑎̃=〈(𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2 , 𝑎𝑢 ); 1 ,0, 0〉  will be transformed into a real number 𝑎 = 〈(𝑎, 𝑎, 𝑎, 𝑎 ); 1 ,0, 0〉, and 

hence in this case 𝑅(𝑎) = 𝑎 . We presented this fact to illustrate a great error in the suggested 

modifications of Singh et al. [3]  

In the Suggested modifications section [3], the authors claimed that: 

𝑅 (∑〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2, 𝑎𝑖

𝑢 , 𝑇𝑎̃𝑖
, 𝐼𝑎̃𝑖

, 𝐹𝑎̃𝑖
〉

𝑚

𝑖=1

) = ∑ 𝑅

𝑚

𝑖=1

〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2, 𝑎𝑖

𝑢 , 𝑇𝑎̃𝑖
, 𝐼𝑎̃𝑖

, 𝐹𝑎̃𝑖
〉 − ∑ 𝑇𝑎̃𝑖

𝑚

𝑖=1

 

+ ∑ 𝐼𝑎̃𝑖

𝑚
𝑖=1 + ∑ 𝐹𝑎̃𝑖

𝑚
𝑖=1 +𝑚𝑖𝑛1≤𝑗≤𝑛{𝑇𝑐̃𝑖

} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐼𝑐̃𝑖
} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐹𝑐𝑖̃

}               (11) 

instead of ,  

𝑅(∑ 〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2 , 𝑎𝑖

𝑢, 𝑇𝑎̃𝑖
, 𝐼𝑎̃𝑖

, 𝐹𝑎̃𝑖
〉𝑚

𝑖=1 ) =∑ 𝑅𝑚
𝑖=1 〈𝑎𝑖

𝑙 , 𝑎𝑖
𝑚1, 𝑎𝑖

𝑚2 , 𝑎𝑖
𝑢, 𝑇𝑎̃𝑖

, 𝐼𝑎̃𝑖
, 𝐹𝑎̃𝑖

〉 . 

 

Let us consider the following example for proving the error in this suggestion [3] 

Let 𝑚 = 3, which are three trapezoidal neutrosophic numbers 𝑎̃1, 𝑎̃2, 𝑎̃3; since 𝑎̃1=〈(1, 1,1,1 ); 1 ,0, 0〉 

, 𝑎̃2 = 〈(2, 2,2,2 ); 1 ,0, 0〉 ,  𝑎̃3= 〈(3, 3,3,3 ); 1 ,0, 0〉, then, 

𝑅(∑ 〈𝑎𝑖
𝑙 , 𝑎𝑖

𝑚1, 𝑎𝑖
𝑚2 , 𝑎𝑖

𝑢, 𝑇𝑎̃𝑖
, 𝐼𝑎̃𝑖

, 𝐹𝑎̃𝑖
〉𝑚

𝑖=1 ) = 𝑅(〈(1, 1,1,1 ); 1 ,0, 0〉 + 〈(2, 2,2,2 ); 1 ,0, 0〉 + 〈(3, 3,3,3 ); 1 ,0, 0〉) 

=  𝑅(〈(6, 6,6,6 ); 1 ,0, 0〉), and according to the previously determined fact “if 𝑎𝑙 =  𝑎𝑚1 = 𝑎𝑚2 = 𝑎𝑢   

then the trapezoidal number  𝑎̃ = 〈(𝑎𝑙 , 𝑎𝑚1, 𝑎𝑚2, 𝑎𝑢 ); 1 ,0, 0〉  will be transformed into a real 

number  𝑎 = 〈(𝑎, 𝑎, 𝑎, 𝑎 ); 1 ,0, 0〉  and hence in this case 𝑅(𝑎) = 𝑎 ”, the value of 

 𝑅(〈(6, 6,6,6 ); 1 ,0, 0〉) = 6.  

  

And by calculating the right hand side of Eq. (11), which is ∑ 𝑅𝑚
𝑖=1 〈𝑎𝑖

𝑙 , 𝑎𝑖
𝑚1, 𝑎𝑖

𝑚2 , 𝑎𝑖
𝑢, 𝑇𝑎̃𝑖

, 𝐼𝑎̃𝑖
, 𝐹𝑎̃𝑖

〉 −

∑ 𝑇𝑎̃𝑖

𝑚
𝑖=1 + ∑ 𝐼𝑎̃𝑖

𝑚
𝑖=1 + ∑ 𝐹𝑎̃𝑖

𝑚
𝑖=1 +𝑚𝑖𝑛1≤𝑗≤𝑛{𝑇𝑐𝑖̃

} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐼𝑐𝑖̃
} − 𝑚𝑎𝑥1≤𝑗≤𝑛{𝐹𝑐𝑖̃

} , we note that, 

𝑅〈(1, 1,1,1 ); 1 ,0, 0〉 + 𝑅〈(2, 2,2,2 ); 1 ,0, 0〉 + 𝑅〈(3, 3,3,3 ); 1 ,0, 0〉 − 3 + 0 + 0 + 1 − 0 − 0 =  1 + 2 +

3 − 3 + 0 + 0 + 1 − 0 − 0 = 4. 
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And then, the left hand side of Eq. (11) does not equal the right hand side, i.e. 6 ≠ 4.  

Consequently, the authors [3] built their suggestions on a wrong concept. 

  

Beside Eq. (11), the authors [3] used the expressions 𝑅(𝑎) = 3𝑎 + 1 for maximization problems, 

and  𝑅(𝑎) = −2𝑎 + 1  for minimization problems, and this shows peremptorily that their 

assumptions are scientifically incorrect. 

 

There is also a repeated error in all corrected solutions suggested by Singh et al. [3] which contradicts 

with the basic operations of trapezoidal neutrosophic numbers. This error is iterated in Section 7, as 

in Example 1, in Step 6. Singh et al. [3] illustrated that the optimal value of the NLPP is calculated 

using the optimal solution obtained in Step 5 as follows: 

(11,13,15,17)𝑥1 + (9,12,14,17)𝑥2 + (13,15,17,19)𝑥3 =  (11,13,15,17) ∗ 0  +(9,12,14,17) ∗ 0 

+(13,15,17,19) ∗ (
245

18
)  = 13 (

245

18
)  + 15 (

245

18
) +  17 (

245

18
) +  19 (

245

18
)  = 

7840

9
 , and because the basic 

operation of multiplying trapezoidal neutrosophic number by a constant value is  as follows:          

𝑎̃ ={
〈(𝑎1, 𝑎2, 𝑎3, 𝑎4); T𝑎̃ , I𝑎̃ , F𝑎̃〉  𝑖𝑓(  ≥ 0)

〈(𝑎4, 𝑎3, 𝑎2, 𝑎1); T𝑎̃  , I𝑎̃ , F𝑎̃〉 𝑖𝑓 ( < 0)
  , then the value of (11,13,15,17) ∗ 0 +(9,12,14,17) ∗

0 +(13,15,17,19) ∗ (
245

18
) = (

3185

18
,

1225

6
,

4165

18
,

4655

18
; 1,0,0).Then the optimal value of the NLPP is𝑧̃ ≈  

=(
3185

18
,

1225

6
,

4165

18
,

4655

18
).  

 

The same error appears in Example 4, where the optimal value of the NLPP is calculated by Singh 

et al. [3] using the optimal solution obtained in Step 5 as follows: 

(6,8,9,12)𝑥1(9,10,12,14)𝑥2 + (12,13,15,17)𝑥3 + (8,9,11,13)𝑥4 =   (6,8,9,12)(
3700

21
)+ (9,10,12,14)(0) +

(12,13,15,17)(
6200

7
)  + (8,9,11,13)(0)  = 6(

3700

21
)+ 8 (

3700

21
) + 9 (

3700

21
) + 12(

3700

21
)  +12(

6200

7
)+13(

6200

7
)  + 

15(
6200

7
)+17(

6200

7
) = 

1189700

21
 , which is scientifically incorrect and reflects only the weak background 

of the authors in the neutrosophic field. 

Therefore, we concluded that it is scientifically incorrect to use Singh et al.’s modifications [3]. 

  

3. Conclusions  

Clarifications and corrections of some typo errors are presented here to avoid any reading conflict. 

Also, the correct results of NLPPs are presented. By using three modified functions for ranking 

process which were presented by Abdel-Basset et al. [1], the reader will be able to solve all types of 

linear programming problems with trapezoidal and symmetric trapezoidal neutrosophic numbers. 

Also, the mathematically incorrect assumptions used by Singh et al. [3] are discussed and rejected.  
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