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(t, i, f)-Neutrosophic Structures & I-Neutrosophic Structures 

(Revisited) 

Florentin Smarandache
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Abstract. This paper is an improvement of our paper “(t, 

i, f)-Neutrosophic Structures” [1], where we introduced 

for the first time a new type of structures, called (t, i, f)-

Neutrosophic Structures, presented from a neutrosophic 

logic perspective, and we showed particular cases of such 

structures in geometry and in algebra.  

In any field of knowledge, each structure is com-

posed from two parts: a space, and a set of axioms (or 

laws) acting (governing) on it. If the space, or at least one 

of its axioms (laws), has some indeterminacy of the form 

(t, i, f)  ≠ (1, 0, 0), that structure is a (t, i, f)-Neutrosophic 

Structure. 

The (t, i, f)-Neutrosophic Structures [based on the 

components t = truth, i = numerical indeterminacy, f = 

falsehood] are different from the Neutrosophic Algebraic 

Structures [based on neutrosophic numbers of the form a 

+ bI, where I = literal indeterminacy and In = I], that we 

rename as I-Neutrosophic Algebraic Structures (meaning 

algebraic structures based on indeterminacy “I” only). 

But we can combine both and obtain the (t, i, f)-I-

Neutrosophic Algebraic Structures, i.e. algebraic struc-

tures based on neutrosophic numbers of the form a+bI, 

but also having indeterminacy of the form (t, i, f)  ≠ (1, 0, 

0) related to the structure space (elements which only

partially belong to the space, or elements we know noth-

ing if they belong to the space or not) or indeterminacy of 

the form (t, i, f)  ≠ (1, 0, 0) related to at least one axiom 

(or law) acting on the structure space. Then we extend 

them to Refined (t, i, f)- Refined I-Neutrosophic Algebra-

ic Structures. 

Keywords: (t, i, f)-neutrosophic structure, truth-indeterminacy-falsehood, neutrosophic axiom, indeterminacy, degree of indeter-

minacy, neutrosophic algebraic structures, neutrosophic groupoid, neutrosophic semigroup, neutrosophic group, neutrosophic linear 

algebras,  neutrosophic bi-algebraic structures, neutrosophic N-algebraic structures, (t, i, f)-Neutrosophic Geometry

1 Classification of Indeterminacies 

1.1 Numerical Indeterminacy 

Numerical Indeterminacy (or Degree of Indeterminacy), 

which has the form (t, i, f)  ≠ (1, 0, 0), where t, i, f are 

numbers, intervals, or subsets included in the unit interval   

[0, 1], and it is the base for the (t, i, f)-Neutrosophic 

Structures.  

1.1 Non-numerical Indeterminacy 

 Non-numerical Indeterminacy (or Literal Indetermina-

cy), which is the letter “I” standing for unknown (non-
determinate), such that I2 = I, and used in the composition 
of the neutrosophic number N = a + bI, where a and b are 
real or complex numbers, and a is the determinate part of 
number N, while bI is the indeterminate part of N. The 
neutrosophic numbers are the base for the I-Neutrosophic 

Structures. 

2 Neutrosophic Algebraic Structures [or I-
Neutrosophic Algebraic Structures] 

A previous type of neutrosophic structures was intro-
duced in algebra by W. B. Vasantha Kandasamy and Flor-

entin Smarandache [2-57], since 2003, and it was called 
Neutrosophic Algebraic Structures. Later on, more re-
searchers joined the neutrosophic research, such as: Mum-
taz Ali, Said Broumi, Jun Ye, A. A. Salama, Muhammad 
Shabir, K. Ilanthenral, Meena Kandasamy, H. Wang, Y.-Q. 
Zhang, R. Sunderraman, Andrew Schumann, Salah Osman, 

D. Rabounski, V. Christianto, Jiang Zhengjie, Tudor 
Paroiu, Stefan Vladutescu, Mirela Teodorescu, Daniela Gi-
fu, Alina Tenescu, Fu Yuhua, Francisco Gallego Lupiañez, 
etc. 

The neutrosophic algebraic structures are algebraic 
structures based on sets of neutrosophic numbers of the 
form N = a + bI, where a, b are real (or complex) numbers, 
and a is called the determinate part on N and bI is called 
the indeterminate part of N, with mI + nI = (m + n)I, 0∙I = 
0, I^n = I for integer n ≥ 1, and I / I = undefined. 

When a, b are real numbers, then a + bI is called a neu-
trosophic real number. While if at least one of a, b is a 

complex number, then a + bI is called a neutrosophic com-
plex number. 

We may say "literal indeterminacy" for "I" from a+bI, 
and "numerical indeterminacy" for "i" from (t, i, f) in order 
to distinguish them. 
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The neutrosophic algebraic structures studied by 
Vasantha-Smarandache in the period 2003-2015 are: neu-
trosophic groupoid, neutrosophic semigroup, neutrosophic 
group, neutrosophic ring, neutrosophic field, neutrosophic 
vector space, neutrosophic linear algebras etc., which later 
(between 2006-2011) were generalized by the same re-

searchers to neutrosophic bi-algebraic structures, and more 
general to neutrosophic N-algebraic structures. 

Afterwards, the neutrosophic structures were further 
extended to neutrosophic soft algebraic structures by Flor-
entin Smarandache, Mumtaz Ali, Muhammad Shabir, and 
Munazza Naz in 2013-2014. 

In 2015 Smarandache refined the literal indeterminacy 

I into different types of literal indeterminacies (depending 

on the problem to solve) such as  I1, I2, …, Ip with integer p 

≥ 1, and obtained the refined neutrosophic numbers of the 

form Np = a+b1I1+b2I2+…+bpIp where a, b1, b2, …, bp are 

real or complex numbers, and a is called the determinate 

part of Np, while for each k𝜖{1, 2, …, p} bkIk is called the 

k-th indeterminate part of Np,  

and for each k𝜖{1, 2, …, p}, one similarly has: 

mIk + nIk = (m + n)Ik, 0∙Ik = 0, Ik
n = Ik for integer n ≥ 1,

and Ik /Ik = undefined. 

The relationships and operations between Ij and Ik, for j 

≠ k, depend on each particular problem we need to solve. 

Then consequently Smarandache [2015] extended the 

neutrosophic algebraic structures to Refined Neutrosophic 
Algebraic Structures [or Refined I-Neutrosophic Algebraic 
Structures], which are algebraic structures based on the 
sets of the refined neutrosophic numbers 
a+b1I1+b2I2+…+bpIp. 

3 (t, i, f)-Neutrosophic Structures 

We now introduce for the first time another type of 

neutrosophic structures.  

These structures, in any field of knowledge, are 

considered from a neutrosophic logic point of view, i.e. 

from the truth-indeterminacy-falsehood (t, i, f) values. In 

neutrosophic logic every proposition has a degree of truth 

(t), a degree of indeterminacy (i), and a degree of 

falsehood (f), where t, i, f are standard or non-standard 

subsets of the non-standard unit interval ]-0, 1+[.  In 

technical applications t, i, and f are only standard subsets 

of the standard unit interval [0, 1] with: 
-0 ≤ sup(T) + sup(I) + sup(F) ≤ 3+ 

where sup(X) means supremum of the subset X. 

In general, each structure is composed from: a space, 

endowed with a set of axioms (or laws) acting (governing) 

on it. If the space, or at least one of its axioms, has some 

numerical indeterminacy of the form (t, i, f)  ≠ (1, 0, 0), we 

consider it as a (t, i, f)-Neutrosophic Structure.  

Indeterminacy with respect to the space is referred to 

some elements that partially belong [i.e. with a 

neutrosophic value (t, i, f)  ≠ (1, 0, 0)] to the space, or their 

appurtenance to the space is unknown. 

An axiom (or law) which deals with numerical 

indeterminacy is called neutrosophic axiom (or law). 

We introduce these new structures because in the real 

world we do not always know exactly or completely the 

space we work in; and because the axioms (or laws) are not 

always well defined on this space, or may have 

indeterminacies when applying them. 

4 Refined (t, i, f)-Neutrosophic Structures [or (tj, ik, 
fl)-Neutrosophic Structures] 

In 2013 Smarandache [76] refined the numerical 

neutrosophic components (t, i, f) into (t1, t2, …, tm;  i1, i2, 

…, ip;  f1, f2, …, fr), where m, p, r are integers ≥ 1. 

Consequently, we now [2015] extend the (t, i, f)-

Neutrosophic Structures to (t1, t2, …, tm;  i1, i2, …, ip;  f1, f2, 

…, fr)-Neutrosophic Structures, that we called Refined (t, i, 

f)-Neutrosophic Structures [or (tj, ik, fl)-Neutrosophic 

Structures].  

These are structures whose elements have a refined 

neutrosophic value of the form (t1, t2, …, tm;  i1, i2, …, ip;  

f1, f2, …, fr) or the space has some indeterminacy of this 

form. 

5 (t, i, f)-I-Neutrosophic Algebraic Structures 

The (t, i, f)-Neutrosophic Structures [based on the 

numerical components t = truth, i = indeterminacy, f = 

falsehood] are different from the Neutrosophic Algebraic 

Structures [based on neutrosophic numbers of the form a + 

bI]. We may rename the last ones as I-Neutrosophic 

Algebraic Structures (meaning: algebraic structures based 

on literal indeterminacy “I” only). But we can combine 

both of them and obtain a (t, i, f)-I-Neutrosophic Algebraic 

Structures, i.e. algebraic structures based on neutrosophic 

numbers of the form a + bI, but this structure also having 

indeterminacy of the form (t, i, f)  ≠ (1, 0, 0) related to the 

structure space (elements which only partially belong to 

the space, or elements we know nothing if they belong to 

the space or not) or indeterminacy related to at least an 

axiom (or law) acting on the structure space. Even more, 

we can generalize them to Refined (t, i, f)- Refined I-

Neutrosophic Algebraic Structures, or (tj, ik, fl)-Is-

Neutrosophic Algebraic Structures. 

6 Example of Refined I-Neutrosophic Algebraic 
Structure 

Let the indeterminacy I be split into I1 = contradiction 

(i.e. truth and falsehood simultaneously), I2 = ignorance 

(i.e. truth or falsehood), and I3 = vagueness, and the 

corresponding 3-refined neutrosophic numbers of the form 

a+b1I1+b2I2+b3I3. 

Let (G, *) be a groupoid. Then the 3-refined I-

neutrosophic groupoid is generated by I1, I2, I3 and G under 

* and it is denoted by N3(G) = {(G∪I1∪I2∪I3), *} =

{ a+b1I1+b2I2+b3I3 / a, b1, b2, b3 ∈ G }. 

4
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7 Example of Refined (t, i, f)-Neutrosophic Struc-
ture 

Let (t, i, f) be split as (t1, t2; i1, i2; f1, f2, f3). Let H = 

( {h1, h2, h3}, # ) be a groupoid, where h1, h2, and h3 are 

real numbers. Since the elements h1, h2, h3 only partially 

belong to H in a refined way, we define a refined (t, i, f)-

neutrosophic groupoid { or refined (2; 2; 3)-neutrosophic 

groupoid, since t was split into 2 parts, I into 2 parts, and t 

into 3 parts } as H = {h1(0.1, 0.1;  0.3, 0.0;  0.2, 0.4, 0.1), 

h2(0.0, 0.1;  0.2, 0.1;  0.2, 0.0, 0.1), h3(0.1, 0.0;  0.3, 0.2;  

0.1, 0.4, 0.0)}. 

8 Examples of (t, i, f)-I-Neutrosophic Algebraic 
Structures 

8.1 Indeterminate Space (due to Unknown Ele-
ment); with Neutrosophic Number included 

Let B = {2+5I, -I, -4, b(0, 0.9, 0)} a neutrosophic set, 

which contains two neutrosophic numbers, 2+5I and -I, 

and we know about the element b that its appurtenance to 

the neutrosophic set is 90% indeterminate. 

8.2 Indeterminate Space (due to Partially Known 
Element); with Neutrosophic Number included  

Let C = {-7, 0, 2+I(0.5, 0.4, 0.1), 11(0.9, 0, 0) }, which 

contains a neutrosophic number 2+I, and this neutrosophic 

number is actually only partially in C; the element 11 is 

also partially in C. 

8.3 Indeterminacy Axiom (Law) 

Let D = [0+0I, 1+1I] = {c+dI, where c, d 𝜖 [0, 1]}. One 

defines the binary law # in the following way:  

# : DD  D 

x # y = (x1 + x2I) # (y1 + y2I) = [(x1 + x2)/y1] + y2I, 

but this neutrosophic law is undefined (indeterminate) 

when y1 = 0. 

8.4 Little Known or Completely Unknown Axiom 
(Law) 

Let us reconsider the same neutrosophic set D as above. 

But, about the binary neutrosophic law  that D is 

endowed with, we only know that it associates the 

neutrosophic numbers 1+I and 0.2+0.3I with the 

neutrosophic number 0.5+0.4I, i.e. 

(1+I)(0.2+0.3I) = 0.5+0.4I. 

There are many cases in our world when we barely 

know some axioms (laws). 

9 Examples of Refined (t, i, f)- Refined I-
Neutrosophic Algebraic Structures 

We combine the ideas from Examples 5 and 6 and we 

construct the following example. 

Let’s consider, from Example 5, the groupoid (G, *), 

where G is a subset of positive real numbers, and its 

extension to a 3-refined I-neutrosophic groupoid, which 

was generated by I1, I2, I3 and G under the law * that was 

denoted by N3(G) = { a+b1I1+b2I2+b3I3 / a, b1, b2, b3 ∈ G }.  

We then endow each element from N3(G) with some 

(2; 2; 3)-refined degrees of membership/ indeterminacy/ 

nonmembership, as in Example 6, of the form (T1, T2; I1, 

I2; F1, F2, F3), and we obtain a N3(G)(2;2;3) = 

{ a+b1I1+b2I2+b3I3(T1, T2; I1, I2; F1, F2, F3) / a, b1, b2, b3 ∈ 

G }, where 

1 2

1 2 3 1 2 3

1 2
1 2

1 2 3 1 2 3

3 1 2 3
1 2

1 2 3 1 2 3 1 2 3

0.5
, ;

, ;

0.1 0.2
, , 3 .

a a
T T

a b b b a b b b

b b
I I

a b b b a b b b

b b b b
F F F

a b b b a b b b a b b b

 
     

 
     


  

        

Therefore, N3(G)(2;2;3) is a refined (2; 2; 3)-
neutrosophic groupoid and a 3-refined I-neutrosophic 
groupoid. 

10 Neutrosophic Geometric Examples 

10.1 Indeterminate Space 

We might not know if a point P belongs or not to a 

space S [we write P(0, 1, 0),  meaning that P’s 

indeterminacy is 1, or completely unknown, with respect to 

S].   

Or we might know that a point Q only partially belongs 

to the space S and partially does not belong to the space S 

[for example  Q(0.3, 0.4, 0.5), which means that with 

respect to S, Q’s membership is 0.3, Q’s indeterminacy is 

0.4, and Q’s non-membership is 0.5].  

Such situations occur when the space has vague or 

unknown frontiers, or the space contains ambiguous (not 

well defined) regions. 

10.2 Indeterminate Axiom 

Also, an axiom (α) might not be well defined on the 

space S, i.e. for some elements of the space the axiom (α)  

may be valid, for other elements of the space the axiom (α) 

may be indeterminate (meaning neither valid, nor invalid), 

while for the remaining elements the axiom (α) may be 

invalid. 

As a concrete example, let’s say that the neutrosophic 

values of the axiom (α) are (0.6, 0.1, 0.2) = (degree of 

validity, degree of indeterminacy, degree of invalidity). 

11 (t, i, f)-Neutrosophic Geometry as a Particular 
Case of (t, i, f)-Neutrosophic Structures 

As a particular case of (t, i, f)-neutrosophic structures 

in geometry, one considers a (t, i, f)-Neutrosophic 

Geometry as a geometry which is defined either on a space 

with some indeterminacy (i.e. a portion of the space is not 

5
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known, or is vague, confused, unclear, imprecise), or at 

least one of its axioms has some indeterminacy of the form 

(t, i, f)  ≠ (1, 0, 0) (i.e. one does not know if the axiom is 

verified or not in the given space, or for some elements the 

axiom is verified and for others it is not verified). 

This is a generalization of the Smarandache Geometry 

(SG) [57-75], where an axiom is validated and invalidated 

in the same space, or only invalidated, but in multiple ways. 

Yet the SG has no degree of indeterminacy related to the 

space or related to the axiom.  

A simple Example of a SG is the following – that 

unites Euclidean, Lobachevsky-Bolyai-Gauss, and 

Riemannian geometries altogether, in the same space, 

considering the Fifth Postulate of Euclid:  in one region of 

the SG space the postulate is validated (only one parallel 

trough a point to a given line), in a second region of SG the 

postulate is invalidated (no parallel through a point to a 

given line – elliptical geometry), and in a third region of 

SG the postulate is invalidated but in a different way 

(many parallels through a point to a given line – hyperbolic 

geometry). This simple example shows a hybrid geometry 

which is partially Euclidean, partially Non-Euclidean 

Elliptic, and partially Non-Euclidean Hyperbolic. 

Therefore, the fifth postulate (axiom) of Euclid is true for 

some regions, and false for others, but it is not 

indeterminate for any region (i.e. not knowing how many 

parallels can be drawn through a point to a given line). 

We can extend this hybrid geometry adding a new 

space region where one does not know if there are or there 

are not parallels through some given points to the given 

lines (i.e. the Indeterminate component) and we form a 

more complex (t, i, f)-Neutrosophic Geometry. 

12 Neutrosophic Algebraic Examples 

12.1 Indeterminate Space (due to Unknown Ele-
ment) 

Let the set (space) be NH = {4, 6, 7, 9, a}, where the 

set NH has an unknown element "a", therefore the whole 

space has some degree of indeterminacy. Neutrosophically, 

we write a(0, 1, 0), which means the element a is 100% 

unknown. 

12.2 Indeterminate Space (due to Partially Known 
Element) 

Given the set M = {3, 4, 9(0.7, 0.1, 0.3)}, we have two 

elements 3 and 4 which surely belong to M, and one writes 

them neutrosophically as 3(1, 0, 0) and 4(1, 0, 0), while the 

third element 9 belongs only partially (70%) to M, its 

appurtenance to M is indeterminate (10%), and does not 

belong to M (in a percentage of 30%).  

Suppose the above neutrosophic set M is endowed with 

a neutrosophic law * defined in the following way: 

x1(t1, i1, f1)* x2(t2, i2, f2) = max{x1, x2}( min{t1, t2}, 

max{i1, i2}, max{f1, f2}), 

which is a neutrosophic commutative semigroup with 

unit element 3(1, 0  ,0). 

Clearly, if x, y 𝜖 M, then x*y 𝜖 M.  Hence the 

neutrosophic law * is well defined.  

Since max and min operators are commutative and 

associative, then * is also commutative and associative. 

If x 𝜖 M, then x*x = x.    

Below, examples of applying this neutrosophic law *: 

3*9(0.7, 0.1, 0.3) = 3(1, 0, 0)*9(0.7, 0.1, 0.3) = max{3, 

9}( min{1, 0.7}, max{0, 0.1}, max{0, 0.3} ) = 9(0.7, 0.1, 

0.3). 

3*4 = 3(1, 0, 0)*4(1, 0, 0) = max{3, 4}( min{1, 1}, 

max{0, 0}, max{0, 0} ) = 4(1, 0, 0). 

12.3 Indeterminate Law (Operation) 

For example, let the set (space) be NG = ( {0, 1, 2}, / ), 

where "/" means division. 

NG is a (t, i, f)-neutrosophic groupoid, because the 

operation "/" (division) is partially defined, partially 

indeterminate (undefined), and partially not defined. 

Undefined is different from not defined. Let's see: 

2/1 = 1, which belongs to NG; {defined}. 

1/0 = undefined; {indeterminate}. 

1/2 = 0.5, which does not belongs to NG; {not defined}. 

So the law defined on the set NG has the properties 

that: 

 applying this law to some elements, the results are

in NG [well defined law]; 

 applying this law to other elements, the results are

not in NG [not well defined law]; 

 applying this law to again other elements, the

results are undefined [indeterminate law]. 

We can construct many such algebraic structures where 

at least one axiom has such behavior (such indeterminacy 

in principal). 

Websites at UNM for Neutrosophic Algebraic 
Structures and respectively Neutrosophic Geom-
etries 

http://fs.gallup.unm.edu/neutrosophy.htm, and 

http://fs.gallup.unm.edu/geometries.htm respectively. 
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Abstract. The most famous contribution of Heisenberg is 

uncertainty principle. But the original uncertainty princi-

ple is improper. Considering all the possible situations 

(including the case that people can create laws) and ap-

plying Neutrosophy and Quad-stage Method, this paper 

presents "certainty-uncertainty principles" with general 

form and variable dimension fractal form. According to 

the classification of Neutrosophy, "certainty-uncertainty 

principles" can be divided into three principles in differ-

ent conditions: "certainty principle", namely a particle’s 

position and momentum can be known simultaneously; 

"uncertainty principle", namely a particle’s position and 

momentum cannot be known simultaneously; and neutral 

(fuzzy) "indeterminacy principle", namely whether or not 

a particle’s position and momentum can be known simul-

taneously is undetermined. The special cases of "certain-

ty-uncertainty principles" include the original uncertainty 

principle and Ozawa inequality. In addition, in accord-

ance with the original uncertainty principle, discussing 

high-speed particle’s speed and track with Newton me-

chanics is unreasonable; but according to "certainty-

uncertainty principles", Newton mechanics can be used 

to discuss the problem of gravitational defection of a 

photon orbit around the Sun (it gives the same result of 

deflection angle as given by general relativity). Finally, 

for the reason that in physics the principles, laws and the 

like that are regardless of the principle (law) of conserva-

tion of energy may be invalid; therefore "certainty-

uncertainty principles" should be restricted (or con-

strained) by principle (law) of conservation of energy, 

and thus it can satisfy the principle (law) of conservation 

of energy. 

Keywords: Neutrosophy, quad-stage method, uncertainty principle, certainty-uncertainty principles, fractal, variable dimen-

sion fractal, Ozawa inequality, principle (law) of conservation of energy. 

1 Introduction 

In quantum mechanics, the uncertainty principle refers to 
the position and momentum of a particle cannot be deter-
mined simultaneously, the uncertainty of position ( x ) 
and uncertainty of momentum ( p ) obey the following 
inequality 

/ 4x p h                （1） 

where, h is the Planck constant.

     As well-known, the most famous contribution of Hei-
senberg is uncertainty principle. But the original uncertain-
ty principle is improper. 

As a new branch of philosophy, Neutrosophy studies the 

origin, nature, and scope of neutralities, as well as their in-
teractions with different ideational spectra. According to 
Neutrosophy that there is a 3D Neutrosophic Space, where 
each dimension of the space represents respectively the 
truth (T), the falsehood (F), and the indeterminacy (I) of 
the statement under consideration. More information about 

Neutrosophy may be found in references [1,2]. Quad-stage 
is introduced in reference [3], it is the expansion of Hegel’s 

triad-stage (triad thesis, antithesis, synthesis of develop-
ment). The four stages are “general theses”, “general an-
titheses”, “the most important and the most complicated 
universal relations”, and “general syntheses”. In quad-
stage method, “general theses” may be considered as the 
notion or idea <A> in neutrosophy; “general antitheses” 

may be considered as the notion or idea <Anti-A> in neu-
trosophy; “the most important and the most complicated 
universal relations” may be considered as the notion or 
idea <Neut-A> in neutrosophy; and “general syntheses” 
are the final results. The different kinds of results in the 
above mentioned four stages can also be classified and in-

duced with the viewpoints of neutrosophy. Thus, the theo-
ry and achievement of neutrosophy can be applied as many 
as possible, and the method of quad-stage will be more ef-
fective. The combination of Neutrosophy and quad-stage 
will be a powerful method to realize many innovations in 
areas of science, technology, literature and art. Therefore, 

this paper expands uncertainty principle with Neutrosophy 
and Quad-stage Method and presents certainty-uncertainty 
principles. 

As expanding uncertainty principle with neutrosophy and 
quad-stage, the whole process can be divided into the fol-
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lowing four stages. 

The first stage (stage of “general theses”), for the begin-
ning of development, the thesis (namely uncertainty prin-
ciple) should be widely, deeply, carefully and repeatedly 
contacted, explored, analyzed, perfected and so on. 

Regarding the advantages of uncertainty principle, that will 

not be repeated here, while we should stress the deficien-
cies of uncertainty principle. 

For other perspectives on uncertainty principle, we will 
discuss in detail below, in order to avoid duplication. 

The second stage, for the appearance of opposite (antithe-
sis), the antithesis should be also widely, deeply, carefully 

and repeatedly contacted, explored, analyzed, perfected 
and so on. 

There are many opposites (antitheses) to uncertainty prin-
ciple. For example: certainty principle, law of conservation 
of energy, and so on, this paper discusses the problems re-
lated to law of conservation of energy in the last part. 

The third stage is the one that the most important and the 
most complicated universal relations. The purpose of this 
provision stage is to establish the universal relations in the 
widest scope.  

To link and combine uncertainty principle with Neu-
trosophy and law of conservation of energy, it can be ex-

panded and developed effectively and successfully in the 
maximum area. 

The fourth stage, to carry on the unification and synthesis 
regarding various opposites and the suitable pieces of in-
formation, factors, and so on; and reach one or more re-
sults to expand uncertainty principle, and these are the best 

or agreed with some conditions. 

2  Heisenberg inequality, Ozawa inequality and their forms 
of equality in first stage and second stage 

    In first stage, we discuss the problems related to 
Heisenberg inequality firstly. 

Heisenberg inequality (Eq.1) can be changed into the 

following form of equality 

  4/khpx                                       （2） 
where, k  is a real number and 1k . 

For other contents of the first stage (such as 
Heisenberg inequality cannot consider law of conservation 

of energy), we will discuss them below. 
In second stage, we discuss the problems related to 

Ozawa inequality (the opposites of Heisenberg inequality) 
firstly. 

  Ozawa inequality [4] can be written as follows 

  4/)()( hPQPQPQ        （3） 

It can be changed into the following form of equality 

   4/)()( khPQPQPQ       (4) 

where, k  is a real number and 1k . 
For other contents of the second stage (such as Ozawa 

inequality cannot consider law of conservation of energy), 
we will also discuss them below. 

3 "Certainty-uncertainty principles" with general 
form 

Now we link the viewpoints of Neutrosophy and enter 
the fourth stage. 

According to Neutrosophy, any proposition has three 

situations of truth, falsehood and indeterminacy 

respectively. Thus, the original uncertainty principle can be 

extended into the following "certainty-uncertainty 

principles" with general form 

Khpx 
      (5) 

where, K  is a real number and 0K .

Eq.(5) can be divided into three principles: 

The first one is the “uncertainty principle” 
( 1KK  ): a particle’s position and momentum cannot be 
known simultaneously. 

Obviously, if 4/11 K  , then it is the original 
uncertainty principle. 

The second one is the “certainty principle” 
( 2KK  ): a particle’s position and momentum can be 
known simultaneously. 

 Referring to the experiments for establishing Ozawa 
inequality, the value of 2K  can be decided by related 
experiments.

The third one is the neutral (fuzzy) “indeterminacy 
principle" ( 12 KKK  ): whether or not a particle’s 
position and momentum can be known simultaneously is 
undetermined. 

Similarly, the original Ozawa inequality can be 

extended into the following Ozawa type’s "certainty-

uncertainty principles" with general form 

  KhPQPQPQ  )()(            （6） 

where, K  is a real number and 0K .

Eq.(6) can be divided into three principles: 

The first one is the “certainty principle” ( 1KK  ): a 
particle’s position and momentum can be known (namely 
can be measured with zero-error) simultaneously (here 
σ(P) or σ(Q) is equal to infinity). 

Obviously, if 4/11 K  , then it is the original 

Ozawa inequality (with equality form).

11
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It should be noted that here the first one is not the 

uncertainty principle, but certainty principle. 

The second one is the “uncertainty principle” 
( 2KK  ): a particle’s position and momentum cannot be
known simultaneously. 

The third one is the neutral (fuzzy) “indeterminacy 
principle" ( 12 KKK  ): whether or not a particle’s 
position and momentum can be known simultaneously is 

undetermined.
4 "Certainty-uncertainty principles" with variable 
dimension fractal form 

In order to process Eq. (5) and Eq.(6), as well as other 

equalities and inequalities that may arise in the future with 

unified manner, we will link variable dimension fractal to 

discuss the "certainty-uncertainty principles" with variable 

dimension fractal form. 

The general form of variable dimension fractal is as 

follows 

D

C
N

r
   （7） 

where, )(rfD  , instead of a constant. 

For the sake of convenience, we only discuss the 
situation of 1C , that is 

Dr
N

1
   （8） 

Thus, Eq.(5) can be written as the following variable 

dimension fractal form 

Dh
px

1
  （9） 

Solving this equation, it gives 

h

Kh
D

ln

)ln(
      （10） 

Then, the values of 1D  and 2D  corresponding to 1K
and 2K  can be calculated by Eq.(10), for example 

h

hK
D

ln

)ln( 1
1    （11） 

Similarly, Eq.(6) can be written as the following 

variable dimension fractal form 

  
Dh

PQ
1

      （12） 

Solving this equation, it gives 

h

PQPQKh
D

ln

))()(ln( 



  （13） 

Then, the values of 1D  and 2D  corresponding to 1K
and 2K  can be calculated by Eq.(13), for example 

h

PQPQhK
D

ln

))()(ln( 1
1





   （14） 

5 Solving  the problem of light speed with Newton 

mechanics 
Now we link the problem related to Newton 

mechanics. 
In accordance with the original uncertainty principle, 

discussing high-speed particle’s speed and track with 
Newton mechanics is unreasonable; but according to 
"certainty-uncertainty principles", Newton mechanics can 
be used to discuss the problem of gravitational defection of 
a photon orbit around the Sun (it presents the same result 
of deflection angle as given by general relativity). The 

solving method can be found in reference [4]; in which, for 
problem of gravitational defection of a photon orbit around 
the Sun, the improved formula of gravitation between Sun 
and photon is as follows: 

4

2

0

2

5.1

r

GMmr

r

GMm
F     （15） 

where： 0r  is the shortest distance between the light and 
the Sun, if the light and the Sun are tangent, it is equal to 
the radius of the Sun.  

The funny thing is that, for this problem, the 
maximum gravitational force given by the improved 

formula is 2.5 times of that given by the original Newton’s 
law of gravity. 

6  To be restricted (or constrained) by principle 
(law) of conservation of energy 

In this part we will link principle (law) of 
conservation of energy to discuss further. 

For the reason that in physics the principles, laws and 
the like that are regardless of the principle (law) of 
conservation of energy may be invalid; therefore 
"certainty-uncertainty principles" should be restricted (or 

constrained) by principle (law) of conservation of energy, 
and thus it can satisfy the principle (law) of conservation 
of energy. 

The general form of the principle (law) of 
conservation of energy is as follows 

  constEtE  )0()(
Or 

  0
)0(

)(
1 

E

tE
 

Thus, referring to reference [3] for applying least 

square method to establish "partial and temporary unified 
theory of natural science so far" including all the equations 
of natural science so far (in which, the theory of everything 
to express all of natural laws, described by Hawking that a 
single equation could be written on a T-shirt, is partially 
and temporarily realized in the form of "partial and 

12
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temporary unified variational principle of natural science 
so far"),  Eq.(5) (one kind of "certainty-uncertainty 
principles" with general form)  can be restricted (or 
constrained) by principle (law) of conservation of energy 
as follows  

2 (
(1 ) 0

(0)

E t
x p Kh w

E
     （ ）    

where, K  is a real number and 0K , w  is a suitable 
positive weighted number. 

Similarly, Eq.(6) (one kind of Ozawa type’s "certainty-
uncertainty principles" with general form)  can be 

restricted (or constrained) by principle (law) of 
conservation of energy as follows 

2 (
( ) ( ) (1 ) 0

(0)

E t
Q P Q P Q P Kh w

E
          （ ）

（17） 
    For Eq.(9) (the variable dimension fractal form of 

Eq.(5)), it can be restricted (or constrained) by principle 
(law) of conservation of energy as follows 

21 ( )
(1 ) 0

(0)

t
x p w

E
     （ ）

D

（1 

    For Eq.(12) (the variable dimension fractal form of 

Eq.(6)), it can be restricted (or constrained) by principle 
(law) of conservation of energy as follows 

21 ( )
(1 ) 0

(0)D

t
Q P w

E
     （ ）     (19) 

    As the cases that "certainty-uncertainty principles" 

should be restricted (or constrained) by other principles 
(laws) and the like, similar method can be used.  

Conclusion 

The original uncertainty principle is improper. 
Considering all the possible situations (including the case 
that people can create laws), and applying Neutrosophy 

and Quad-stage Method, this paper presents "certainty-
uncertainty principles" with general form and variable 
dimension fractal form. According to the classification of 
Neutrosophy, "certainty-uncertainty principles" can be 
divided into three principles in different conditions: 
"certainty principle", namely a particle’s position and 

momentum can be known simultaneously; "uncertainty 
principle", namely a particle’s position and momentum 
cannot be known simultaneously; and neutral (fuzzy) 
"indeterminacy principle", namely whether or not a 
particle’s position and momentum can be known 
simultaneously is undetermined.  

Referring to the "certainty-uncertainty principles" for 
a particle's position and momentum, the "certainty-
uncertainty principles" for other physical quantities can 
also be presented with the similar method. 
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Abstract. This paper presents multi-attribute decision 

making based on rough accuracy score function with 

rough neutrosophic attribute values. While the concept of 

neutrosophic sets is a  powerful logic  to  handle  

indeterminate  and inconsistent  information,  the  theory 

of rough neutrosophic sets is also a powerful 

mathematical tool to deal with incompleteness. The 

rating of all alternatives is expressed with the upper and 

lower approximation operator and the pair of 

neutrosophic sets which are characterized by truth-

membership degree, indeterminacy-membership degree, 

and falsity-membership degree. Weight of each attribute 

is partially known to decision maker. We introduce a 

multi attribute decision making method in rough 

neutrosophic environment based on rough accuracy score 

function. Information entropy method is used to obtain 

the unknown attribute weights. Rough accuracy score 

function is defined to determine rough accuracy score 

values. Then weighted rough accuracy score value is 

defined to determine the ranking order of all alternatives. 

Finally, a numerical example is provided to illustrate the 

applicability and effectiveness of the proposed approach. 

Keywords: Neutrosophic set, Rough neutrosophic set, Single-valued neutrosophic set, Grey relational analysis, Information 

Entropy, Multi-attribute decision making. 

 Introduction 

   The concept of rough neutrosophic set is very recently 
proposed by Broumi et al. [1], [2]. It seems to be very 

interesting and applicable in realistic problems. It is a new 
hybrid intelligent structure.  The concept of rough set was 
proposed by Pawlak [3] in 1982 and the concept of 
neutrosophic set was proposed by Smarandache [4], [5] in 
1998. Wang et al. [6] introduced single valued netrosophic 
sets in 2010.  Neutrosophic sets and rough sets are both 

capable of dealing with uncertainty and incomplete 
information. The theory of neutrosophic set has achieved 
success in various areas of research such as medical 
diagnosis [7], educational problems [8], [9], social problems 

[10], [11], conflict resolution [12], [13], image processing [14], 

[15], [16], decision making [17], [18], [19], [20], [21], [22], etc. 

On the other hand, rough set theory has been successfully 
applied in the different fields such as artificial intelligence 
[23], pattern recognition [24], [25], medical diagnosis [26], 
[27], [28], data mining [29], [30], [31], image processing 
[32], conflict analysis [33], decision support systems [34], 
[35], intelligent control [36], etc. It appears that the 

computational techniques based on any one of 
neutrosophic sets or rough sets alone will not always offer 

the best results but a fusion of two or more can often offer 
better results [2].   
   Rough neutrosophic set is the generalization of rough 
fuzzy sets [37], [38] and rough intuitionistic fuzzy sets
[39]. Mondal and Pramanik [40] applied the concept of 
rough neutrosophic set in multi-attribte decision making 
based on grey relational analysis. Mondal and Pramanik 
[41] also studied cosine similarity measure of rough 
neutrosophic sets and its application in medical diagnosis.  
Literature review reflects that no studies have been made
on multi-attribute decision making using  rough
neutrosophic score function.  

   In this paper, we develop rough neutrosophic multi-
attribute decision making (MADM) based on rough 
accuracy score function (RASF).  

Rest of the paper is organized in the following way. 
Section 2 presents preliminaries of neutrosophic sets and 
rough neutrosophic sets. Section 3 is devoted to present 
multi attribute decision-making method based on rough 
accuracy score function. Section 4 presents a numerical 
example of the proposed method. Finally section 5 presents 

concluding remarks. 
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2 Mathematical Preliminaries 

2.1 Definitions on neutrosophic Set: 

   The concept of neutrosophy set [4] is derived from the 

new branch of philosophy, namely, neutrosophy [5].  

Neutrosophy succeeds in creating different fields of studies 

because of its capability to deal with the origin, nature, and 

scope of neutralities, as well as their interactions with 

different ideational spectra.  

Definition 2.1.1 

   Let G be a space of points (objects) with generic element 

in E denoted by y. Then a neutrosophic set N1 in G is 

characterized by a truth membership function TN1 , an 

indeterminacy membership function IN1 and a falsity 

membership function FN1. The functions TN1, IN1 and FN1 are

real standard or non-standard subsets of   1,0 that is TN1:

G   1,0 ; IN1: G   1,0 ; FN1: G   1,0 .

The sum of ),(1 yT N ),(1 yI N )(1 yF N  is given by 

0 ≤)(sup)(sup)(sup≤
111

yFyIyT NNN
 3



   Definition 2.1.2 The complement of a neutrosophic set 

[5] A is denoted by N1c and is defined as follows: 

)(1 yT N c =   )(1 1 yT N ; )(1 yI N c =    yI N11 

 yF N c1 =   )(1 1 yF N

   Definition 2.1.3  A neutrosophic set [5] N1 is contained 

in the other neutrosophic set N2, N1 N 2 if and only if the 

following results hold.

),(inf)(inf 21 yTyT NN  )(sup)(sup 21 yTyT NN 
                                                                        

 

),(inf)(inf 21 yIyI NN   )(sup)(sup 21 yIyI NN 
                                                            

),(inf)(inf 21 yFyF NN  )(sup)(sup 21 yFyF NN 
                                                    

for all y in G. 

Definition 2.1.4 Let G be a universal space of points 

(objects) with a generic element of G denoted by y. 

A single valued neutrosophic set [6] S is characterized by a 

truth membership function ),(yT N a falsity membership 

function )(yF N  and indeterminacy function )(yI N with 

),(yT N ),(yF N )(yI N 
 
[0, 1] for all y in G.  

When G is continuous, a SNVS S can be written as 

follows: 


y

SSS yyIyFyTS ,)(),(),(
   

Gy

and when G is discrete, a SVNS S can be written as 

follows: 

,)(),(),( yyIyFyTS SSS  Gy

It should be observed that for a SVNS S, 

,3≤)(sup)(sup)(sup≤0 yIyFyT SSS   Gy

    
    

Definition 2.1.5 The complement of a single valued 

neutrosophic set [6] S is denoted by cS  and is defined as 

follows: 

)()( yFyT S
c

S  ; )(1)( yIyI S
c

S  ; )()( yTyF S
c

S 

Definition 2.1.6 A SVNS [6] SN1 is contained in the 

other SVNS SN2 denoted by SN1  SN2, iff )()(
21

yTyT S NS N
 ; 

)()(
21

yIyI S NS N
 ; )()(

21
yFyF S NS N

 , Gy . 

Definition 2.1.7 Two single valued neutrosophic sets 

[6] SN1 and SN2 are equal, i.e. SN1= SN2, iff SS 2N1N  and 

SS 2N1N   

Definition 2.1.8 The union of two SVNSs [6] SN1 and 

SN2 is a SVNS SN3 , written as SSS NNN 213  . 

Its truth membership, indeterminacy-membership and 

falsity membership functions are related to  SN1 and SN2 by 

the following equations
 )(,)(max)(

213
yTyTyT S NS NS N

 ;

 )(,)(max)(
213

yIyIyI S NS NS N
 ; 

      yFyFyF S NS NNS 213 ,min  for all y in G 

Definition 2.1.9 The intersection of two SVNSs [6] N1 

and N2 is a SVNS N3, written as .2N1N3N ∩  Its truth 

membership, indeterminacy membership and falsity 

membership functions are related to N1 an N2 by the 

following equations: 
  ;)(,)(min)(

213
yTyTyT NSNSNS 

  ;)(,)(max)(
213

yIyIyI NSNSNS 

  GyyFyFyF NSNSNS  ,)(,)(max)(
213

Definition 2.1.1.10 The general SVNS can be presented 

in the following form as follows:
   GyyFyIyTyS SSS  :)(),(),(

Finite SVNSs can be represented as follows: 

  
  

)1(,
)(),(),(

,,)(),(),(
1111

Gy
yFyIyTy

yFyIyTy
S

mSmSmSm

SSS

















Let

  
  

)2(
)(),(),(

,,)(),(),(

111

1111111

1













yFyIyTy

yFyIyTy
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nNSnNSnNSn
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N



    

  
  

)3(
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,,)(),(),(

222

1212121
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yFyIyTx

yFyIyTx
S

nNSnNSnNSn
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N



                           
be two single-valued neutrosophic sets, then  the 

Hamming distance [42] between two SNVS N1and N2 is 

defined as follows: 

 SSd NNS 21, = 









n

i

NSNS

NSNS

NSNS

yFyF

yIyI

yTyT

1

21

21

21

)()(

)()(

)()(

 

 (4)      

and normalized Hamming distance [42] between two

SNVSs  SN1 and SN2 is defined as follows:
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 SSd NN
N

S 21, = 









n

i

NSNS

NSNS

NSNS

yFyF

yIyI

yTyT

n 1

21

21

21

)()(

)()(

)()(

3

1
   (5)                 

                                                             

with the following properties 
  )6(3≤,≤ 0.1 21 nSSd NNS

  )7(1,0.2 21  SSd NN
N

S

2.2 Definitions on rough neutrosophic set  
Definition 2.2.1  

Let Z be a non-null set and R be an equivalence 

relation on Z. Let P be neutrosophic set in Z with the 

membership function ,PT indeterminacy function PI  and 

non-membership function PF . The lower and the upper 

approximations of P in the approximation (Z, R) denoted 

by )(PN  and )(PN   are respectively defined as follows: 

 
)8(,

,

/)(),(),(,
)(

)()()(

Zxxz

xFxIxTx
PN

R

PNPNPN






 
)9(

∈,∈

/)(),(),(,
)(

)()()(

Zxxz

xFxIxTx
PN

R

PNPNPN




Where,   )()()( zTxxT PRzPN  , 

  )()()( zIxxI PRzPN  ,   )()()( zFxxF PRzPN  , 

  )()(
)(

zTxxT PRzPN
 ,   )()(

)(
zTxxI PRzPN

 , 

   zIxxF PRzPN
)(

)(

So, 3)(sup)(sup)(sup0 )()()(  xFxIxT PNPNPN  

3)(sup)(sup)(sup0
)()()(

 xFxIxT
PNPNPN

 

Here  and  denote “max” and “min’’ operators 

respectively, )(zT P , )(zI P  and )(zF P are  the membership, 

indeterminacy and non-membership function of z  with 

respect to P. It is easy to see that )(PN and  )(PN are two 

neutrosophic sets in Z. 

Thus NS mapping ,N N : N(Z)   N(Z) are, 

respectively, referred to as the lower  and  upper  rough  

NS  approximation  operators,  and the pair ))(),(( PNPN is 

called the rough neutrosophic set [1], [2] in ( Z, R). 

From the above definition, it is seen that )(PN and 

)(PN  have constant membership on the equivalence clases 

of R if );()( PNPN   .e. ),()(
)()( xTxT

PNPN 

),()(
)()( xIxI

PNPN    =)()( xF PN xF
PN

(
)(

)

for any x belongs to Z. 

 P is said to be  a definable neutrosophic set in the 

approximation (Z, R). It can be easily proved that zero 

neutrosophic set (0N) and unit neutrosophic sets (1N) are 

definable neutrosophic sets. 

 If N(P) = ( )(),( PNPN ) is a rough neutrosophic set in 

(Z, R) , the rough complement [1], [2] of N(P) is the rough 

neutrosophic set denoted by 

),)(,)(()(~ cc PNPNPN  where cc PNPN )(,)( are the  

complements of neutrosophic sets of 

)(),( PNPN respectively. 

  ,
,

/)(),(1),(, )()()(

Zx

xFxIxTx
PN

PNPNPNc




 and 

  )10(
,

/)(),(1),(,
)()()(

Zx

xFxIxTx
PN

PNPNPNc






Definition 2.2.3 

 If )()( 21 PNandPN are  the two  rough neutrosophic  

sets  of  the  neutrosophic  set P respectively in Z, then the 

following definitions [1], [2] hold good: 

)()()()()()( 212121 PNPNPNPNPNPN 

)()()()()()( 212121 PNPNPNPNPNPN 

 )()(,)()()()( 212121 PNPNPNPNPNPN 

 )()(,)()()()( 212121 PNPNPNPNPNPN 

 )()(,)()()()( 212121 PNPNPNPNPNPN

 )(.)(,)(.)()(.)( 212121 PNPNPNPNPNPN

If N, M, L are the rough neutrosophic sets in (Z, R), 

then  the following propositions are stated from definitions
Proposition 1 [1], [2] 

NNN )(~~.1

MNNMNMMN   ,.2

)()(

,)()(.3

NMLNML

NMLNML









)()()(

,)()()(.4

NLMLNML

NLMLNML









Proposition 2 [1], [2] 

De Morgan‘s Laws are satisfied for rough neutrosophic 

sets 
))((~))(~())()((~.1 2121 PNPNPNPN  

))((~))((~))()((~.2 2121 PNPNPNPN  

Proposition 3[1], [2] 

If P1 and P2 are two neutrosophic sets in U such that 
thenPP ,21 )()( 21 PNPN 

)()()(.1 2221 PNPNPPN  

)()()(.2 2221 PNPNPPN  

Proposition 4 [1], [2] 

)(~~)(.1 PNPN 

)(~~)(.2 PNPN 

)()(.3 PNPN 
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Definition 2.2.4 

Let Nij(P) =  )(),( PNPN ijij  is a rough neutrosophic 

set in (Z, R), where    ijijijijijijijij FITPNFITPN ,,)(,,,)( 

i = 1, 2, ..., m and j = 1, 2, ..., n. We define the rough 

accuracy score function (RASF) of Nij(P) as follows: 

S[Nij(P)] = 
3

222
2



























 













 













 


ijijijijijij FFIITT

 (11) 

Proposition 5: 

1. For any values of  Nij(P), 1)]([0  PNS ij

Proof: Since both lower and upper approximations are  

neutrosophic sets, so the proof of the statement is  

obvious.  

2. 0)]([ PNS ij when 1,0  ijijijijijij FFIITT  

Proof:This proof is obvious. 

3. 1)]([ PNS ij  when 0,1  ijijijijijij FFIITT

4. For any two rough neutrosophic set Nij(P1) and Nij(P2),                   

if )()( 21 PNPN ijij   then )]([)]([ 21 PNSPNS ijij  .
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This proves the proposition.

5. For any two rough neutrosophic set Nij(P1) and Nij(P2),

if )()( 21 PNPN ijij  , then )]([)]([ 21 PNSPNS ijij  . 

Proof: Since )()( 21 PNPN ijij  we have 
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0)]([)]([ 21  PNSPNS ijij . 

This completes the proof.

 Definition 2.2.5: Let Nij(P1) and Nij(P2) be two rough 

neutrosophic sets. Then the ranking method is defined as 

follows: 

If )]([)]([ 21 PNSPNS ijij   then )()( 21 PNPN ijij  .
 

3. Multi-attribute decision making methods based
on rough accuracy score function 

Consider a multi-attribute decision making problem 

with m alternatives and n attributes. Let A1, A2, ..., Am and 

C1, C2, ..., Cn denote the alternatives and attributes 

respectively.  

The rating describes the performance of alternative Ai 

against attribute Cj. For MADM weight vector W = {w1, 

w2,...,wn } is assigned to the attributes. The weight wj ( j = 

1, 2, ..., n) reflects the relative importance of attributes Cj 

( j = 1, 2, ..., m) to the decision making process. The 

weights of the attributes are usually determined on 

subjective basis. They represent the opinion of a single 

decision maker or accumulate the opinions of a group of 

experts using a group decision technique.  The values 

associated with the alternatives for MADM problem are 

presented in the table 1.  

Table1: Rough neutrosophic decision matrix 

 nmijij ddD ,

)12(

,...,,

.............

.............

,...,,

,...,,

2211

22222221212

11121211111

21

mnmnmmmmm

nn

nn

n

ddddddA

ddddddA

ddddddA

CCC 

Here ijij dd , is the rough neutrosophic number according 

to the i-th alternative and the j-th attribute. 

 

In real life situation, the decision makers may have 

personal biases and some indiviguals may give unduly low 

or unduly high preferences with respect to their preferences. 

In this case it is necessary to assign very low weights to 

these baised options. The steps of RASF method under 

rough neutrosophic environment are described as follows:
 

Step 1: Construction of the decision matrix with 

rough neutrosophic form  
         For        multi-attribute decision making problem, the rating 
of alternative Ai (i = 1, 2,…m ) with respect to attribute Cj 

(j = 1, 2,…n) is assumed as rough neutrosophic set. It can 

be represented with the following forms: 

iA =
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(13)

Here N and N are neutrosophic sets, and 

ijijijijijij FITandFIT ,,,,

are the degrees of truth membership, degree of 

indeterminacy and degree of falsity membership of the 

alternative Ai satisfying the attribute Cj, respectively where  
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,1,0  ijij TT ,1,0  ijij II ,1≤,≤0 ijij FF

,30  ijijij FIT 30  ijijij FIT

The rough neutrosophic decision matrix can be 

presented  in the following form (See the table 2): 

  Table 2: Rough neutrosophic decision matrix 

 nmijij FNFNd )(),(
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NNNNNNA

NNNNNNA
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CCC

Here ijij NandN are lower and upper approximations 

of the neutrosophic set P.  

Step 2: Determination of the rough accuracy score 

matrix
 Let us consider a rough neutrosophic set in the form: 

( ) ( )
ijijijijijijij FITFITPN ,,,,,=)(

 The rough accuracy score matrix is formed by using 

equation (11) and it is presented in the table 3. 
Table3: The rough accuracy score matrix 

nmRASF
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222212

112111
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        (15) 

Step 3: Determination of the weights of attribute 
During decision-making process, decision makers may 

enconter unknown attribute weights. In many cases, the 

importance of the decision makers are not equal. So, it is 

necessary to determine attribute weight for making a 

proper decision.  

In this paper, we have adopted the entropy method 

proposed by Majumder and Samanta [42], in rough 

neutrosophic environment for determining attribute weight 

as follows.  

Let us consider  
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In order to obtain the entropy value Ej of the j-th 

attribute Cj (j = 1, 2,…, n), equation (16) can be written as:  

    

   






 
m
i

iijNP
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iijNP

iijNPiijNP
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n
E 1

)()(

.)()(
1

1
  (17) 

For i = 1, 2, …, n; j = 1, 2, …, m 

It is observed that Ej ∈ [0,1] . Due to Hwang and Yoon 

[43], and Wang and Zhang [44], the entropy weight of the 

j-th attibute Cj is presented as follows:  

  





n
j j

j

j
E

E
w

1 1

1

(18)

We have weight vector W = (w1, w2,…,wn)
T of

attributes Cj (j = 1, 2, …, n) with  wj ≥ 0 and  11  
n
i jw  

Step 4: Determination of the over all weighted 

rough accuracy score values of the alternatives 

To rank alternatives, we can sum all values in each row 

of the rough accuracy score matrix corresponding to the 

attribute weights by the over all weighted rough accuracy 

score value (WRASV) of each alternative Ai (i = 1, 2, ..., n). 

It is defined as follows: 

WRASV(Ai)= )]([1 PNSw ij
n
i j    (19) 

Step 5: Ranking the alternatives 

According to the over all weighted rough accuracy 

score values WRASV(Ai) (i = 1, 2, ..., n), we can rank 

alternatives Ai (i = 1, 2, ..., n). The highest value of

WRASV(Ai) (i = 1, 2, ..., n) reflects the best alternative. 

4 Numerical example 

In this section, rough neutrosophic MADM is 

considered to demonstrate the applicability and the

effectiveness of the proposed approach. Let us consider a 

decision-making problem stated as follows. A person 

wants to purchase a SIM card for mobile connection. Now 

it is necessary to select suitable SIM card for his/her 

mobile connection. After initial screening there is a panel 
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with three possible alternatives (SIM cards) for mobile 

connection. The alternatives (SIM cards) are presented as 

follows: 

 A1: Airtel,  

A2: Vodafone and 

A3: BSNL. 

The person must take a decision based on the following 

four attributes of SIM cards:  

(1) C1 is service quality of the corresponding company; 

(2) C2 is the cost and innitial talktime;  

(3) C3 is the call rate per second; and 

 (4) C4 is the internet and other facilities. 

Step 1: Construction of the decision matrix with 

rough  neutrosophic form 
 We construct the following rough neutrosophic 

decision matrix (see the table 4)based on the experts’ 

assessment. 

Table 4. Decision matrix with rough neutrosophic 

number 

 43)(),( PNPNd S

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )1.,1.,9.

,2.,3.,8.
2.,2.,9.,

2.,2.,7.
1.,1.,8.,

3.,3.,7.
1.,1.,8.

,2.,2.,7.
A

3.,3.,8.
,3.,3.,7.

1.,4.,8.,
2.,2.,7.

2.,1.,8.,
3.,3.,6.

2.,1.,8.
,3.,3.,7.

A

2.,2.,8.
,4.,4.,7.

2.,2.,8.,
3.,3.,6.

2.,3.,8.
,4.,4.,6.

2.,2.,8.
,3.,3.,7.

A

CCCC

3

2

1

4321

        (23) 

The selection process using proposed approach is done 

based on the following steps: 

Step 2: Calculation of the rough accuracy score 

matrix 

Using the rough accuracy score function of Nij(P) from 

equation (11), the rough accuracy score matrix is presented 

in the table 5.  

Step 3: Determination of the weights of attribute 

Rough entropy value Ej of the j-th (j = 1, 2, 3) 

attributes can be determined from the decision matrix 

dS (23) and equation (17) as: E1= 0.4233, E2 = 0.5200, E3 

= 0.5150, E4  = 0.5200. 

Table 5. Rough accuracy score matrix 

8333.08000.07833.08167.0

7333.07667.07500.07667.0

7167.07333.06833.07500.0

3

2

1

4321

A

A

A

CCCC

        (24) 

Then the corresponding rough entropy weights w1, w2, 

w3, w4 of all attributes according to equation (18) are 

obtained as follows: w1 = 0.2853, w2 = 0.2374, w3 = 0.2399, 

w4 = 0.2374 such that .1=∑
1=

n
j jw  

Step 4: Determination of the over all weighted 

rough accuracy score values of the alternatives 

      Using equation (19), the over all weighted rough 

accuracy score value (WRASV) of each alternative Ai (i = 1, 

2, 3) is presented as follows: 

WRASV(A1) = 0.72225, WRASV(A2) = 0.754806,  

WRASV(A3) = 0.808705. 

Step 5: Ranking the alternatives.  

According to the over all weighted rough accuracy 

score values WRASV(Ai) (i = 1, 2, 3), we can rank 

alternatives Ai (i = 1, 2, 3) as follows: 

WRASV(A3) > WRASV(A2) > WRASV(A1) 

Therefore  A3 (BSNL) is the best SIM card. 

Conclusion 

In this paper, we have defined rough accuracy score 
function and studied some of it’s properties. Entropy based 
weighted rough accuracy score value is proposed. We have 
introduced rough neutrosophic multi-attribute decision-
making problem with incompletely known or completely 

unknown attribute weight information based on rough 
accuracy score function. Finally, an illustrative example is 
provided to show the effectiveness of the proposed 
approach.  

  However, we hope that the concept presented here 
will open new avenue of research in current rough 

neutrosophic decision-making arena. In future the 
proposed approach can be used for other practical MADM 
problems in hybrid environment. 
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Abstract: The interval neutrosophic uncertain 

linguistic variables can easily express the 

indeterminate and inconsistent information in real 

world, and TOPSIS is  a very effective decision 

making method more and more  extensive 

applications. In this paper, we will extend the 

TOPSIS method to deal with the interval 

neutrosophic uncertain linguistic information, and 

propose an extended TOPSIS method to solve the 

multiple attribute decision making problems in 

which the attribute value takes the form of the 

interval neutrosophic uncertain linguistic variables 

and attribute weight is unknown. Firstly, the 

operational rules and properties for the interval 

neutrosophic variables are introduced. Then the 

distance between two interval neutrosophic 

uncertain linguistic variables is proposed and the 

attribute weight is calculated by the maximizing 

deviation method, and the closeness coefficients to 

the ideal solution for each alternatives. Finally, an 

illustrative example is given to illustrate the 

decision making steps and the effectiveness of the 

proposed method.

Keywords: The interval neutrosophic  linguistic, multiple attribute decision making, TOPSIS,  maximizing deviation 

method 

I-Introduction 

F. Smarandache [7] proposed the neutrosophic set (NS) by 

adding an independent indeterminacy-membership  

function. The concept of  neutrosophic set  is 

generalization of classic set, fuzzy set [25], intuitionistic 

fuzzy set [22], interval  intuitionistic fuzzy set [23,24] and 

so on. In NS, the indeterminacy is quantified explicitly and 

truth-membership, indeterminacy membership, and false-

membership are completely independent. From scientific 

or engineering point of view, the neutrosophic set and set- 

theoretic view, operators need to be specified .Otherwise, it 

will be difficult to apply in the real applications. Therefore, 

H. Wang et al [8] defined a single valued neutrosophic set 

(SVNS) and then provided the set theoretic operations and 

various properties of single valued neutrosophic sets. 

Furthermore, H. Wang et al.[9] proposed the set theoretic 

operations on an instance of neutrosophic set called 

interval valued neutrosophic set (IVNS) which is more 

flexible and practical than NS. The works on neutrosophic 

set (NS)  and interval valued neutrosophic set (IVNS), in 

theories and application have been progressing rapidly 

(e.g, [1,2,4,6,7,8,9,10,11,12,13,14,15,16,17, 

,18,19,20,21,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42

,43,44,45,46,47,48,53]. 

Multiple attribute decision making (MADM) problem  are 

of importance in most kinds of fields such as engineering, 
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economics, and management. In many situations decision 

makers have incomplete , indeterminate and inconsistent 

information about alternatives  with respect to attributes. It 

is well known that the conventional and fuzzy or 

intuitionistic fuzzy decision making analysis [26, 50, 51,] 

using different techniques tools  have been found to be 

inadequate to handle indeterminate an inconsistent data. 

So, Recently, neutrosophic multicriteria decision making 

problems have been proposed to deal with such situation. 

TOPSIS (Technique for Order Performance by Similarity 

to Ideal Solution) method, initially introduced by C. L. 

Hwang and Yoon [3], is a  widely used method for dealing 

with  MADM problems, which focuses on choosing the 

alternative with the shortest distance from the positive 

ideal solution (PIS) and the farthest distance from the 

negative ideal solution (NIS). The traditional TOPSIS is 

only used to solve the decision making problems with crisp 

numbers, and many extended TOPSIS were proposed  to 

deal with fuzzy information. Z. Yue [55] extended TOPSIS 

to deal with interval numbers, G. Lee et al.[5] extend 

TOPSIS to deal wit fuzzy numbers, P. D. Liu and Su [34], 

Y. Q. Wei and Liu [49] extended  TOPSIS to linguistic 

information environments,  Recently, Z. Zhang and C. Wu 

[53]  proposed  the single  valued neutrosophic or interval 

neutrosophic TOPSIS method  to calculate the relative 

closeness coefficient of each alternative to the single 

valued neutrosophic or interval neutrosophic positive ideal 

solution, based on which the considered alternatives are 

ranked and then the most desirable one is selected. P. 

Biswas et al. [32]  introduced single –valued neutrosophic 

multiple attribute decision making problem with 

incompletely known or completely unknown attribute 

weight information based on modified GRA. 

Based on the linguistic variable and  the concept of interval 

neutrosophic sets, J. Ye [19] defined interval neutrosophic 

linguistic variable, as well as its operation principles, and 

developed some new aggregation  operators for the interval 

neutrosophic linguistic  information, including interval 

neutrosophic linguistic arithmetic weighted average 

(INLAWA) operator,  linguistic geometric weighted 

average(INLGWA) operator and discuss some  properties. 

Furthermore, he proposed the decision making method for 

multiple attribute decision making (MADM) problems 

with an illustrated example to show the process of decision 

making and the effectiveness of the proposed method. In 

order to process incomplete, indeterminate and inconsistent 

information more efficiency and precisely J. Ye [20] 

further proposed the interval neutrosophic uncertain 

linguistic variables by combining uncertain linguistic 

variables and interval neutrosophic sets, and proposed the 

operational rules, score function , accuracy  functions ,and 

certainty function of interval neutrosophic uncertain 

linguistic variables. Then the interval neutrosophic 

uncertain linguistic weighted arithmetic averaging 

(INULWAA) and  the interval neutrosophic uncertain 

linguistic weighted arithmetic averaging (INULWGA) 

operator are developed, and a multiple attribute decision 

method with interval neutrosphic uncertain linguistic 

information was developed. 

To do so, the remainder of this paper is set out as follows. 

Section 2 briefly recall some basic concepts of neutrosphic 

sets, single valued neutrosophic sets (SVNSs), interval 

neutrosophic sets(INSs), interval neutrosophic linguistic 

variables and interval neutrosophic uncertain linguistic 

variables. In section 3, we develop an extended TOPSIS 

method for the interval neutrosophic uncertain linguistic 

variables, In section 4, we give an application example to 

show the decision making steps, In section 5, a comparison 

with existing methods are presented. Finally, section 6 

concludes the paper. 

II-Preliminaries  
In the following, we shall introduce some basic concepts 

related to uncertain linguistic variables, single valued 

neutrosophic set, interval neutrosophic sets, interval 

neutrosophic uncertain linguistic sets, and interval 

neutrosophic uncertain linguistic set. 

2.1 Neutrosophic sets 

Definition 2.1 [7] 

Let U be a universe of discourse then the neutrosophic set 

A is an object having the form 

A = {< x: TA(x), IA(x), FA(x) >, x ∈ X }, 

Where the functions TA(x), IA(x), FA(x): U→]-0,1+[define

respectively the degree of membership, the degree of 

indeterminacy, and the degree of non-membership of the 

element x ∈ X to the set A with the condition. 
 −0 ≤ 𝑠upTA(x)  +sup IA(x) +sup FA(x) ≤ 3+.     (1)

 From philosophical point of view, the 

neutrosophic set takes the value from real standard or non-

standard subsets of ]−0,1+[. So instead of ]−0,1+[ we need to 

take the interval [0,1] for 

technical applications, because ]−0,1+[will be difficult to 

apply in the real applications such as in scientific and 

engineering problems. 

2.2 Single valued Neutrosophic Sets 

Definition 2.2 [8] 

Let X be an universe of discourse, then the neutrosophic 

set A is an object having the form 

A = {< x: TA(x), IA(x), FA(x) >, x ∈ X }, 

where the functions TA(x),IA(x), FA(x) : U→[0,1]define

respectively the degree of membership , the degree of 

indeterminacy, and the degree of non-membership of the 
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element x ∈ X to the set A with the condition. 

   0 ≤ TA(x)  + IA(x) + FA(x) ≤ 3     (2) 

Definition 2.3 [8 ] 

 A single valued neutrosophic set A is contained in 

another single valued neutrosophic set B i.e. A ⊆ B if ∀x 

∈ U, TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x).

(3) 

2.3 Interval Neutrosophic Sets 

Definition 2.4[9] 

Let X be a space of points (objects) with generic elements 

in X denoted by x. An interval valued neutrosophic set (for 

short IVNS) A in X is characterized by truth-membership 

function TA(x), indeteminacy-membership function IA(x)

and falsity-membership function FA(x). For each point x in

X, we have that TA(x), IA(x), FA(x) ⊆ [0 ,1].

For two IVNS,     𝐴IVNS= {<x, [𝑇A
L(x),𝑇A

U(x)],
[𝐼A
L(x), 𝐼A

U(x)] , [𝐹A
L(x), 𝐹A

U(x)]  > | x ∈ X }  (4)

And 𝐵IVNS= {<x, [TB
L(x),TB

U(x)],
[IB
L(x), IB

U(x)] , [FB
L(x), FB

U(x)]> | x ∈ X } the two relations

are defined as follows: 

(1) 𝐴IVNS ⊆ 𝐵IVNS If and only if TA
L(x) ≤ TB

L(x),TA
U(x) ≤

TB
U(x) , IA

L(x) ≥ IB
L(x) ,IA

U(x) ≥ IB
U(x) , FA

L(x) ≥ FB
L(x)

,FA
U(x) ≥ FB

U(x)
(2)𝐴IVNS = 𝐵IVNS  if and only if , TA(x) =TB(x) ,IA(x)
=IB(x) ,FA(x) =FB(x) for any x ∈ X

The complement of 𝐴IVNS is denoted by 𝐴𝐼𝑉𝑁𝑆
𝑜  and is

defined by 

𝐴𝐼𝑉𝑁𝑆
𝑜 = {<x, [FA

L(x), FA
U(x)]>, [1 − IA

U(x), 1 − IA
𝐿(x)]

,[TA
L(x),TA

U(x)] | x ∈ X }

A∩B ={ <x , [min(TA
L(x),T𝐵

L(x)), min(TA
U(x),T𝐵

U(x))],
[max(IA

L(x),I𝐵
L(x)), max(IA

U(x),I𝐵
U(x)],  [max(FA

L(x),F𝐵
L(x)),

max(F(x),F𝐵
U(x))] >: x ∈ X }

A∪B ={ <x , [max(TA
L(x),T𝐵

L(x)), max(TA
U(x),T𝐵

U(x))],
[min(IA

L(x),I𝐵
L(x)), min(IA

U(x),I𝐵
U(x)], [min(FA

L(x),F𝐵
L(x)),

min(FA
U(x),F𝐵

U(x))] >: x ∈ X }

2.4 Uncertain linguistic variable. 

A linguistic set is defined as a finite and completely 

ordered discreet term set, 

𝑆=(𝑠0, 𝑠1,…, 𝑠𝑙−1), where l is the odd value. For example,

when l=7, the linguistic term set S can be defined as 

follows: S={𝑠0(extremely low); 𝑠1(very

low); 𝑠2(low); 𝑠3(medium); 𝑠4(high); 𝑠5(very

high); 𝑠6(extermley high)}

Definition 2.5. Suppose �̃� = [𝑠𝑎, 𝑠𝑏], where 𝑠𝑎, 𝑠𝑏 ∈ �̃� with

a ≤ b are the lower limit and the upper limit of  𝑆, 

respectively. Then �̃� is called an uncertain linguitic 

varaible. 

Definition 2.6. Suppose �̃�1 = [𝑠𝑎1, 𝑠𝑏1]  and �̃�2 = [𝑠𝑎2, 𝑠𝑏2]

are two uncertain linguistic variable ,then the distance 

between �̃�1 and �̃�2 is defined as follows.

𝑑 (�̃�1, �̃�2)  =
1

2(𝑙−1)
(|𝑎2 − 𝑎1|+|𝑏2 − 𝑏1|)   (5)       

2.5 Interval neutrosophic linguistic set 

Based on interval neutrosophic set and linguistic variables, 

J. Ye [18] presented the extension form of the linguistic 

set, i.e, interval neutroosphic linguistic set, which is shown 

as follows: 

Definition 2.7 :[19] An interval neutrosophic linguistic set 

A in X can be defined as 

A ={<x, 𝑠𝜃(𝑥), (𝑇𝐴(x), 𝐼𝐴(x), 𝐹𝐴(x))>| x ∈ X}

(6)     

Where 𝑠𝜃(𝑥) ∈ �̂�, 𝑇𝐴(x) = [𝑇𝐴
𝐿(x), 𝑇𝐴

𝑈(x)] ⊆ [0.1], 𝐼𝐴(x) =

[𝐼𝐴
𝐿(x), 𝐼𝐴

𝑈(x)] ⊆ [0.1], and 𝐹𝐴(x) = [𝐹𝐴
𝐿(x), 𝐹𝐴

𝑈(x)] ⊆ [0.1]

with the condition 0 ≤ 𝑇𝐴
𝑈(x)+ 𝐼𝐴

𝑈(x)+ 𝐹𝐴
𝑈(x) ≤3 for any x

∈ X. The  function 𝑇𝐴(x), 𝐼𝐴(x) and 𝐹𝐴(x) express,

respectively, the truth-membership degree, the 

indeterminacy –membership degree, and the falsity-

membership degree with interval values of the element x in 

X to the   linguistic variable 𝑠𝜃(𝑥).

2.6 Interval neutrosophic uncertain linguistic set. 

Based on interval neutrosophic set and uncertain linguistic 

variables, J.Ye [20] presented the extension form of the 

uncertain linguistic set, i.e, interval neutrosphic uncertain  

linguistic set, which is shown as follows: 

Definition 2.8 :[20] An interval neutrosophic uncertain 

linguistic set A in X can be defined as 

A ={<x,[ 𝑠𝜃(𝑥), 𝑠𝜌(𝑥)], (𝑇𝐴(x), 𝐼𝐴(x), 𝐹𝐴(x))>| x ∈ X}    (7)

Where 𝑠𝜃(𝑥) ∈ �̂�, 𝑇𝐴(x) = [𝑇𝐴
𝐿(x), 𝑇𝐴

𝑈(x)] ⊆ [0.1], 𝐼𝐴(x) =

[𝐼𝐴
𝐿(x), 𝐼𝐴

𝑈(x)] ⊆ [0.1], and 𝐹𝐴(x) = [𝐹𝐴
𝐿(x), 𝐹𝐴

𝑈(x)] ⊆ [0.1]

with the condition 0 ≤ 𝑇𝐴
𝑈(x)+ 𝐼𝐴

𝑈(x)+ 𝐹𝐴
𝑈(x) ≤3 for any x

∈ X. The  function 𝑇𝐴(x), 𝐼𝐴(x) and 𝐹𝐴(x) express,

respectively, the truth-membership degree, the 

indeterminacy–membership degree, and the falsity-

membership degree with interval values of the element x in 

X to the  uncertain linguistic variable [ 𝑠𝜃(𝑥), 𝑠𝜌(𝑥)].

Definition 2.9 Let ã1=< [sθ(ã1), sρ(ã1)], ([T
L(ã1),TU(ã1)],

[IL(ã1),IU(ã1)], [FL(ã1),FU(ã1)])> and ã2={<x,

[sθ(ã2), sρ(ã2)], ([TL(ã2),TU(ã2)], [IL(ã2),IU(ã2)],

[FL(ã2),FU(ã2)])>

be two INULVs and λ ≥ 0, then the operational laws of 

INULVs are defined as follows: 
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ã1 ⨁ ã2 =< [sθ(ã1)+θ(ã2), sρ(ã1)+ρ(ã2)], ([T
L(ã1)+ TL(ã2)-

TL(ã1) TL(ã2),TU(ã1)+ TU(ã2)- TU(ã1) TU(ã2)],

[IL(ã1) IL(ã2)  ,IU(ã1) IU(ã2)], [FL(ã1) F(ã2),FU(ã1)

FL(ã2)])>                                                                     (8)

ã1 ⨂ ã2 =< [sθ(ã1)×θ(ã2)], ([T
L(ã1) TL(ã2), TU(ã1) TU(ã2)],

[IL(ã1)+ IL(ã2) - IL(ã1) IL(ã2), IU(ã1)+ IU(ã2)-

IU(ã1) IU(ã2)], [FL(ã1)+ FL(ã2) - FL(ã1) F(ã2),

FU(ã1)+ FU(ã2) - FU(ã1) FU(ã2)])>                         (9)                                                                                               

λã1=<[sλθ(ã1), sλρ(ã1)],([1-(1 − TL(ã1))
λ,1-(1 −

TU(ã1))
λ], [(IL(ã1))

λ,(IU(ã1))
λ], [(FL(ã1))

λ,(FU(ã1))
λ]>

            

(10) 

ã1
λ=< [sθλ(ã1), sρλ(ã1)], ([(T

L(ã1))
λ,(TU(ã1))

λ], [1-

(1 − IL(ã1))
λ, 1-(1 − IU(ã1))

λ], [1-(1 − FL(ã1))
λ, 1-

(1 − FU(ã1))
λ]>                                                 (11)

                              

Obviously, the above operational results are still INULVs. 

III. The Extended TOPSIS for the Interval

Neutrosophic Uncertain Linguistic Variables
A. The description  of decision making problems with 

interval neutrosphic uncertain linguistic information. 

For the MADM problems with interval neutrosophic 

uncertain variables, there are m alternatives A= 

(𝐴1, 𝐴2,…, 𝐴𝑚) which can be evaluated by n attributes

C=(𝐶1, 𝐶2,…, 𝐶𝑛) and the weight of attributes  𝐴𝑖 is 𝑤𝑖,
and meets the conditions  0 ≤ 𝑤𝑖 ≤1, ∑ 𝑤𝑗

𝑛
𝑗=1 =1.Suppose

𝑧𝑖𝑗 (i=1, 2,…, n; j=1, 2,…, m) is the evaluation values of

alternative 𝐴𝑖 with respect to attribute 𝐶𝑗
And it can be represented by interval neutrosophic 

uncertain  linguistic variable 𝑧𝑖𝑗= <[𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈],([ 𝑇𝑖𝑗
𝐿 , 𝑇𝑖𝑗

𝑈],

[ 𝐼𝑖𝑗
𝐿 , 𝐼𝑖𝑗

𝑈], [ 𝐹𝑖𝑗
𝐿 , 𝐹𝑖𝑗

𝑈])>, where [𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈] is the uncertain 

linguistic variable, and 𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑈 ∈ S, S 

=(𝑠0, 𝑠1,…, 𝑠𝑙−1), 𝑇𝑖𝑗
𝐿 , 𝑇𝑖𝑗

𝑈, 𝐼𝑖𝑗
𝐿 , 𝐼𝑖𝑗

𝑈 and 𝐹𝑖𝑗
𝐿 , 𝐹𝑖𝑗

𝑈 ∈ [0, 1] and

0 ≤ 𝑇𝑖𝑗
𝑈 + 𝐼𝑖𝑗

𝑈 + 𝐹𝑖𝑗
𝑈 ≤3. Suppose attribute weight vector

W=(𝑤1, 𝑤2,… 𝑤𝑛) is completely unknown, according to

these condition, we can rank the alternatives 

(𝐴1, 𝐴2,…, 𝐴𝑚)

B. Obtain the attribute weight vector by the 

maximizing deviation. 

In order to obtain the attribute weight vector, we firstly 

define the distance between two interval neutrosophic 

uncertain variables. 

Definition 3.1 

Let �̃�1 =  <[𝑠𝑎1, 𝑠𝑏1],([ 𝑇𝐴
𝐿, 𝑇𝐴

𝑈], [ 𝐼𝐴
𝐿, 𝐼𝐴

𝑈], [ 𝐹𝐴
𝐿, 𝐹𝐴

𝑈])>,

�̃�2 =  <[𝑠𝑎2, 𝑠𝑏2],([ 𝑇𝐵
𝐿, 𝑇𝐵

𝑈], [ 𝐼𝐵
𝐿, 𝐼𝐵

𝑈], [ 𝐹𝐵
𝐿, 𝐹𝐵

𝑈])> and

�̃�3 =  <[𝑠𝑎3, 𝑠𝑏3],([ 𝑇𝐶
𝐿, 𝑇𝐶

𝑈], [ 𝐼𝐶
𝐿, 𝐼𝐶

𝑈], [ 𝐹𝐶
𝐿, 𝐹𝐶

𝑈])>, be any

three interval neutrosophic  uncertain  linguistic variables, 

and �̃� be the set of  linguistic  variables, 𝑓 is a map, and 

𝑓: �̃� × �̃� ⟶ R. If  d(�̃�1, �̃�2) meets the following conditions

(1) 0 ≤ 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2) ≤  1,  𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�1)= 0

(2) 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2) = 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�1)

(3) 𝑑𝐼𝑉𝑁𝑆 (�̃�1, �̃�2) + 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�3) ≥ 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�3)

then 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2) is called the distance between two

interval neutrosophic uncertain linguistic variables �̃�1

Definition 3.2: 

Let �̃�1 =  <[𝑠𝑎1, 𝑠𝑏1],([ 𝑇𝐴
𝐿, 𝑇𝐴

𝑈], [ 𝐼𝐴
𝐿, 𝐼𝐴

𝑈], [ 𝐹𝐴
𝐿, 𝐹𝐴

𝑈])>, and

�̃�2 =  <[𝑠𝑎2, 𝑠𝑏2],([ 𝑇𝐵
𝐿, 𝑇𝐵

𝑈], [ 𝐼𝐵
𝐿, 𝐼𝐵

𝑈], [ 𝐹𝐵
𝐿, 𝐹𝐵

𝑈])>, be any

two interval neutrosophic  uncertain  linguistic variables, 

then the Hamming distance between �̃�1 and �̃�2 can be

defined as follows. 

𝑑𝐼𝑁𝑈𝐿𝑉(�̃�1, �̃�2)  =
1

12(𝑙−1)
  (|𝑎1 × 𝑇𝐴

𝐿 − 𝑎2 × 𝑇𝐵
𝐿|+|𝑎1 × 𝑇𝐴

𝑈 −

𝑎2 × 𝑇𝐵
𝑈|+|𝑎1 × 𝐼𝐴

𝐿 − 𝑎2 × 𝐼𝐵
𝐿|+

|𝑎1 × 𝐼𝐴
𝑈 − 𝑎2 × 𝐼𝐵

𝑈|+|𝑎1 × 𝐹𝐴
𝐿 − 𝑎2 × 𝐹𝐵

𝐿|+|𝑎1 × 𝐹𝐴
𝑈 −

𝑎2 × 𝐹𝐵
𝑈|+

+|𝑏1 × 𝑇𝐴
𝐿 − 𝑏2 × 𝑇𝐵

𝐿|+|𝑏1 × 𝑇𝐴
𝑈 − 𝑏2 × 𝑇𝐵

𝑈|+|𝑏1 × 𝐼𝐴
𝐿 −

𝑏2 × 𝐼𝐵
𝐿|+

|𝑏1 × 𝐼𝐴
𝑈 − 𝑏2 × 𝐼𝐵

𝑈|+|𝑏1 × 𝐹𝐴
𝐿 − 𝑏2 × 𝐹𝐵

𝐿|+|𝑏1 × 𝐹𝐴
𝑈 −

𝑏2 × 𝐹𝐵
𝑈|)                                                            (12)

In order to illustrate the effectiveness of definition 3.2, the 

distance defined above must meet the three conditions in 

definition 3.1 

Proof 

Obviously, the distance defined in (12) can meets the 

conditions (1) and (2) in definition 3.1 

In the following, we will prove that the distance defined in 

(12) can also meet the condition (3) in definition 3.1 

For any one interval neutrosophic uncertain linguistic 

variable �̃�3 =  <[𝑠𝑎3, 𝑠𝑏3],([ 𝑇𝐶
𝐿, 𝑇𝐶

𝑈], [ 𝐼𝐶
𝐿, 𝐼𝐶

𝑈], [ 𝐹𝐶
𝐿, 𝐹𝐶

𝑈])>,

𝑑𝐼𝑉𝑁𝑆(�̃�1, �̃�3)  =
1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴

𝐿 − 𝑎3 × 𝑇𝐶
𝐿|+|𝑎1 × 𝑇𝐴

𝑈 − 𝑎3 × 𝑇𝐶
𝑈|+|𝑎1 × 𝐼𝐴

𝐿 − 𝑎3 × 𝐼𝐶
𝐿|+|𝑎1 × 𝐼𝐴

𝑈 − 𝑎3 × 𝐼𝐶
𝑈|+|𝑎1 ×

𝐹𝐴
𝐿 − 𝑎3 × 𝐹𝐶

𝐿|+|𝑎1 × 𝐹𝐴
𝑈 − 𝑎3 × 𝐹𝐶

𝑈|+|𝑏1 × 𝑇𝐴
𝐿 − 𝑏3 × 𝑇𝐶

𝐿|+|𝑏1 × 𝑇𝐴
𝑈 − 𝑏3 × 𝑇𝐶

𝑈|+|𝑏1 × 𝐼𝐴
𝐿 − 𝑏3 × 𝐼𝐶

𝐿|+|𝑏1 × 𝐼𝐴
𝑈 − 𝑏3 ×

𝐼𝐶
𝑈|+|𝑏1 × 𝐹𝐴

𝐿 − 𝑏3 × 𝐹𝐶
𝐿|+|𝑏1 × 𝐹𝐴

𝑈 − 𝑏3 × 𝐹𝐶
𝑈|)
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   = 
1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴

𝐿 − 𝑎2 × 𝑇𝐵
𝐿 + 𝑎2 × 𝑇𝐵

𝐿 − 𝑎3 × 𝑇𝐶
𝐿|+|𝑎1 × 𝑇𝐴

𝑈 − 𝑎2 × 𝑇𝐵
𝑈 + 𝑎2 × 𝑇𝐵

𝑈 − 𝑎3 × 𝑇𝐶
𝑈|+|𝑎1 × 𝐼𝐴

𝐿 − 𝑎2 ×

𝐼𝐵
𝐿 + 𝑎2 × 𝐼𝐵

𝐿 − 𝑎3 × 𝐼𝐶
𝐿|+|𝑎1 × 𝐼𝐴

𝑈 − 𝑎2 × 𝐼𝐵
𝑈 + 𝑎2 × 𝐼𝐵

𝑈 − 𝑎3 × 𝐼𝐶
𝑈|

+|𝑎1 × 𝐹𝐴
𝐿 − 𝑎2 × 𝐹𝐵

𝐿 + 𝑎2 × 𝐹𝐵
𝐿 − 𝑎3 × 𝐹𝐶

𝐿|+|𝑎1 × 𝐹𝐴
𝑈 − 𝑎2 × 𝐹𝐵

𝑈 + 𝑎2 × 𝐹𝐵
𝑈 − 𝑎3 × 𝐹𝐶

𝑈|

+|𝑏1 × 𝑇𝐴
𝐿 − 𝑏2 × 𝑇𝐵

𝐿 + 𝑏2 × 𝑇𝐵
𝐿 − 𝑏3 × 𝑇𝐶

𝐿|+|𝑏1 × 𝑇𝐴
𝑈 − 𝑏2 × 𝑇𝐵

𝑈 + 𝑏2 × 𝑇𝐵
𝑈 − 𝑏3 × 𝑇𝐶

𝑈|+|𝑏1 × 𝐼𝐴
𝐿 − 𝑏2 × 𝐼𝐵

𝐿 + 𝑏2 × 𝐼𝐵
𝐿 −

𝑏3 × 𝐼𝐶
𝐿|+|𝑏1 × 𝐼𝐴

𝑈 − 𝑏2 × 𝐼𝐵
𝑈 + 𝑏2 × 𝐼𝐵

𝑈 − 𝑏3 × 𝐼𝐶
𝑈|

+|𝑏1 × 𝐹𝐴
𝐿 − 𝑏2 × 𝐹𝐵

𝐿 + 𝑏2 × 𝐹𝐵
𝐿 − 𝑎3 × 𝐹𝐶

𝐿|+|𝑏1 × 𝐹𝐴
𝑈 − 𝑏2 × 𝐹𝐵

𝑈 + 𝑏2 × 𝐹𝐵
𝑈 − 𝑏3 × 𝐹𝐶

𝑈|

And 
1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴

𝐿 − 𝑎2 × 𝑇𝐵
𝐿|+|𝑎2 × 𝑇𝐵

𝐿 − 𝑎3 × 𝑇𝐶
𝐿|+|𝑎1 × 𝑇𝐴

𝑈 − 𝑎2 × 𝑇𝐵
𝑈|+|𝑎2 × 𝑇𝐵

𝑈 − 𝑎3 × 𝑇𝐶
𝑈|+|𝑎1 × 𝐼𝐴

𝐿 − 𝑎2 ×

𝐼𝐵
𝐿|+|𝑎2 × 𝐼𝐵

𝐿 − 𝑎3 × 𝐼𝐶
𝐿|+|𝑎1 × 𝐼𝐴

𝑈 − 𝑎2 × 𝐼𝐵
𝑈|+|𝑎2 × 𝐼𝐵

𝑈 − 𝑎3 × 𝐼𝐶
𝑈|+

|𝑎1 × 𝐹𝐴
𝐿 − 𝑎2 × 𝐹𝐵

𝐿|+|𝑎2 × 𝐹𝐵
𝐿 − 𝑎3 × 𝐹𝐶

𝐿|+|𝑎1 × 𝐹𝐴
𝑈 − 𝑎2 × 𝐹𝐵

𝑈|+|𝑎2 × 𝐹𝐵
𝑈 − 𝑎3 × 𝐹𝐶

𝑈|+

+|𝑏2 × 𝑇𝐵
𝐿 − 𝑏3 × 𝑇𝐶

𝐿|+|𝑏1 × 𝑇𝐴
𝑈 − 𝑏2 × 𝑇𝐵

𝑈|+|𝑏2 × 𝑇𝐵
𝑈 − 𝑏3 × 𝑇𝐶

𝑈|+|𝑏1 × 𝐼𝐴
𝐿 − 𝑏2 × 𝐼𝐵

𝐿|+|𝑏2 × 𝐼𝐵
𝐿 − 𝑏3 × 𝐼𝐶

𝐿|+|𝑏1 × 𝐼𝐴
𝑈 −

𝑏2 × 𝐼𝐵
𝑈|+|𝑏2 × 𝐼𝐵

𝑈 − 𝑏3 × 𝐼𝐶
𝑈|+|𝑏1 × 𝐹𝐴

𝐿 − 𝑏2 × 𝐹𝐵
𝐿|+|𝑏2 × 𝐹𝐵

𝐿 − 𝑏3 × 𝐹𝐶
𝐿|+|𝑏1 × 𝐹𝐴

𝑈 − 𝑏2 × 𝐹𝐵
𝑈|+|𝑏2 × 𝐹𝐵

𝑈 − 𝑏3 × 𝐹𝐶
𝑈|)

= 
1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴

𝐿 − 𝑎2 × 𝑇𝐵
𝐿|+|𝑎1 × 𝑇𝐴

𝑈 − 𝑎2 × 𝑇𝐵
𝑈|+|𝑎1 × 𝐼𝐴

𝐿 − 𝑎2 × 𝐼𝐵
𝐿|+|𝑎1 × 𝐼𝐴

𝑈 − 𝑎2 × 𝐼𝐵
𝑈|+|𝑎1 × 𝐹𝐴

𝐿 − 𝑎2 × 𝐹𝐵
𝐿|

+|𝑎1 × 𝐹𝐴
𝑈 − 𝑎2 × 𝐹𝐵

𝑈|+|𝑏1 × 𝑇𝐴
𝐿 − 𝑏2 × 𝑇𝐵

𝐿|+|𝑏1 × 𝑇𝐴
𝑈 − 𝑏2 × 𝑇𝐵

𝑈|+|𝑏1 × 𝐼𝐴
𝐿 − 𝑏2 × 𝐼𝐵

𝐿|+|𝑏1 × 𝐼𝐴
𝑈 − 𝑏2 × 𝐼𝐵

𝑈| +|𝑏1 ×
𝐹𝐴
𝐿 − 𝑏2 × 𝐹𝐵

𝐿|+|𝑏1 × 𝐹𝐴
𝑈 − 𝑏2 × 𝐹𝐵

𝑈|+
|𝑎2 × 𝑇𝐵

𝐿 − 𝑎3 × 𝑇𝐶
𝐿|+|𝑎2 × 𝑇𝐵

𝑈 − 𝑎3 × 𝑇𝐶
𝑈|+|𝑎2 × 𝐼𝐵

𝐿 − 𝑎3 × 𝐼𝐶
𝐿|+|𝑎2 × 𝐼𝐵

𝑈 − 𝑎3 × 𝐼𝐶
𝑈|+|𝑎2 × 𝐹𝐵

𝐿 − 𝑎3 × 𝐹𝐶
𝐿|+|𝑎2 × 𝐹𝐵

𝑈 −
𝑎3 × 𝐹𝐶

𝑈|+|𝑏2 × 𝑇𝐵
𝐿 − 𝑏3 × 𝑇𝐶

𝐿|+|𝑏2 × 𝑇𝐵
𝑈 − 𝑏3 × 𝑇𝐶

𝑈|+|𝑏2 × 𝐼𝐵
𝐿 − 𝑏3 × 𝐼𝐶

𝐿|+|𝑏2 × 𝐼𝐵
𝑈 − 𝑏3 × 𝐼𝐶

𝑈|+|𝑏2 × 𝐹𝐵
𝐿 − 𝑏3 ×

𝐹𝐶
𝐿|+|𝑏2 × 𝐹𝐵

𝑈 − 𝑏3 × 𝐹𝐶
𝑈|)

= 
1

12(𝑙−1)
(|𝑎1 × 𝑇𝐴

𝐿 − 𝑎2 × 𝑇𝐵
𝐿|+|𝑎1 × 𝑇𝐴

𝑈 − 𝑎2 × 𝑇𝐵
𝑈|+|𝑎1 × 𝐼𝐴

𝐿 − 𝑎2 × 𝐼𝐵
𝐿|+|𝑎1 × 𝐼𝐴

𝑈 − 𝑎2 × 𝐼𝐵
𝑈|+|𝑎1 × 𝐹𝐴

𝐿 − 𝑎2 × 𝐹𝐵
𝐿|

+|𝑎1 × 𝐹𝐴
𝑈 − 𝑎2 × 𝐹𝐵

𝑈|+|𝑏1 × 𝑇𝐴
𝐿 − 𝑏2 × 𝑇𝐵

𝐿|+|𝑏1 × 𝑇𝐴
𝑈 − 𝑏2 × 𝑇𝐵

𝑈|+|𝑏1 × 𝐼𝐴
𝐿 − 𝑏2 × 𝐼𝐵

𝐿|+|𝑏1 × 𝐼𝐴
𝑈 − 𝑏2 × 𝐼𝐵

𝑈| +|𝑏1 ×
𝐹𝐴
𝐿 − 𝑏2 × 𝐹𝐵

𝐿|+|𝑏1 × 𝐹𝐴
𝑈 − 𝑏2 × 𝐹𝐵

𝑈|)+
1

12(𝑙−1)
(|𝑎2 × 𝑇𝐵

𝐿 − 𝑎3 × 𝑇𝐶
𝐿|+|𝑎2 × 𝑇𝐵

𝑈 − 𝑎3 × 𝑇𝐶
𝑈|+|𝑎2 × 𝐼𝐵

𝐿 − 𝑎3 × 𝐼𝐶
𝐿|+|𝑎2 × 𝐼𝐵

𝑈 − 𝑎3 × 𝐼𝐶
𝑈|+|𝑎2 × 𝐹𝐵

𝐿 − 𝑎3 ×

𝐹𝐶
𝐿|+|𝑎2 × 𝐹𝐵

𝑈 − 𝑎3 × 𝐹𝐶
𝑈|+|𝑏2 × 𝑇𝐵

𝐿 − 𝑏3 × 𝑇𝐶
𝐿|+|𝑏2 × 𝑇𝐵

𝑈 − 𝑏3 × 𝑇𝐶
𝑈|+|𝑏2 × 𝐼𝐵

𝐿 − 𝑏3 × 𝐼𝐶
𝐿|+|𝑏2 × 𝐼𝐵

𝑈 − 𝑏3 × 𝐼𝐶
𝑈|+|𝑏2 ×

𝐹𝐵
𝐿 − 𝑏3 × 𝐹𝐶

𝐿|+|𝑏2 × 𝐹𝐵
𝑈 − 𝑏3 × 𝐹𝐶

𝑈|)

=𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2)  + 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�3)

So , 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�2)  + 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�2, �̃�3)  ≥ 𝑑𝐼𝑁𝑈𝐿𝑉 (�̃�1, �̃�3)

Especially, when 𝑇𝐴
𝐿=𝑇𝐴

𝑈, 𝐼𝐴
𝐿=𝐼𝐴

𝑈,  𝐹𝐴
𝐿=𝐹𝐴

𝑈,and 𝑇𝐵
𝐿=𝑇𝐵

𝑈,

𝐼𝐵
𝐿=𝐼𝐵

𝑈, and  𝐹𝐵
𝐿=𝐹𝐵

𝑈the interval neutrosophic uncertain

linguistic variables �̃�1, �̃�2  can be reduced to single valued

uncertain linguistic variables. So the single valued 

neutrosophic uncertain linguistic variables are the special 

case of the interval neutrosophic uncertain linguistic 

variables.  

Because the attribute weight is fully unknown, we can 

obtain the attribute weight vector by the maximizing 

deviation method. Its main idea can be described as 

follows. If all attribute values  𝑧𝑖𝑗 (j=1, 2,…, n)  in the

attribute 𝐶𝑗 have a small difference for all alternatives, it

shows that the attribute 𝐶𝑗 has a small importance in

ranking all alternatives, and it can be assigned  a small 

attribute weight, especially, if all attribute values 𝑧𝑖𝑗 (j=1,

2,…,n) in the attribute 𝐶𝑗 are equal, then the attribute  𝐶𝑗
has no effect on sorting, and we can set zero to the weight 

of attribute 𝐶𝑗. On the contrary, if all attribute values 𝑧𝑖𝑗
(j=1, 2,…, n) in the attribute 𝐶𝑗 have  a big difference, the

attribute  𝐶𝑗 will have a big importance in ranking all

alternatives, and its weight can be assigned  a big value. 

Here, based on the maximizing deviation method, we 

construct an optimization model to determine the optimal 

relative weights of criteria under interval neutrosophic 

uncertain linguistic environment. For the criterion 𝐶𝑖 ∈ C,

we can use the distance 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗) to represent the

deviation between attribute values  𝑧𝑖𝑗  and 𝑧𝑘𝑗, and 𝐷𝑖𝑗
=∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗 can present the weighted deviation

sum for the alternative 𝐴𝑖 to all alternatives, then
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𝐷𝑗 (𝑤𝑗)=∑ 𝐷𝑖𝑗(
𝑚
𝑖=1 𝑤𝑗)= ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1  presents

the weighted deviation sum for all alternatives, 𝐷 

(𝑤𝑗)= ∑ 𝐷𝑗(
𝑛
𝑗=1 𝑤𝑗)= ∑ ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑛
𝑗=1 ,

presents total weighted deviations for all alternatives with 

respect to all attributes. 

Based on the above analysis, we can construct a non linear 

programming model to select the weight vector w by 

maximizing D (w),as follow: 

{
 Max D(𝑤𝑗) =  ∑ ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑛
𝑗=1

𝑠. 𝑡 ∑ 𝑤𝑗
2𝑛

𝑗=1 , 𝑤𝑗 ∈ [0 ,1], 𝑗 = 1,2, … , 𝑛
  (13) 

Then we can build Lagrange multiplier function, and get 

L(𝑤𝑗,𝜆)= ∑ ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)
𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1

𝑛
𝑗=1  + 𝜆 (∑ 𝑤𝑗

2𝑛
𝑗=1 -1)

Let {

∂L(𝑤𝑗,𝜆)

∂𝑤𝑗
= ∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)

𝑚
𝑘=1 𝑤𝑗

𝑚
𝑖=1 + 2𝜆𝑤𝑗 = 0

∂L(𝑤𝑗,𝜆)

∂𝑤𝑗
= ∑ 𝑤𝑗

2𝑛
𝑗=1 − 1 = 0 

                                        

We can get 

{

 

 2𝜆 =  √∑ (∑ ∑ 𝑑(𝑧𝑖𝑗 , 𝑧𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 )2n

j  

𝑤𝑗   =  
∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)

𝑚
𝑘=1

𝑚
𝑖=1

√∑ (∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1 )2n

j

      (14) 

Then we can get the normalized attribute weight, and have 

𝑤𝑗   =  
∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)

𝑚
𝑘=1

𝑚
𝑖=1

∑ ∑ ∑ 𝑑(𝑧𝑖𝑗,𝑧𝑘𝑗)
𝑚
𝑘=1

𝑚
𝑖=1

𝑛
𝑗=1

 (15) 

C. The Extended TOPSIS Method for the Interval 
Neutrosophic Uncertain linguistic Information. 
The standard TOPSIS method can only process the real 

numbers, and cannot deal with the interval neutrosophic 

uncertain linguistic information. In the following, we will 

extend TOPSIS to process the interval neutrosophic 

uncertain linguistic variables. The steps are shown as 

follows 

(1) Normalize the decision matrix 

Considering the benefit or cost type of the attribute values, 

we can give the normalized matrix R=(𝑟𝑖𝑗), where 𝑟𝑖𝑗=<[𝑟𝑖𝑗
𝐿

, 𝑟𝑖𝑗
𝑈], ],([ �̇�𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈], [ 𝐼�̇�𝑗

𝐿 , 𝐼�̇�𝑗
𝑈], [ �̇�𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈])>,The normalization

can be made shown as follows. 

(i) For benefit type, 

{
𝑟𝑖𝑗
𝐿 = 𝑥𝑖𝑗

𝐿 , 𝑟𝑖𝑗
𝑈 = 𝑥𝑖𝑗

𝑈  for (1 ≤ i ≤ m,   1 ≤ j ≤ n) 

�̇�𝑖𝑗
𝐿   = 𝑇𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈 = 𝑇𝑖𝑗

𝑈 , 𝐼�̇�𝑗
𝐿 = 𝐼𝑖𝑗

𝐿 , 𝐼�̇�𝑗
𝑈 = 𝐼𝑖𝑗

𝑈 ,     �̇�𝑖𝑗
𝐿 = 𝐹𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈 = 𝐹𝑖𝑗

𝑈  (16) 

(ii) For cost type, 

{
𝑟𝑖𝑗
𝐿 =  neg(𝑥𝑖𝑗

𝑈), 𝑟𝑖𝑗
𝑈 = neg( 𝑥𝑖𝑗

𝐿  )     for (1 ≤ i ≤ m,   1 ≤ j ≤ n)

�̇�𝑖𝑗
𝐿 = 𝑇𝑖𝑗

𝐿 ,   �̇�𝑖𝑗
𝑈 = 𝑇𝑖𝑗

𝑈 , 𝐼�̇�𝑗
𝐿 = 𝐼𝑖𝑗

𝐿 , 𝐼�̇�𝑗
𝑈 = 𝐼𝑖𝑗

𝑈 ,     �̇�𝑖𝑗
𝐿 = 𝐹𝑖𝑗

𝐿 , �̇�𝑖𝑗
𝑈 = 𝐹𝑖𝑗

𝑈
(17) 

(2) Construct the weighted normalize matrix 

Y=[𝑦𝑖𝑗]𝑚×𝑛

[

< [𝑦11
𝐿   , 𝑦11

𝑈 ], ], ([ �̈�11
𝐿 , �̈�11

𝑈 ], [ 𝐼1̈1
𝐿 , 𝐼1̈1

𝑈 ], [ �̈�11
𝐿 , �̈�11

𝑈 ]) > … < [𝑦11
𝐿   , 𝑦11

𝑈 ], ], ([ �̈�1𝑛
𝐿 , �̈�1𝑛

𝑈 ], [ 𝐼1̈𝑛
𝐿 , 𝐼1̈𝑛

𝑈 ], [ �̈�1𝑛
𝐿 , �̈�1𝑛

𝑈 ]) >

< [𝑦21
𝐿   , 𝑦21

𝑈 ], ], ([ �̈�21
𝐿 , �̈�21

𝑈 ], [ 𝐼2̈1
𝐿 , 𝐼2̈1

𝑈 ], [ �̈�21
𝐿 , �̈�21

𝑈 ]) > … . < [𝑦2𝑛
𝐿   , 𝑦2𝑛

𝑈 ], ], ([ �̈�2𝑛
𝐿 , �̈�2𝑛

𝑈 ], [ 𝐼2̈𝑛
𝐿 , 𝐼2̈𝑛

𝑈 ], [ �̈�2𝑛
𝐿 , �̈�2𝑛

𝑈 ]) >
…

< [𝑦𝑚𝑛
𝐿   , 𝑦𝑚𝑛

𝑈 ], ], ([ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ], [ 𝐼�̈�𝑛
𝐿 , 𝐼�̈�𝑛

𝑈 ], [ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ]) >…
……

< [𝑦𝑚𝑛
𝐿   , 𝑦𝑚𝑛

𝑈 ], ], ([ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ], [ 𝐼�̈�𝑛
𝐿 , 𝐼�̈�𝑛

𝑈 ], [ �̈�𝑚𝑛
𝐿 , �̈�𝑚𝑛

𝑈 ]) >

] 

Where 

{
𝑦𝑖𝑗
𝐿  =  𝑤𝑗𝑟𝑖𝑗

𝐿 , 𝑦𝑖𝑗
𝑈 = 𝑤𝑗𝑟𝑖𝑗

𝑈

�̈�𝑖𝑗
𝐿   = 1 − (1 − �̇�𝑖𝑗

𝐿)𝑤𝑗 , �̈�𝑖𝑗
𝑈   = 1 − (1 − �̇�𝑖𝑗

𝑈)𝑤𝑗 , 𝐼�̈�𝑗
𝐿 = (𝐼�̇�𝑗

𝐿 )𝑤𝑗 , 𝐼�̈�𝑗
𝑈 = (𝐼�̇�𝑗

𝑈)𝑤𝑗 ,   �̈�𝑖𝑗
𝐿 = (�̇�𝑖𝑗

𝐿)𝑤𝑗 , �̈�𝑖𝑗
𝑈 = (�̇�𝑖𝑗

𝑈)𝑤𝑗  
(18)

(3) Identify, the sets of the positive ideal solution   𝑌+= (𝑦1
+, 𝑦2

+,…, 𝑦𝑚
+) and the negative ideal solution 𝑌−=

(𝑦1
−, 𝑦2

−,…, 𝑦𝑚
−)  , then we can get

𝑌+= 

(𝑦1
+, 𝑦2

+,…, 𝑦𝑚
+)=( < [𝑦1

𝐿+  , 𝑦1
𝑈+], ([ �̈�1

𝐿+, �̈�1
𝑈+], [ 𝐼1̈

𝐿+, 𝐼1̈
𝑈+], [ �̈�1

𝐿+, �̈�1
𝑈+]) >, <

[𝑦2
𝐿+  , 𝑦2

𝑈+], ([ �̈�2
𝐿+, �̈�2

𝑈+], [ 𝐼2̈
𝐿+, 𝐼2̈

𝑈+], [ �̈�2
𝐿+, �̈�2

𝑈+]) >,…, < [𝑦𝑛
𝐿+  , 𝑦𝑛

𝑈+], ([ �̈�𝑛
𝐿+, �̈�𝑛

𝑈+], [ 𝐼�̈�
𝐿+, 𝐼�̈�

𝑈+], [ �̈�𝑛
𝐿+, �̈�𝑛

𝑈+]) >   (19)
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𝑌−= (𝑦1
−, 𝑦2

−,…, 𝑦𝑚
−)=

)=( < [𝒚𝟏
𝑳−  , 𝒚𝟏

𝑼−], ([ �̈�𝟏
𝑳−, �̈�𝟏

𝑼−], [�̈�𝟏
𝑳−, �̈�𝟏

𝑼−], [ �̈�𝟏
𝑳−, �̈�𝟏

𝑼−]) >, < [𝒚𝟐
𝑳−  , 𝒚𝟐

𝑼−], ([ �̈�𝟐
𝑳−, �̈�𝟐

𝑼−], [�̈�𝟐
𝑳−, �̈�𝟐

𝑼−], [ �̈�𝟐
𝑳−, �̈�𝟐

𝑼−]) >,…, <
[𝒚𝒏
𝑳−  , 𝒚𝒏

𝑼−], ([ �̈�𝒏
𝑳−, �̈�𝒏

𝑼−], [�̈�𝒏
𝑳−, �̈�𝒏

𝑼−], [ �̈�𝒏
𝑳−, �̈�𝒏

𝑼−]) >  (20) 

    Where 

{

 

 
𝒚𝒋
𝑳+      = 𝐦𝐚𝐱𝒊(𝒚𝒊𝒋

𝑳 ), 𝒚𝒋
𝑼+ = 𝐦𝐚𝐱𝒊(𝒚𝒊𝒋

𝑼),

�̈�𝒋
𝑳+ = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼+ = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼+ = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑼),

𝒚𝒋
𝑳− = 𝐦𝐢𝐧𝒊(𝒚𝒊𝒋

𝑳 ), 𝒚𝒋
𝑼− = 𝐦𝐢𝐧𝒊(𝒚𝒊𝒋

𝑼),

�̈�𝒋
𝑳− = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼− = 𝐦𝐢𝐧𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑼), �̈�𝒋
𝑳− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑳 ), �̈�𝒋
𝑼− = 𝐦𝐚𝐱𝒊(�̈�𝒊𝒋

𝑼),

(21) 

(4) Obtain the distance between each alternative and the 

positive ideal solution, and between each alternative 

and the negative ideal solution, then we can get 

𝐷+= (𝑑1
+, 𝑑2

+,…, 𝑑𝑚
+ )

𝐷−= (𝑑1
−, 𝑑2

−,…, 𝑑𝑚
− )         (22)

                                   

Where, 

{
𝑑𝑖
+ = [∑ (𝑑(𝑦𝑖𝑗 , 𝑦𝑗

+))
2𝑛

𝑗=1 ]

1

2

𝑑𝑖
− = [∑ (𝑑(𝑦𝑖𝑗 , 𝑦𝑗

−))
2𝑛

𝑗=1 ]

1

2

    (23)                                                

Where , 𝑑(𝑦𝑖𝑗 , 𝑦𝑗
+)is the distance between the interval

valued neutrosophic uncertain linguistic variables 𝑦𝑖𝑗 and

𝑦𝑗
+ and 𝑑(𝑦𝑖𝑗 , 𝑦𝑗

−) is the distance between the interval

valued neutrosophic uncertain linguistic variables 𝑦𝑖𝑗 and

𝑦𝑗
− which can be calculated by (12)

(5) Obtain the closeness coefficients of each alternative to 

the ideal solution, and then we can get 

𝑐𝑐𝑖=
𝑑𝑖
+

𝑑𝑖
++𝑑𝑖

−  (i=1,2,…,m)       (24) 

(6) Rank the alternatives 

According to the closeness coefficient above, we can 

choose an alternative with minimum 𝑐𝑐𝑖 or rank

alternatives according to  𝑐𝑐𝑖 in ascending order

IV. An illustrative example

In this part, we give an illustrative example adapted from J. 

Ye [20] for the extended TOPSIS method to multiple 

attribute decision making problems in which the attribute 

values are the interval neutrosophic uncertain linguistic 

variables. 

Suppose that an investment company, wants to invest a 

sum of money in the best option. To invest the money, 

there is a panel with four possible alternatives: (1) 𝐴1 is car

company; (2) 𝐴2 is food company; (3) 𝐴3 is a computer

company; (4) 𝐴4 is an arms company. The investement

company must take a decision according to the three 

attributes: (1) 𝐶1 is the risk; (2) 𝐶2 is the growth; (3) 𝐶3 is a

the environmental impact. The weight vector of the 

attributes is ω= (0.35, 0.25, 0.4)T.The expert evaluates the 

four possible alternatives of Ai (i=1,2,3,4) with respect to

the three attributes of Cj (i=1,2,3), where the evaluation

information is expressed by the form of INULV values 

under the linguistic term set S={𝑠0=extremely poor,

𝑠1=very poor, 𝑠2= poor, 𝑠3= medium, 𝑠4= good, 𝑠5= very

good, 𝑠6= extermely good}.

The evaluation information of an alternative Ai (i=1, 2, 3)

with respect to an attribute Cj (j=1, 2, 3) can be given by

the expert. For example, the INUL value of an alternative 

A1 with respect to an attribute C1 is given as <[𝑠4, 𝑠5],

([0.4, 0.5 ],[0.2, 0.3 ], [0.3, 0.4 ])> by the expert, which 

indicates that the mark of the alternative A1 with respect to

the attribute C1  is about the  uncertain linguistic value

[𝑠4, 𝑠5,] with the satisfaction degree interval [0.4 ,0.5],

indeterminacy degree interval [0.2, 0.3], and dissatisfaction 

degree interval [0.3, 0.4]. similarly, the four possible 

alternatives with respect to the three attributes can be 

evaluated by the expert, thus we can obtain the following 

interval neutrosophic uncertain linguistic decision matrix: 

(𝑅)m×n=

[
 
 
 
< ([𝑠4, 𝑠5], ([0.4, 0.5 ], [0.2, 0.3 ], [0.3, 0.4 ]) > < ([𝑠5, 𝑠6], ([0.4, 0.6 ], [0.1, 0.2 ], [0.2, 0.4 ]) > < ([𝑠4, 𝑠5], ([0.2, 0.3 ], [0.1, 0.2 ], [0.5, 0.6 ]) >

< ([𝑠5, 𝑠6], ([0.5, 0.7 ], [0.1, 0.2 ], [0.2, 0.3 ]) > < ([𝑠4, 𝑠5], ([0.6, 0.7 ], [0.1, 0.2 ], [0.2, 0.3 ]) > < ([𝑠4, 𝑠5], ([0.5, 0.7 ], [0.2, 0.2 ], [0.1, 0.2 ]) >

< ([𝑠5, 𝑠6], ([0.3, 0.5 ], [0.1, 0.2 ], [0.3, 0.4 ]) >

< ([𝑠3, 𝑠4], ([0.7, 0.8 ], [0.0, 0.1 ], [0.1, 0.2 ]) >

< ([𝑠5, 𝑠6], ([0.5, 0.6 ], [0.1, 0.3 ], [0.3, 0.4 ]) >

< ([𝑠3, 𝑠4], ([0.5, 0.7 ], [0.1, 0.2 ], [0.2, 0.3 ]) >

< ([𝑠4, 𝑠4], ([0.5, 0.6 ], [0.1, 0.3 ], [0.1, 0.3 ]) >

< ([𝑠5, 𝑠6], ([0.3, 0.4 ], [0.1, 0.2 ], [0.1, 0.2 ]) >]
 
 
 

A. Decision steps To get the best an alternatives, the following steps are 

involved: 
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Step 1: Normalization 

Because the attributes  are all the benefit types, we don’t 

need the normalization of the decision matrix X 

Step 2: Determine the attribute weight vector W, by 

formula (24), we can get 

𝑤1=  0.337  , 𝑤2=  0.244    , 𝑤3=0.379

Step 3: Construct the weighted normalized matrix, by 

formula (18), we can get 

Y =⟦

< ([𝑠1.508, 𝑠1.885], ([0.175, 0.229], [0.545, 0.635 ], [0.635, 0.708 ]) > < ([𝑠1.225, 𝑠1.467], ([0.117, 0.201 ], [0.570, 0.675 ], [0.675, 0.800 ]) >

< ([𝑠1.885, 𝑠2.262], ([0.229, 0.365 ], [0.42, 0.545 ], [0.545, 0.635 ]) > < ([𝑠0.98, , 𝑠1.225], ([0.201, 0.255 ], [0.570, 0.675 ], [0.675, 0.745 ]) >

< ([𝑠1.885, 𝑠2.262], ([0.125, 0.23 ], [0.42, 0.545 ], [0.635, 0.708 ]) >

< ([𝑠1.131, 𝑠1.508] , ([0.364, 0.455 ], [0.0, 0.42 ], [0.42, 0.545 ]) >

< ([𝑠0.98, 𝑠1.225], ([0.156, 0.201 ], [0.570, 0.745 ], [0.745, 0.800 ]) >

< ([𝑠0.735, 𝑠0.98], ([0.156, 0.255 ], [0.570, 0.674 ], [0.675, 0.745 ]) >

< ([𝑠1.508, 𝑠1.885], ([0.081, 0.126], [0.420, 0.545 ], [0.77, 0.825 ]) >

< ([𝑠1.508, 𝑠1.885], ([0.231, 0.365 ], [0.545, 0.545 ], [0.420, 0.545 ]) >

< ([𝑠1.508, 𝑠1.508], ([0.231, 0.292 ], [0.420, 0.635 ], [0.420, 0.635 ]) >

< ([𝑠1.885, 𝑠2.262], ([0.126, 0.175 ], [0.420, 0.545 ], [0.420, 0.545 ]) >

⟧ 

Step 4: Identify the sets of the positive ideal solution 

𝑌+= (𝑦1
+, 𝑦2

+, 𝑦3
+) and the negative ideal solution

𝑌−= (𝑦1
−, 𝑦2

−, 𝑦3
−), by formulas (19)- (21), we can get then

we can get 

𝑌+= (< ([s1.885, s2.262], ([0.365, 0.455 ], [0, 0.42 ], [0.42, 0.545 ]) >
, < ([s1.225, s1.47], ([0.201, 0.255 ], [0.569, 0.674 ], [0.674, 0.745 ]) >, 
< ([s1.885, s2.262], ([0.230, 0.365 ], [0.420, 0.545 ], [0.420, 0.545 ]) >) 

𝑌−=(< ([𝑠1.131, 𝑠1.508], ([0.126, 0.230 ], [0.545, 0.635 ], [0.635, 0.708 ]) >
, < ([s0.735, s0.98], ([0.117, 0.201], [0.569, 0.745 ], [0.745, 0.799]) >, <
([s1.508, s1.508], ([0.081, 0.126 ], [0.545, 0.635 ], [0.770, 0.825 ]) >) 

Step 5: Obtain the distance between each alternative and 

the positive ideal solution, and between each alternative 

and the negative ideal solution, by formulas (22)-(23), we 

can get 

𝐷+= (0.402, 0.065, 0.089, 0.066) 

𝐷−= (0.052, 0.073, 0.080, 0.065) 

Step 6: Calculate  the closeness coefficients of each 

alternative to the ideal solution, by formula (24) and then 

we can get 

𝑐𝑐𝑖 = (0.885, 0.472, 0.527, 0.503)

Step 7: Rank the alternatives 

According to the closeness coefficient above, we can 

choose an alternative with minimum to 𝑐𝑐𝑖 in ascending

order. We can get 

𝐴2 ≥ 𝐴4 ≥ 𝐴3 ≥ 𝐴1

So, the most desirable alternative is 𝐴2

V-Comparison analysis with the existing interval 
neutrosophic uncertain linguistic multicriteria 
decision making method. 

Recently, J. Ye [20] developed a new method for solving 

the MCDM problems with interval neutrosophic uncertain 

linguistic information. In this section, we will perform a 

comparison analysis between our new method and the 

existing method, and then highlight the advantages of the 

new method over the existing method. 

(1) Compared with  method proposed proposed by J. Ye 

[20], the method in this paper can solve the MADM 

problems with unknown weight, and rank the alternatives 

by the closeness coefficients. However, the method 

proposed by J. Ye [20] cannot deal with the unknown 

weight It can be seen that the result of the proposed 

method is same to the method proposed in [20]. 

(2) Compared with other extended TOPSIS method  

Because the interval neutrosophic uncertain linguistic 

variables are the generalization of interval neutrosophic 

linguistic variables (INLV), interval neutrosophic variables 

(INV),and  intuitionistic uncertain linguistic variable. 

Obviously, the extended TOPSIS method proposed by J. 

Ye [19], Z. Wei [54], Z. Zhang and C. Wu [3], are the 

special cases of the proposed method in this paper. 

In  a word, the method proposed in this paper is more 

generalized. At the same time, it is also simple and easy to 

use. 

VI-Conclusion 

In real decision  making, there is great deal of qualitative 

information which can be expressed by uncertain linguistic 

variables. The interval neutrosophic uncertain linguistic 

variables were produced by combining the uncertain 

linguistic variables and interval neutrosophic set, and could 

easily express the indeterminate and inconsistent 

information in real world. TOPSIS had been proved to be a 

very effective decision making method and has been 

achieved more and more extensive applications. However, 

the standard TOPSIS method can only process the real 

numbers. In this paper, we extended TOPSIS method to 

deal with the interval neutrosophic uncertain linguistic 

variables information, and proposed an extended TOPSIS 

method with respect to the MADM problems in which the 

attribute values take the form of the interval neutrosophic 

and attribute weight unknown. Firstly, the operational rules 
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and properties for the interval neutrosophic uncertain 

linguistic variables were presented. Then the distance 

between two interval neutrosophic uncertain linguistic 

variables was proposed and the attribute weight was 

calculated by the maximizing deviation method, and the 

closeness coefficient to the ideal solution for each 

alternative  used to rank the alternatives. Finally, an 

illustrative example was given to illustrate the decision 

making steps, and compared with the existing method and 

proved the effectiveness of the proposed method. 

However, we hope that the concept presented here will 

create new avenue of research in current neutrosophic 

decision making area. 
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Abstract. In this paper, we present a review of different 

recommender system algorithms that are utilized in social 

networks based e-Learning systems. Future research will include 

our proposed our e-Learning system that utilizes Recommender 

System and Social Network.  Since the world is full of 

indeterminacy, the neutrosophics found their place into 

contemporary research. The fundamental concepts of 

neutrosophic set, introduced by Smarandache in [21, 22, 23] and 

Salama et al. in [24-66].The purpose of this paper is to utilize a 

neutrosophic set to analyze social networks data conducted 

through learning activities. 

Keywords: e-Learning , Social Networks , Recommender System , Neutrosophic System.

1 Introduction 

The Internet shows great potential for enhancing 

collaboration between people and the role of social 
software has become increasingly relevant in recent years. 
A vast array of systems exist which employ users’ stored 
profile data, identifying matches for collaboration. Social 
interaction within an online framework can help university 
students share experiences and collaborate on relevant 

topics. As such, social networks can act as a pedagogical 
agent, for example, with problem-based learning [1].Social 
networking websites are virtual communities which allow 
people to connect and interact with each other on a 
particular subject or to just ‘‘hang out” together online. 

Membership of online social networks has recently 
exploded at an exponential rate [2]. Recommender systems 
cover an important field within collaborative services that 
are developed in the Web 2.0 environment and enable 
user-generated opinions to be exploited in a sophisticated 
and powerful way. Recommender Systems can be 

considered as social networking tools that provide dynamic 
and collaborative communication, interaction and 
knowledge [3]. 

Course management systems (CMSs) can offer a great 
variety of channels and workspaces to facilitate 

information sharing and communication among 
participants in a course. They let educators distribute 
information to students, produce content material, prepare 
assignments and tests, engage in discussions, manage 
distance classes and enable collaborative learning with 
forums, chats, file storage areas, news services, etc. Some 

examples of commercial systems are Blackboard, WebCT 
and Top Class while some examples of free systems are 
Moodle, Ilias and Claroline. Nowadays, one of the most 
commonly used is Moodle (modular object oriented 
developmental learning environment), a free learning 

management system enabling the creation of powerful, 
flexible and engaging online courses and experiences 
[4,30]. 

The new era of e-Learning services is mainly based on 
ubiquitous learning, mobile technologies, social networks 

(communities) and personalized knowledge management. 
“The convergence of e-Learning and knowledge 
management fosters a constructive, open, dynamic, 
interconnected, distributed, adaptive, user friendly, socially 
concerned, and accessible wealth of knowledge”. The 
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knowledge management tools such as community, social 
software, peer-to-peer and personalized knowledge 
management and are now commonly are being used in 
ubiquitous learning. Learners use these tools to generate 
and share ideas, explore their thinking, and acquire 
knowledge from other learners. Learners search and 

navigate the learning objects in this knowledge filled 
environment. However, due to the failure of indexing 
methods to provide the anticipated, ubiquitous learning 
grid for them, learners often fail to reach their desired 
learning objects [5]. The fundamental concepts of 
neutrosophic set, introduced by Smarandache [21, 22, 23] 

and Salama et al. in [24-66], provides a natural foundation 
for treating mathematically the 
neutrosophic phenomena which exist pervasively in our 
real world and for building new branches of neutrosophic 
mathematics and computer applications. 

This paper goes as follows: Section Two presents different 

Recommender Systems algorithms that can be utilized in 

e-Learning. Section three presents the C4.5 algorithm. 

Section four presents the K-means algorithm. Section five 

introduces the Support Vector Machines algorithm. Section 

six highlights the Apriori algorithm. Section seven presents 

the conclusion and future work.the notion of neutrosophics 

crisp set.  

2 Recommender Systems 

     There is a need for Personal Recommender Systems in 

Learning Networks in order to provide learners with advice 

on the suitable learning activities to follow. Learning 

Networks target lifelong learners in any learning situation, 

at all educational levels and in all national contexts. They 

are community-driven because every member is able to 

contribute to the learning material. Existing Recommender 

Systems and recommendation techniques used for 

consumer products and other contexts are assessed on their 

suitability for providing navigational support in a Learner 

Networks..

3 C4.5 

    Systems that construct classifiers are one of the 
commonly used tools in data mining. Such systems take as 

input a collection of cases, each belonging to one of a 
small number of classes and described by its values for a 
fixed set of attributes, and output a classifier that can 
accurately predict the class to which a new case 
belongs.Like CLS and ID3, C4.5 generates classifiers 
expressed as decision trees, but it can also construct 

classifiers in more comprehensible ruleset form. 

A. Decision Trees 

Given a set S of cases, C4.5 first grows an initial 
tree using the divide-and-conquer algorithms 
follows: 

 If all the cases in S belong to the same class or S

is small, the tree is a leaf labeled with the most

frequent class in S.

 Otherwise, choose a test based on a single

attribute with two or more outcomes. Make this

test the root of the tree with one branch for each

outcome of the test, partition S into corresponding

subsets   according to the outcome for each case,

and apply the same procedure recursively to each

subset.

There are usually many tests that could be chosen 
in this last step. C4.5 uses two heuristic criteria to 

rank possible tests: information gain, which 
minimizes the total entropy of the subsets   (but is 
heavily biased towards tests with numerous 
outcomes), and the default gain ratio that divides 
information gain by the information provided by 
the test outcomes.   

B. Ruleset Classifier 

Complex decision trees can be difficult to understand, 

for instance because information about one class is usually 

distributed throughout the tree. C4.5 introduced an alterna-

tive formalism consisting of a list of rules of the form “if A 

and B and C and ... then class X”, where rules for each 

class are grouped together. A case is classified by finding 

the first rule whose conditions are satisfied by the case; if 

no rule is satisfied, the case is assigned to a default 

class.C4.5 rulesets are formed from the initial (unpruned) 

decision tree. Each path from the root of the tree to a leaf 

becomes a prototype rule whose conditions are the out-

comes along the path and whose class is the label of the 

leaf. This rule is then simplified by determining the effect 

of discarding each condition in turn. Dropping a condition 

may increase the number N of cases covered by the rule, 

and also the number E of cases that do not belong to the 

class nominated by the rule, and may lower the pessimistic 

error rate determined as above. A hill-climbing algorithm 

is used to drop conditions until the lowest pessimistic error 

rate is found.To complete the process, a subset of simpli-

fied rules is selected for each class in turn. These class 

subsets are ordered to minimize the error on the training 

cases and a default class is chosen. The final ruleset usual-

ly has far fewer rules than the number of leaves on the 

pruned decision tree.The principal disadvantage of C4.5’s 

rulesets is the amount of CPU time and memory that they 

require. 

4 K-Means Algorithm 
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The k-means algorithm is a simple iterative method to 
partition a given dataset into a user specified number of 
clusters, k. This algorithm has been discovered by several 
researchers across different disciplines, most notably Lloyd 
[6], Forgey, Friedman and Rubin, and McQueen. A 
detailed history of k-means along with descriptions of 

several variations are given in [7]. Gray and Neuhoff [8] 
provide a nice historical background for k-means placed in 
the larger context of hill-climbing algorithms.The 
algorithm is initialized by picking k points in as the initial 
k cluster representatives or “centroids”. Techniques for 
selecting these initial seeds include sampling at random 

from the dataset, setting them as the solution of clustering 
a small subset of the data or perturbing the global mean of 
the data k times. Then the algorithm iterates between two 
steps till convergence: 

 Step 1: Data Assignment. Each data point is

assigned to its closest centroid, with ties broken

arbitrarily. This results in a partitioning of the

data.

 Step 2: Relocation of “means”. Each cluster

representative is relocated to the center (mean) of

all data points assigned to it. If the data points

come with a probability measure (weights), then

the relocation is to the expectations (weighted

mean) of the data partitions.

The algorithm converges when the assignments (and hence 
the   values) no longer change.One issue to resolve is how 
to quantify “closest” in the assignment step. The default 
measure of closeness is the Euclidean distance, in which 
case one can readily show that the non-negative cost 
function 
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,will decrease whenever there is a change in the 

assignment or the relocation steps, and hence convergence 

is guaranteed in a finite number of iterations. The greedy-

descent nature of k-means on a non-convex cost also 

implies that the convergence is only to a local optimum, 

and indeed the algorithm is typically quite sensitive to the 

initial centroid locations. 

A. Limitations 

In addition to being sensitive to initialization, the 
k-means algorithm suffers from several other 
problems. First, observe that k-means is a limiting 

case of fitting data by a mixture of k Gaussians 
with identical, isotropic covariance matrices, 

when the soft assignments of data points to 
mixture components are hardened to allocate each 
data point solely to the most likely component. So, 
it will falter whenever the data is not well 
described by reasonably separated spherical balls, 
for example, if there are non-covex shaped 

clusters in the data. This problem may be 
alleviated by rescaling the data to “whiten” it 
before clustering, or by using a different distance 
measure that is more appropriate for the dataset. 
For example, information-theoretic clustering 
uses the KL-divergence to measure the distance 

between two data points representing two discrete 
probability distributions. It has been recently 
shown that if one measures distance by selecting 
any member of a very large class of divergences 
called Bregman divergences during the 
assignment step and makes no other changes, the 

essential properties of k-means, including 
guaranteed convergence, linear separation 
boundaries and scalability, are retained [9]. This 
result makes k-means effective for a much larger 
class of datasets so long as an appropriate 
divergence is used. 

k-means can be paired with another algorithm to de-

scribe non-convex clusters. One first clusters the data into 

a large number of groups using k-means. These groups are 

then agglomerated into larger clusters using single link hi-

erarchical clustering, which can detect complex shapes. 

This approach also makes the solution less sensitive to ini-

tialization, and since the hierarchical method provides re-

sults at multiple resolutions, one does not need to pre-

specify k either.The cost of the optimal solution decreases 

with increasing k till it hits zero when the number of clus-

ters equals the number of distinct data-points. This makes 

it more difficult to (a) directly compare solutions with dif-

ferent numbers of clusters and (b) to find the optimum val-

ue of k. If the desired k is not known in advance, one will 

typically run k-means with different values of k, and then 

use a suitable criterion to select one of the results. For ex-

ample, SAS uses the cube-clustering-criterion, while X-

means adds a complexity term (which increases with k) to 

the original cost function (Eq. 1) and then identifies the k 

which minimizes this adjusted cost. Alternatively, one can 

progressively increase the number of clusters, in conjunc-

tion with a suitable stopping criterion. Bisecting k-means 

[10] achieves this by first putting all the data into a single 

cluster, and then recursively splitting the least compact 

cluster into two using 2-means. The celebrated LBG algo-

rithm [8] used for vector quantization doubles the number 

of clusters till a suitable code-book size is obtained. Both 

these approaches thus alleviate the need to know k before-
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hand.The algorithm is also sensitive to the presence of out-

liers, since “mean” is not a robust statistic. A preprocessing 

step to remove outliers can be helpful. Post-processing the 

results, for example to eliminate small clusters, or to merge 

close clusters into a large cluster, is also desirable. Ball and 

Hall’s ISODATA algorithm from 1967 effectively used 

both pre- and post-processing on k-means.

5 Support Vector Machines 

In today’s machine learning applications, support 
vector machines (SVM) [11] are considered amust try—it 

offers one of the most robust and accurate methods among 
all well-known algorithms. It has a sound theoretical 
foundation, requires only a dozen examples for training, 
and is insensitive to the number of dimensions. In addition, 
efficient methods for training SVM are also being 
developed at a fast pace. In a two-class learning task, the 

aim of SVM is to find the best classification function to 
distinguish between members of the two classes in the 
training data. The metric for the concept of the “best” 
classification function can be realized geometrically.  

Because there are many such linear hyperplanes, what 

SVM additionally guarantee is that the best such function 
is found by maximizing the margin between the two 
classes. Intuitively, the margin is defined as the amount of 
space, or separation between the two classes as defined by 
the hyperplane. Geometrically, the margin corresponds to 
the shortest distance between the closest data points to a 

point on the hyperplane. Having this geometric definition 
allows us to explore how to maximize the margin, so that 
even though there are an infinite number of hyperplanes, 
only a few qualify as the solution to SVM.The reason why 
SVM insists on finding the maximum margin hyperplanes 
is that it offers the best generalization ability. It allows not 

only the best classification performance (e.g., accuracy) on 
the training data, but also leaves much room for the correct 
classification of the future data.  

There are several important questions and related 
extensions on the above basic formulation of support 

vector machines. SVM can be easily extended to perform 
numerical calculations. The first is to extend SVM to 
perform regression analysis, where the goal is to produce a 
linear function that can approximate that target function. 
Careful consideration goes into the choice of the error 
models; in support vector regression, or SVR, the error is 

defined to be zero when the difference between actual and 
predicted values is within an epsilon amount. Otherwise, 
the epsilon insensitive error will grow linearly. The support 
vectors can then be learned through the minimization of 
the Lagrangian. An advantage of support vector regression 
is reported to be its insensitivity to outliers. 

Another extension is to learn to rank elements rather 

than producing a classification for individual elements [12]. 

Ranking can be reduced to comparing pairs of instances 

and producing a +1 estimate if the pair is in the correct 

ranking order, and −1 otherwise. Thus, a way to reduce this 

task to SVM learning is to construct new instances for each 

pair of ranked instance in the training data, and to learn a 

hyperplane on this new training data. This method can be 

applied to many areas where ranking is important, such as 

in document ranking in information retrieval areas. 

6 The Apriori algorithm 

One of the most popular data mining approaches is to find 

frequent itemsets from a transaction dataset and derive 
association rules. Finding frequent itemsets (itemsets with 
frequency larger than or equal to a user specified minimum 
support) is not trivial because of its combinatorial 
explosion. Once frequent itemsets are obtained, it is 
straightforward to generate association rules with 

confidence larger than or equal to a user specified 
minimum confidence.Apriori is a seminal algorithm for 
finding frequent itemsets using candidate generation [13]. 
It is characterized as a level-wise complete search 
algorithm using anti-monotonicity of itemsets, “if an 
itemset is not frequent, any of its superset is never 

frequent”. By convention, Apriori assumes that items 
within a transaction or itemset are sorted in lexicographic 
order. Apriori first scans the database and searches for 
frequent itemsets of size 1 by accumulating the count for 
each item and collecting those that satisfy the minimum 
support requirement. It then iterates on the following three 

steps and extracts all the frequent itemsets. 

Many of the pattern finding algorithms such as decision 
tree, classification rules and clustering techniques that are 
frequently used in data mining have been developed in 
machine learning research community. Frequent pattern 

and association rule mining is one of the few exceptions to 
this tradition. The introduction of this technique boosted 
data mining research and its impact is tremendous. The 
algorithm is quite simple and easy to implement. 
Experimenting with Apriori-like algorithm is the first thing 
that data miners try to do. 

Since Apriori algorithm was first introduced and as 
experience was accumulated, there have been many 
attempts to devise more efficient algorithms of frequent 
itemset mining. Many of them share the same idea with 
Apriori in that they generate candidates. These include 

hash-based technique, partitioning, sampling and using 
vertical data format. Hash-based technique can reduce the 
size of candidate itemsets. Each itemset is hashed into a 
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corresponding bucket by using an appropriate hash 
function. Since a bucket can contain different itemsets, if 
its count is less than a minimum support, these itemsets in 
the bucket can be removed from the candidate sets. A 
partitioning can be used to divide the entire mining 
problem into n smaller problems. The dataset is divided 

into n non-overlapping partitions such that each partition 
fits into main memory and each partition is mined 
separately. Since any itemset that is potentially frequent 
with respect to the entire dataset must occur as a frequent 
itemset in at least one of the partitions, all the frequent 
itemsets found this way are candidates, which can be 

checked by accessing the entire dataset only once. 
Sampling is simply to mine a random sampled small subset 
of the entire data. Since there is no guarantee that we can 
find all the frequent itemsets, normal practice is to use a 
lower support threshold. Trade off has to be made between 
accuracy and efficiency. Apriori uses a horizontal data 

format, i.e. frequent itemsets are associated with each 
transaction. Using vertical data format is to use a different 
format in which transaction IDs (TIDs) are associated with 
each itemset. With this format,taking the intersection of 
TIDs can perform mining. The support count is simply the 
length of the TID set for the itemset. There is no need to 

scan the database because TID set carries the complete 
information required for computing support. 

The most outstanding improvement over Apriori would be 
a method called FP-growth (frequent pattern growth) that 
succeeded in eliminating candidate generation [14]. It 

adopts a divide and conquer strategy by (1) compressing 
the database representing frequent items into a structure 
called FP-tree (frequent pattern tree) that retains all the 
essential information and (2) dividing the compressed 
database into a set of conditional databases, each 
associated with one frequent itemset and mining each one 

separately. It scans the database only twice. In the first 
scan, all the frequent items and their support counts 
(frequencies) are derived and they are sorted in the order of 
descending support count in each transaction. In the second 
scan, items in each transaction are merged into a prefix tree 
and items (nodes) that appear in common in different 

transactions are counted. Each node is associated with an 
item and its count. Nodes with the same label are linked by 
a pointer called node-link. Since items are sorted in the 
descending order of frequency, nodes closer to the root of 
the prefix tree are shared by more transactions, thus 
resulting in a very compact representation that stores all 

the necessary information. Pattern growth algorithm works 
on FP-tree by choosing an item in the order of increasing 
frequency and extracting frequent itemsets that contain the 
chosen item by recursively calling itself on the conditional 
FP-tree. FP-growth is an order of magnitude faster than the 
original Apriori algorithm.There are several other 

dimensions regarding the extensions of frequent pattern 
mining. The major ones include the followings:  

(1) incorporating taxonomy in items [15]: Use of 

Taxonomy makes it possible to extract frequent 

itemsets that are expressed by higher concepts 

even when use of the base level concepts 

produces only infrequent itemsets.  

(2) incremental mining: In this setting, it is assumed 

that the database is not stationary and a new 

instance of transaction keeps added. The 

algorithm in [16] updates the frequent itemsets 

without restarting from scratch.  

(3) using numeric valuable for item: When the item 

corresponds to a continuous numeric value, 

current frequent itemset mining algorithm is not 

applicable unless the values are discretized. A 

method of subspace clustering can be used to 

obtain an optimal value interval for each item in 

each itemset [17].  

(4) using other measures than frequency, such as 

information gain or   value: These measures are 

useful in finding discriminative patterns but 

unfortunately do not satisfy anti-monotonicity 

property. However, these measures have a nice 

property of being convex with respect to their 

arguments and it is possible to estimate their 

upperbound for supersets of a pattern and thus 

prune unpromising patterns efficiently. Apriori 

SMP uses this principle [18].  

(5) using richer expressions than itemset:Many 

algorithms have been proposed for sequences, 

tree and graphs to enable mining from more 

complex data structure [19].  

Closed itemsets: A frequent itemset is closed if it is not 
included in any other frequent itemsets. Thus, once the 
closed itemsets are found, all the frequent itemsets can be 

derived from them. LCM is the most efficient algorithm to 
find the closed itemsets [20]. 
7 Neutrosophic System 

     The first input parameter to the neutrosophic variable 
“the number Clusters” has three membership function (Y) , 
non-membership(N) and indeterminacy(I) of n is 

illustrated in Figure 1. 
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Figure 1: Membership function, non-membership and 
indeterminacy of neutrosophic set with variable n. 

The input neutrosophic variable “the frequency of Subject 
Items” has the membership functions , non-membership  
and indeterminacy of f  is showed in formulation (1) 











no)non(yes,   acy Indetermin   

  variableis  itemsubject     theno

constant  is  itemkey        theyes

f

Formula 1 
The output neutrosophic variable “Subject Items” has 

neutrosophic sets. It should be noted that modifying the 
membership functions, non-membership and 
indeterminacy will change the sensitivity of the 
neutrosophic logic system’s output to its inputs. Also 
increasing the number of neutrosophic sets of the variables 

will provide better sensitivity control but also increases 
computational complexity of the system. Table 1 and 
Figure 2  show the rules used in the neutrosophic system. 

Table 1:  The neutrosophic system rules 

Cluster 
membership 

functions 
non-

membership 
indeterminacy 

1 Y N I 

2 N I Y 

3 I Y N 

4 Y N I 

 

 

Figure 2: show the graph neutrosophic system. 

 The Neutrosophic System Equation Given by : 

BRA   Such That

A : Represent Neutrosophic Data input for e-Learning System . 

R : Represent  Processing Neutrosophic System Data . 

A :Represent Recommendation Subject for Students . 

The output of that system determines the number of Sub-

ject Items Recommended. This determination is based on 

the NS analysis whish passes the three  parameters 

of )(),(),( xxxA AAA   where    xx AA  ,  and

 xA which represent the degree of membership func-

tion (namely  xA ), the degree of indeterminacy (name-

ly  xA ), and the degree of non-member ship (namely 

 xA ) respectively of each element Xx  to the set A

where 
  1)(),(),(0 xxx AAA  and

  3)()()(0 xxx AAA  , then based on that anal-

ysis the system decides the accurate key size in each situ-

ation. 

8 Conclusion and Future Work 

In this paper, we presented the importance of social 

networks in e-Learning systems. Recommender systems 

play important roles in e-Learning as they help students to 

chose among different learning objects to study and 

activities to participate in. Among the different objects and 

activities available, recommender systems can chose 

between different algorithms. Presented algorithms in this 

paper are: C4.5, K-Means, Support Vector Machine, and 

Apriori algorithms. Each of those algorithms fit into a 

certain functionality of the recommender system. Future 

work will include comparison between other important 

machine learning algorithms, and our proposed e-Learning 

model that utilizes different machine learning algorithms 

for social network supported e-Learning. We have 

presented a proposed effective e-Learning system that 

utilizes a newly presented neutrosophic data set in 

analyzing social network data integrated in e-Learning. 

Identifying relationships between students is important for 

learning. Future work include incorporating the results we 

have achieved in customizing course contents to students, 

and recommending new learning objects more suitable for 

personalized learning. 
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Abstract. This paper proposes a distance measure of 
neutrosophic numbers and a similarity measure based on 
cosine function, and then develops the misfire fault 
diagnosis method of gasoline engines by using the cosine 
similarity measure of neutrosophic numbers. In the fault 
diagnosis, by the cosine similarity measure between the 
fault knowledge (fault patterns) and required diagnosis-
testing sample with neutrosophic number information 
and its relation indices, the proposed fault diagnosis 

method can indicate the main fault type and fault trends. 
Then, the misfire fault diagnosis results of gasoline 
engines demonstrate the effectiveness and rationality of 
the proposed fault diagnosis method. The proposed 
misfire fault diagnosis method not only gives the main 
fault types of the engine, but also provides useful 
information for future fault trends. The proposed method 
is effective and reasonable in the misfire fault diagnosis 
of gasoline engines. 

Keywords: Neutrosophic number, distance measure, cosine similarity measure, misfire fault diagnosis, gasoline engine. 

1 Introduction 

Misfire fault is usually produced in gasoline engines 
[1]. However, it can descend its power, increase its fuel 
consumption and aggravate its pollution of exhaust 
emission when the burning quality of mixture gases 
descends in the combustion chamber of gasoline engines. 
Therefore, to keep better operating performance of the 
engine, we have to find out and eliminate the affected 
factors of low burning quality in the engine. Then, the 
exhaust emission in gasoline engines mainly contains the 
components of HC, NOx, CO, CO2, O2, water vapor etc, 
which can affect the burning quality of mixture gases in 
the engine. Under different burning conditions in the 
engine, the content of the components can be changed in 
some range as the change of operating status or the 
occurrences of various mechanical and electronic faults in 
the engine. Hence, one can indicate the operating status of 
the engine by analyzing the change of exhaust emission 
content [1]. 

However, fault diagnosis is an important topic in 
engineering areas. In many real situations, the fault data 
cannot provide deterministic values because the fault 
testing data obtained by experts are usually imprecise or 
uncertain due to a lack of data, time pressure, measurement 
errors, or the experts’ limited attention and knowledge. In 
real situations, the fault testing data usually contain the 
determinate information and the indeterminate information. 
While neutrosophic numbers proposed originally by 
Smarandache [2-4] may express it since a neutrosophic 
number consists of its determinate part and its 
indeterminate part. Therefore, it is a better tool for 

expressing incomplete and indeterminate information. The 
neutrosophic number can be represented as N = a + bI, 
which consists of its determinate part a and its 
indeterminate part bI. In the worst scenario, N can be 
unknown, i.e. N = bI. When there is no indeterminacy 
related to N, in the best scenario, there is only its 
determinate part N = a. Obviously, it is very suitable for 
the expression of incomplete and indeterminate 
information in fault diagnosis problems. Therefore, the 
neutrosophic number can effectively represent the fault 
data with incomplete and indeterminate information. 
Although the neutrosophic numbers have been defined in 
neutrosophic probability since 1996 [2], since then, little 
progress has been make for processing indeterminate 
problems by neutrosophic numbers in scientific and 
engineering applications. In order to break through the 
applied predicament, this paper proposes a distance 
measure of neutrosophic numbers and a similarity measure 
of neutrosophic numbers based on cosine function (so-
called cosine similarity measure) for handling the misfire 
fault diagnosis problems of gasoline engines under 
neutrosophic number environment. 

The remainder of the paper is organized as follows. In 
Section 2, we introduce some basic concepts related to 
neutrosophic numbers and some basic operational relations 
of neutrosophic numbers. Section 3 proposes a distance 
measure and a cosine similarity measure for neutrosophic 
numbers. Section 4 develops a fault diagnosis method 
using the cosine similarity measure for the misfire fault 
diagnosis problems of gasoline engines under neutrosophic 
number environment and demonstrates the effectiveness 
and rationality of the misfire fault diagnosis method. 
Section 5 gives the conclusions and future directions of 
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research. 

2 Neutrosophic numbers and their basic 
operational relations 

Smarandache [2-4] firstly proposed a concept of a 
neutrosophic number, which consists of the determinate 
part and the indeterminate part. It is usually denoted as N = 
a + bI, where a and b are real numbers, and I is 
indeterminacy, such that I2 = I, 0I = 0, and I/I = undefined. 

For example, a neutrosophic number is N = 3 + 2I, If I 
 [0, 0.2], it is equivalent to N  [3, 3.4] for sure N  3, 
this means that the determinate part of N is 3, while the 
indeterminate part of N is 2I and I  [0, 0.2], which means 
the possibility for number “N” to be a little bigger than 3. 

Let N1 = a1 + b1I and N2 = a2 + b2I be two neutrosophic 
numbers. Then, Smarandache [2-4] gave the following 
operational relations of neutrosophic numbers: 

(1) N1 + N2 = a1 + a2 + (b1 + b2)I; 

(2) N1  N2 = a1  a2 + (b1  b2)I;; 

(3) N1  N2 = a1a2 + (a1b2 + b1a2 + b1b2)I; 

(4) N1
2 = (a1 + b1I)

2 = a1
2 + (2a1b1 + b1

2)I; 

(5) I
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3 Distance measure and cosine similarity 
measure between neutrosophic numbers 

In this section, we propose a distance measure of 
neutrosophic numbers and a similarity measure between 
neutrosophic numbers based on cosine function. 

Definition 1. Let A = {NA1, NA2, …, NAn} and B = {NB1, NB2, 
…, NBn} be two sets of neutrosophic numbers, where NAj = 
aAj + bAjI and NBj = aBj + bBjI (j = 1, 2, …, n) for aAj, bAj, aBj, 
bBj  R (R is all real numbers). Then, a distance measure 
between A and B is defined as 
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Obviously, the distance measure should satisfy the 
following properties (D1-D3): 

(D1) D(A, B)  0; 

(D2) D(A, B) = 0 if A = B; 

(D3) D(A, B) = D(B, A). 

However, when we considers the importance of each 
element in the set of neutrosophic numbers, the weight of 
each element wj (j = 1, 2, …, n) can be introduced with wj 
 [0, 1] and 1

1
 

n

j jw . Thus, we have the following 

weighted distance measure between A and B: 
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Obviously, the weighted distance measure also satisfies 
the above properties (D1-D3). 

To easily apply neutrosophic numbers to fault 
diagnosis problems in this paper, we propose the similarity 
measure of neutrosophic numbers based on cosine function. 

Definition 2. Let A = {NA1, NA2, …, NAn} and B = {NB1, NB2, 
…, NBn} be two sets of neutrosophic numbers, where NAj = 
aAj + bAjI  [0, 1] and NBj = aBj + bBjI  [0, 1] (j = 1, 2, …, 
n) for aAj, bAj, aBj, bBj  0. Then, a cosine similarity
measure between A and B is defined as follows: 
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where wj  [0, 1] and 1
1

 

n

j jw . Obviously, the cosine 

similarity measure should satisfy the following properties 
(P1-P3): 

(P1) 0  C(A, B)  1; 

(P2) C(A, B) = 1 if A = B; 

(P3) C(A, B) = C(B, A). 

4 Misfire fault diagnosis method of gasoline 
engines using the cosine similarity measure 

4.1 Fault diagnosis method 

For a fault diagnosis problem, assume that there are a 
set of m fault patterns (fault knowledge) P = {P1, P2, …, 
Pm} and a set of n characteristics (attributes) Q = {Q1, 
Q2, …, Qn}. Then the fault information of a fault pattern Pk 
(k = 1, 2, …, m) with respect to a characteristic Qj (j = 1, 
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2, …, n) is represented by a set of neutrosophic numbers Pk 
= {Nk1, Nk2, …, Nkn}, where Nkj = akj + bkjI  [0, 1] for akj, 
bkj  0 (k = 1, 2, …, m; j = 1, 2, …, n). Then, the 
information of a testing sample is represented by a set of 
neutrosophic numbers Pt = {Nt1, Nt2, …, Ntn}, where Ntj = 
atj + btjI  [0, 1] for atj, btj  0 (t = 1, 2, …, s; j = 1, 2, …, 
n).  

The similarity measure value vk (k = 1, 2, …, m) can be 
obtained by the following cosine similarity measure 
between Pt and Pk: 
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For convenient fault diagnosis, the cosine values of vk 
(k = 1, 2, …, m) are normalized into the relation indices 
within the interval [–1, 1] by the following formula: 

minmax

maxmin2
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 and k  [–1, 1]. 

Then, we can rank the relation indices and determine 
the fault type or predict possible fault trends for the tested 
equipment. If there is the maximum relation index k = 1, 
then we can determine that the testing sample Pt should 
belong to the fault pattern Pk. 

4.2 Misfire fault diagnosis of gasoline engines 

We apply the fault diagnosis method based on the 
cosine similarity measure to the misfire fault diagnosis of 
gasoline engines.  

Let us investigate the misfire fault diagnosis problem 
of the gasoline engine EQ6102. Generally speaking, the 
misfire faults of the engine can be classified into three fault 
types: no misfire (normal work), slight misfire and severe 
misfire to indicate the operating status of the engine. Here, 
the slight misfire indicates the decline in the performance 
of ignition capacitance or the ignition delay, or the spark 
plug misfire in a cylinder of six cylinders, and then the 
severe misfire indicates the spark plug misfire in two 
cylinders of six cylinders. According to field-testing data 
[1], we can obtain the fault knowledge of the three fault 
types, i.e. a set of three fault patterns P = {P1, P2, P3} with 
respect to a set of five characteristics (five components) Q 
= {Q1, Q2, Q3, Q4, Q5}, as shown in Table 1. 

Table 1 Three fault patterns of misfire faults for the engine EQ6102 
Pk 

(Fault patterns) 
Q1 

(HC102) 
Q2 

(CO2) 
Q3 

(NOx10) 
Q4 

(CO101) 
Q5 

(O2) 
P1 (Normal work) [0.03, 0.08] [0.51, 0.93] [0.03, 0.08] [0.3, 0.5] [0.062, 0.09] 
P2 (Slight misfire) [0.01, 0.046] [0.426, 0.84] [0.04, 0.12] [0.29, 0.5] [0.04, 0.11] 
P3 (Severe misfire) [0.2, 0. 5] [0.3, 0.7] [0.1, 0. 3] [0.1, 0.3] [0.07, 0.15] 

Table 2 Fault knowledge expressed by neutrosophic numbers 
Pk 

(Fault knowledge) 
Q1 (HC102) Q2 (CO2) Q3 (NOx10) Q4 (CO101) Q5 (O2) 

P1 (Normal work) 0.03+1.7857I 0.51+15I 0.03+1.7857I 0.3+7.1429I 0.062+I 
P2 (Slight misfire) 0.01+1.2857I 0.426+14.7857I 0.04+2.8571I 0.29+7.5I 0.04+2.5I 
P3 (Severe misfire) 0.2+10.7143I 0.3+14.2857I 0.1+7.1429I 0.1+7.1429I 0.07+2.8571I

Table 3 Tasting samples of exhaust emission 
Number of tasting 

samples (Pt) 
Q1 

(HC 102) 
Q2 

(CO2) 
Q3 

(NOx 10)
Q4 

(CO101)
Q5 

(O2) 
Actual 

fault types
1 0.0455 0.047 0.033 0.48 0.0527 P2 
2 0.0572 0.075 0.062 0.42 0.0751 P1 
3 0.0261 0.065 0.086 0.453 0.0431 P2 
4 0.0312 0.062 0.051 0.287 0.1064 P2 
5 0.3761 0.045 0.139 0.179 0.1025 P3 
6 0.4220 0.052 0.188 0.194 0.0931 P3 
7 0.0189 0.081 0.091 0.459 0.0377 P2 
8 0.0555 0.086 0.057 0.39 0.0736 P1 
9 0.0551 0.085 0.050 0.386 0.0789 P1 

In Table 1, HC102, CO2, NOx10, CO101 and O2 
in the characteristic set Q = {Q1, Q2, Q3, Q4, Q5} indicate 
the exhaust emission concentration of the five components 

HC, CO2, NOx, CO and O2 expressed by volume 
percentage, and also we can consider the characteristic 
values of Qj (j = 1, 2, 3, 4, 5) as interval values. Then, the 
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interval values can be transformed into the neutrosophic 
numbers by the indeterminacy I  [0, 0.028], which 
express the characteristics of Qj (j = 1, 2, …, n), as shown 
in Table 2. 

To illustrate the effectiveness of the misfire fault 
diagnosis of the engine, we introduce the nine sets of field-
testing samples for the engine EQ6102 from [1], which are 
shown in Table 3. 

Then, the importance of the five characteristics (five 
components) is considered by the weight vector W = (w1, 
w2, w3, w4, w5)

T = (0.05, 0.35, 0.3, 0.2, 0.1)T [1]. By using 
Eqs. (4) and (5), the diagnosis results are shown in Table 4. 
From Tables 3 and 4, the fault diagnosis results are in 
accordance with all the actual fault types. 

Meanwhile, it is very easy to diagnose or predict fault 
types of the engine EQ6102 from Table 4. For example, 

for Number 9, since the relation index of P1 is equal to 1, it 
indicates the fault type P1 (no misfire). Then one can 
predict that the engine has the slight misfire trend since the 
relation index of P2 is 0.923 and the fault type P3 has a 
very low possibility of severe misfire due to the negative 
relation index (–1). Similarly, one can also diagnose and 
predict fault types according to the relation indices for 
other testing samples in Table 4. Therefore, the proposed 
fault diagnosis method for the engine can not only 
diagnose the main fault type but also predict the future 
fault trend by the relation indices. Compared with the fault 
diagnosis method for the engine in [1], the fault diagnosis 
method proposed in this paper is simpler and easier than 
the fault diagnosis method by using extension set theory 
[1]. 

Table 4 Results of the relation indices and fault diagnoses 
Relation indices (k) Number of tasting 

samples (Pt) P1 P2 P3 
Fault diagnosis 

results 
1 0.5135 1.0000 1.0000 P2 
2 1.0000 0.9850 1.0000 P1 
3 0.9957 1.0000 1.0000 P2 
4 0.9291 1.0000 1.0000 P2 
5 1.0000 0.0077 1.0000 P3 
6 1.0000 0.7964 1.0000 P3 
7 0.9903 1.0000 1.0000 P2 
8 1.0000 0.8578 1.0000 P1 
9 1.0000 0.9230 1.0000 P1 

5 Conclusion 

This paper proposed a distance measure and a cosine 
similarity measure between neutrosophic numbers. Then, 
the fault diagnosis method based on the cosine similarity 
measure was proposed and was applied to the misfire fault 
diagnosis of gasoline engines under neutrosophic number 
environment. The fault diagnosis results of the engine 
demonstrated the effectiveness and rationality of the 
proposed fault diagnosis method. This fault diagnosis 
method can not only determinate the main fault type of 
engines but also predict future fault trends according to the 
relation indices, and then it is simpler and easier than the 
fault diagnosis method based on extension theory. The 
method proposed in this paper extends existing fault 
diagnosis methods and provides a useful way for fault 
diagnoses of gasoline engines. In the future, the developed 
diagnosis method will be extended to other fault diagnoses, 
such as vibration faults of turbines, aircraft engines and 
gearboxes. 
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Abstract.The objective of the study is to present cosine 

similarity measure based multi-attribute decision making under 

neutrosophic environment. The assesments of alternatives over 

the attributes are expressed with trapezoidal fuzzy neutrosophic 

numbers in which the three independent components namely, 

truth-membership degree (T), indeterminacy-membership degree 

(I) and falsity-membership degree (F) are expressed by 

trapezoidal fuzzy numbers. Cosine similarity measure between 

two trapezoidal fuzzy neutrosophic numbers and its properties 

are introduced. Expected value of trapezoidal fuzzy neutrosophic 

number is defined to determine the attribute weight. With these 

attribute weights, weighted cosine similarity measure between 

relative positive ideal alternative and each alternative is 

determined to find out the best alternative in multi-attribute 

decision-making problem. Finally, a numerical example is 

provided to illustrate the proposed  approach. 

Keywords:Neutrosophic set,Single-valued neutrosophic set,Trapezoidal fuzzy neutrosophic number, Expected value, Cosine 

similarity measure, Multi-attribute decision making 

1 Introduction 

Multiple attribute decision-making (MADM) is a process 
of finding the best option from all the feasible alternatives. 
In classical MADM methods [1, 2, 3, 4], the ratings and 
the weights of the attributes are described by crisp values. 
However, under many conditions, crisp data are inadequate 

to model real-life situations since human judgments 
including preferences are often vague and cannot be 
estimated with an exact numerical value. A more realistic 
approach may lead to use linguistic assessments instead of 
exact numerical values i.e. the ratings and weights of the 
criteria in the problem may be presented by means of 

linguistic variables. These characteristics indicate the 
applicability of fuzzy set introduced by Zadeh [5], 
intuitionistic fuzzy set studied by Atanassov [6] and 
neutrosophic set pioneered by Smarandache [7] in 
capturing the decision makers’ judgement. However, 
neutrosophic set [8, 9] generlizes the crisp set [10, 11], 

fuzzy set [5], intuitionistic fuzzy set [6] and other 
extension of fuzzy sets.  Wang et al. [12] introduced the 
concept of single valued neutrosophic set from practical 
point of view. The single valued neutrosophic set consists 
of three independent membership functions, namely, truth-
membership function, indeterminacy-membership func-

tion, and falsity-membership function. It is capable of deal-
ing with incomplete, indeterminate, and inconsistent in-
formation. The concept of single valued neutrosophic set 
has been studied and applied in different fields including 

decision making problems [13, 14, 15, 16, 17, 18, 19, 20, 
21]. 

Several similarity measures in neutrosophic environment 

have been studied by researchers in the literature. Broumi 

and Smarandache [22] proposed the Hausdorff distance 

between neutrosophic sets and some similarity measures 

based on the Hausdorff distance, set theoretic approach, 

and matching function to determine the similarity degree 

between neutrosophic sets. Based on the study of 

Bhattacharya’s distance [23], Broumi and Smarandache 

[24] proposed cosine similarity measure  and established 

that  their proposed similarity measure is more efficient 

and robust than the existing similarity measures.  Pramanik 

and Mondal [25] proposed cosine similarity measure of 

rough neutrosophic sets and its application in medical 

diagnosis. 

 Majumdar and Samanta [26] developed  several similarity 

measures of single valued neutrosophic sets (SVNSs) 

based on distances, a maching function, memebership 

grades, and then proposed an entropy measure for a SVNS.  

Ye and Zhang [27] proposed three new similarity measures 

between SVNSs based on the minimum and maximum op-

erators and developed a multiple attribute decision making 

method based on the weighted similarity measure of 

SVNSs under single valued neutrosophic environment. 

Ye [28] defined generalized distance measure between 

SVNSs and proposed two distance-based similarity 

46

mailto:sura_pati@yahoo.co.in
mailto:sura_pati@yahoo.co.in


Neutrosophic Sets and Systems, Vol.8, 2014 

Pranab Biswas, Surapati Pramanik, and Bibhas C. Giri, Cosine Similarity Measure Based Multi-attribute Decision-making 
with Trapezoidal Fuzzy Neutrosophic Numbers

measures of SVNSs. In the same study, Ye [28] presented 
a clustering algorithm based on the similarity measures of 
SVNSs to cluster single-valued neutrosophic data. 
Ye [29] also presented the Hamming and Euclidean 
distances between interval neutrosophic sets (INSs) and 
their similarity measures and applied them to multiple 
attribute decision–making problems with interval 
neutrosophic information. Ye [30] developed three vector 
similarity measure for SNSs, interval valued neutrosophic 
sets including the Jaccard [31], Dice [32], and cosine 
similarity measures [33] for SVNS and INSs and applied 
them to multicriteria decision-making problems with 
simplified neutrosophic information. Ye [34] further 
proposed improved cosine similarity measure of SVNSs 
and applied it to medical diagnosis with single valued 
neutrosophic information. Recently, Ye [35]  proposed 
trapezoidal fuzzy neutrosophic number weighted arithmet-
ic averaging (TFNNWAA) operator and a trapezoidal 
fuzzy neutrosophic number weighted geometric averaging 
(TFNNWGA) operator to aggregate the trapezoidal fuzzy 
neutrosophic information. Based on the TFNNWAA and 
TFNNWGA operators and the score and accuracy func-
tions of a trapezoidal fuzzy neutrosophic numbers, Ye [35] 
proposed multiple attribute decision making in which the 
evaluated values of alternatives on the attributes are 
represented by the form of trapezoidal fuzzy neutrosophic 
numbers. However, cosine similarity based multiattribute 
decision making with trapezoidal fuzzy neutrosophic 
information is yet to appear in the literature.  

In this paper, we propose a new approach called “Cosine 
similarity based multi-attribute decision making with 
trapezoidal fuzzy neutrosophic numbers”. The expected in-
terval and the expected value theorem for trapezoidal fuzzy 
neutrosophic numbers are established. Cosine similarity 
measure of trapezoidal fuzzy neutrosophic numbers is also 
established. 

The rest of the paper is organized as follows: Section 2 
briefly presents some preliminaries regarding neutrosophic 
set and single-valued neutrosophic set. In Section 3, defini-
tions of trapezoidal fuzzy neutrosophic number and some 
operational laws are studied. Section 4 is confined to de-
fine the cosine similarity measure between two trapezoidal 
fuzzy neutrosophic numbers and its properties. Section 5 is 
devoted to present the cosine similarity measure based 
multi-attribute decision making with trapezoidal fuzzy 
neutrosophic numbers. Section 6 represents an illustrative 
example that shows the effectiveness and applicability of 
the proposed approach. Finally, section 7 presents the 
direction of future research and concluding remarks. 

2 Some Preliminaries 

In this section, we review some basic definitions and 
concepts that are used to develop the paper. 

Definition 1 Let X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) 
be two n-dimensional vectors with positive components. 
The cosine [33] of two vectors X and Y  is the inner 
product of X and Y divided by the products of their lengths 
and it can be defined as 

),( YXCos = 
22

.
YX
YX  (1) 

satisfying the following properties 

i. 0 (X,Y) 1Cos≤ ≤ ;

ii. (X,Y) ( , )Cos Cos Y X= ;

iii. ( ), 1Cos X Y = , if X = Y  i.e. xi = yi for i = 1, 2, ..., n.
Definition 2 A fuzzy set [5] Α~ in a universe of discourse X 
is defined by A% ={ }, ( ) |Ax x x Xμ ∈% ,where )(~ xAμ : X→

[0, 1] is called the membership function of Α~  and )(~ xAμ

is the degree of membership to which x∈Α
~ . 

Definition 3 A fuzzy set [5] A% defined on the universal set 
of real number R is said to be a fuzzy number if its 
membership function has the following characteristics. 
i. A%  is convex i.e. for any x1, x2∈X the membership

function ( )A xμ % satisfies the inequality

( )( )1 21A x xμ λ λ+ −% ≥ 1 2min{ ( ), ( )}A Ax xμ μ% % for
0 1.λ≤ ≤

ii. A%  is normal i.e.,  if there exists at least one point
x∈X such that ( )A xμ % =1 

iii. ( )A xμ %  is piecewise continuous. 

Definition 4 A trapezoidal  fuzzy number [36] A~  is 
denoted  by (a1, a2, a3, a4), where,  a1, a2, a3, a4   are real 
numbers and  its  membership  function ( )A xμ % is defined as 
follows: 

1
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2 1
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%

 
Then, ( )A xμ % satisfies the following conditions: 

1. ( )A xμ % is a continuous mapping from R to closed inter-
val [ 0,1], 

2. ( )A xμ %  = 0 for every  x א (-∞, a1], 

3. ( )A xμ % is strictly increasing and continuous on [a1, a2], 

4. ( )A xμ %  = 1 for every x א [a2, a3], 
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5. ( )A xμ % is strictly decreasing and continuous on [a3, a4], 

6. ( )A xμ %  = 0 for every x א [a4, ∞). 

The trapezoidal fuzzy number reduces to a triangular fuzzy 
number if 2 3.a a=  
Definition 5 The expected interval and the expected value 
of fuzzy number [37] A~  are expressed as follows: 

)A~(EI = )]~(),~([ UL AEAE  (2) 

)A~(EV = ( ) 2)~(),~( UL AEAE  (3) 

where )~( LAE = ∫−
2

1

)(2

a

a
dxxfa and  

)~( UAE = ∫+
4

3

)(3

a

a
dxxga . 

In case of the trapezoidal fuzzy number the expected 
interval and the expected value of A~ = (a1, a2, a3, a4) can be 
obtained by using the equations (2) and (3) as follows: 

)A~(EI = ⎥⎦
⎤
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⎡ ++

2
)aa(,

2
)aa( 4321  (4) 

)A~(EV = ( )
4
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Definition 6 Cosine similarity measure [33] is defined as 
the inner product of two vectors divided by the product of 
their lengths. It is the cosine of the angle between the vec-
tor representations of the two fuzzy sets.  
Let us assume that A = ( )1 2( ), ( ), ..., ( )A A A nx x xμ μ μ and 

B = ( ))(...,),(),( nB2B1B xμxμxμ  are two fuzzy sets in the
universe of discourse X = {x1, x2,..., xn}. Then the cosine 
similarity measure of )( iA xμ and ( )iB xμ is

( )
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It satisfies the following properties:  
i) 1)~,~(0 ≤≤ BACFuzz

ii) ( , ) ( , )Fuzz FuzzC A B C B A=% %% %

iii) )~,~( BACFuzz =1 if B~A~ = .

The value of )~,~( BACFuzz  is considered zero if

( ) 0A xμ =%  and ( ) 0.B xμ =%  

Definition 7 Cosine similarity measure of trapezoidal 
fuzzy numbers [38] 

Let A~ = (a1, a2, a3, a4) and B~ = (b1, b2, b3, b4) be two trape-
zoidal fuzzy numbers in the set of real numbers R. The 
four parameters presented in two numbers A~  and B~  can
be considered as the vector representations of four ele-
ments. Thus the cosine similarity measure of A~  and B~  can
be defined as the extension of the cosine similarity meas-
ure of fuzzy sets as follows: 

( ) ( )∑∑

∑

==

==
n

i
i

n

i
i

n

i
ii

TRFN

ba

ba
BAC

1

2

1

2

1
.

)~,~(  (7)  

It satisfies the following properties:  

i) 1)~,~(0 ≤≤ BACTRFN  
ii) )~,~()~,~( ABCBAC TRFNTRFN =

iii) )~,~( BACTRFN =1, if B~A~ = i.e. ai = bi for i = 1, 2, 3, 
4. 

2.1 Some basic concepts of neutrosophic set 

Definition 8 

Let X be a space of points (objects) with generic element x. 
Then a neutrosophic set [7] A in X is characterized by a 
truth membership function TA, an indeterminacy 
membership function IA and a falsity membership function 
FA. The functions TA, IA and FA are real standard or non-
standard subsets of ]-0, 1+ [ that is TA : X→ ]-0, 1+[ ;      
IA : X→ ]-0, 1+[ ;  FA : X→ ]-0, 1+[       

 TA(x), IA(x), and FA(x) satisfy the relation 

i.e.  -0 ≤ sup TA(x) +sup IA(x) +supFA(x) ≤  3+ 

Definition 9  The complement [7] cA of a neutrosophic set 
A is defined as follows: 

=)(xT cA )x(T}1{ A−+ ; )x(I-}1{=)x(I A
+

cA
; 

)x(F-}1{=)x(F A
+

cA
. 

Definition 10 A neutrosophic set [7] A is contained in 
other neutrosophic set B i.e., A⊆ B if and only if the 
following results hold good. 

)x(Tinf)x(Tinf BA ≤ , )x(Tsup)x(Tsup BA ≤  
)x(Iinf)x(Iinf BA ≥ , )x(Isup)x(Isup BA ≥
)x(Finf)x(Finf BA ≥ , )x(Fsup)x(Fsup BA ≥  

for all x in X. 

Definition 11. Let X be a universal space of points 
(objects), with a generic element x∈X. A single-valued 
neutrosophic set  [12] X⊂~

N is characterized by a true 
membership function )(~ xTN , a falsity membership function 
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)x(F ~
N and an indeterminacy membership function )(~ xIN

with ),(~ xTN ),(~ xIN ∈)x(F~
N  [0, 1] for all x∈X. For a 

SVNS %N , the relation  
3≤)(sup+)(sup+)(sup≤0 ~~~ xFxIxT NNN     (8) 

holds for x X∀ ∈  . 
When X is continuous  SVNSs,N~ can be written as 
follows: 

∫=
x

xxFxIxT ,)(),(),(~
~~~
NNNN .Xx∈∀

and when X is discrete a  SVNSs N
~

can be written as 
follows: 

∑
1

~~~ /)(),(),(~ m

i
xxFxIxT

=
= NNNN , .Xx∈∀

),x(T~
N

)x(I ~
N , )x(F ~

N ∈ [0, 1] 

Definition 12 The complement c~
N  of a single-valued 

neutrosophic set [12]  is defined as follows: 
=)(~ xT cN )(~ xFN ; =)x(I ~cN

 1 )(~ xIN− ; =)(~ xF cN )(~ xTN  

Definition 13 A single-valued neutrosophic set [12] A

~
N is 

contained in B

~
N  i.e., A

~
N ⊆ B

~
N , if and only if 

)()(
BA

~~ xTxT NN ≤ ; )()(
BA

~~ xIxI NN ≥ ; )(≥)(
BA

~~ xFxF NN  for 
.Xx∈∀  

Definition 14 Two SVNSs [12] A
~
N  and B

~
N  are equal, 

i.e. A
~
N = B

~
N , if and only if A

~
N ⊆ B

~
N and A

~
N ⊇ B

~
N . 

Definition 15 The union of two SVNSs [12] A
~
N  and B

~
N

is a SVNS C
~
N , denoted as C

~
N = A

~
N ∪ B

~
N . Its truth 

membership, indeterminacy-membership and falsity mem-
bership functions are related to those of A

~
N  and B

~
N as 

follows: 
))(),((max=)(

B
~

A
~

C
~ xTxTxT NNN ;

))(),((max=)(
B

~
A

~
C

~ xIxIxI NNN ;

))(),((min=)(
B

~
A

~
C

~ xFxFxF NNN .Xx∈∀  

Definition 16 The intersection of two SVNSs [12] A
~
N  and 

B
~
N  is denoted as a SVNS C

~
N = A

~
N ∩ B

~
N , where truth 

membership, indeterminacy-membership and falsity mem-
bership functions are defined as follows: 

))x(T),x(T(min=)x(T
B

~
A

~
C

~
NNN ;

))x(I),x(I(min=)x(I
B

~
A

~
C

~
NNN ;

))x(F),x(F(max=)x(F
B

~
A

~
C

~
NNN for all x in X. 

Definition 17 The addition of two SVNSs [12] A
~
N  and 

B
~
N  is a SVNS C

~
N = A

~
N ⊕ B

~
N , whose three membership 

degrees related to A
~
N  and B

~
N  are defined as follows: 

)().()()()(
BABAC

~~~~~ xTxTxTxTxT NNNNN −+= ;

)().()(
BAC

~~~ xIxIxI NNN = ; )().()(
BAC

~~~ xFxFxF NNN =

.Xx∈∀  

Definition 18 The multiplication of two SVNSs [12] A
~
N

and B
~
N  is a SVNS C

~
N = A

~
N ⊗ B

~
N , whose three mem-

bership degrees related to A
~
N  and B

~
N  are defined as fol-

lows: 
)().()(

BAC
~~~ xTxTxT NNN = ;

)().()()()(
BABAC

~~~~~ xIxIxIxIxI NNNNN −+= ; 

)().()()()(
BABAC

~~~~~ xFxFxFxFxF NNNNN −+= .Xx∈∀  

3 Trapezoidal Fuzzy Neutrosophic Number 

Definition 19 A neutrosophic set A

~
N in a universe of 

discourse X is defined in the following form: 

A

~
N = { }XxxFxIxT  ∈|)(),(),(

A
~

A
~

A
~

NNN
 where, truth 

membership degree
A

( ) :T x X ∈%N [0, 1], indeterminacy 

membership degree
A

( ) :I x X ∈%N [0, 1]  and falsity 

membership degree
A

( ) :F x X ∈%N [0, 1]. Fuzzy 

neutrosophic number can be defined by extending a 
discrete set to a contious set. 
Let A

~
N be a fuzzy neutrosophic number in the set of real 

numbers R. Then its truth membership function can be 
defined as follows: 

)(
A

~ xTN =

otherwise
axaxT
axa
axaxT

U

L

0
≤≤)(
≤≤1
≤≤)(

4131A
~

3121

2111A
~

N

N

 (9) 

The indeterminacy membership function can be defined as 
follows: 

)(
A

~ xIN = 

otherwise
bxbxI
bxb
bxbxI

U

L

1
≤≤)(
≤≤0
≤≤)(

4131A
~

3121

2111A
~

N

N

  (10) 

and the falsity membership function can be defined as 
follows: 
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)(
A

~ xFN =

otherwise
cxcxF
cxc
cxcxF

U

L

1
≤≤)(
≤≤0
≤≤)(

4131A
~

3121

2111A
~

N

N

 (11) 

where 3≤)(sup+)(sup+)(sup≤0
A

~
A

~
A

~ xFxIxT NNN , Xx∈∀ and 

a11,a21, a31, a41, b11, b21, b31, b41, c11, c21, c31, c41∈R such 
that 41312111 aaaa ≤≤≤ , 41312111 bbbb ≤≤≤ and 

11 21 31 41c c c c≤ ≤ ≤ . 
A

( )LT x ∈%N [0, 1], 
A

( )  UI x ∈%N [0, 1], and

A
( )UF x ∈%N [0, 1] are continuous monotonic increasing 

functions and
A

( )UT x ∈%N [0, 1], 
A

( )  LI x ∈%N [0, 1], and

A
( )  LI x ∈%N [0, 1] are continuous monotonic decreasing 

functions. 

Definition 20 (Trapezoidal Fuzzy Neutrosophic Number) 
A trapezoidal fuzzy neutrosophic number (TrFNN) [35]

A

~
N is denoted by  

A

~
N = ( ) ( ) ( )432143214321 ,,,,,,,,,,, ccccbbbbaaaa  in a universe of
discourse X. The parameters satisfy the following relations

,≤≤≤ 4321 aaaa 4321 bbbb ≤≤≤ and 4321 cccc ≤≤≤ . 
Its truth membership function is defined as follows:  

)(
A

~ xTN = 

otherwise

axa
aa
xa

axa

axa
aa
ax

0

≤≤
-
-

≤≤1

≤≤
-
-

43
34

4

32

21
12

1

 (12) 

Its indeterminacy membership function is defined as 
follows: 

)(
A

~ xIN = 

otherwise

bxb
bb
bx

bxb

bxb
bb
xb

1

≤≤
-
-

≤≤0

≤≤
-
-

43
34

3

32

21
12

2

 (13) 

and its falsity membership function is defined as follows: 

)(
A

~ xFN = 

otherwise

cxc
cc
cx

cxc

cxc
cc

c

1

≤<
-
-

≤≤0

<≤
-

x-

43
34

3

32

21
12

2

    (14) 

3.1 Some operational rules of trapezoidal fuzzy 
neutrosophic numbers. 

Let A

~
N = ( ) ( ) ( )432143214321 ,,,,,,,,,,, ccccbbbbaaaa and

B

~
N = ( ) ( ) ( )432143214321 ,,,,,,,,,,, ggggffffeeee be two
TrFNNs in the set of real numbers R. Then the operation 
rules [35] for  A

~
N and B

~
N are presented as follows: 

1. A

~
N ⊕ B

~
N = ( )

( )

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

, ,
,

,

, , , ,

, , ,

a e a e a e a e
a e a e a e a e

b f b f b f b f

c g c g c g c g

+ − + −⎛ ⎞
⎜ ⎟+ − + −⎝ ⎠

 (15) 

2. A

~
N ⊗ B

~
N =  

( )1 1 2 2 3 3 4 4

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

, , , ,

, ,
,

,

, ,
,

a e a e a e a e

b f b f b f b f
b f b f b f b f

c g c g c g c g
c g c g c g c g

+ − + −⎛ ⎞
⎜ ⎟+ − + −⎝ ⎠

+ − + −⎛ ⎞
⎜ ⎟+ − + −⎝ ⎠

    (16) 

3.   A

~
Nλ =

( ) ( )

1 2

3 4

1 2 3 4 1 2 3 4

1 (1 ) , 1 (1 ) ,
,

1 (1 ) , 1 (1 )

, , , , , , ,

a a

a a

b b b b c c c c

λ λ

λ λ

λ λ λ λ λ λ λ λ

⎛ ⎞− − − −
⎜ ⎟
⎜ ⎟− − − −⎝ ⎠  (17)  

  for 0λ > ;  

4. ( )λA
~
N = 

( )

,
)1(1,)1(1

,)1(1,)1(1

)1(1,)1(1

,)1(1,)1(1

,,,

43

21

43

21

4321

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−−−

−−−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−−−

−−−−

λλ

λλ

λλ

λλ

λλλλ

cc

cc

bb

bb

aaaa

 (18) 

 for 0.λ >  
5. A

~
N = B

~
N if ai = ei, bi = fi and ci = gi hold for i = 1, 2, 3, 

4 i.e. ( a1 , a2 , a3 , a4 ) = (e1, e2, e3, e4), (b1, b2, b3, b4) = (f1 , 
f2 , f3 , f4 ) and (c1, c2, c3, c4) = (g1, g2, g3, g4). 

3.2 Expected value of trapezoidal fuzzy neutrosophic 
number 

Let A

~
N = ( ) ( ) ( )432143214321 ,,,,,,,,,,, ccccbbbbaaaa be 

the TrFNN characterized by three independent 
membership degrees in the set of real numbers R where,

A
( )T x ∈%N [0, 1] be the truth membership degree,

A
( )I x ∈%N

[0, 1] be the indeterminacy degree and
A

( ) [0, 1]F x ∈%N be 

the falsity membership degree such that the following 
relation holds. 
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.3≤)(sup+)(sup+)(sup≤0
A

~
A

~
A

~ xFxIxT
NNN  

It is also assumed that

)(
A

~ xT L
N =

12

1

aa
ax
−
−

, )(
A

~ xT U
N =

34

4

aa
xa

−
− are the two sides of

)(
A

~ xTN . Similarly, )(
A

~ xI L
N =

12

2

-
-
bb
xb

, )(
A

~ xI U
N =

34

3

-
-

bb
bx

are the two sides of )(
A

~ xIN  and )(
A

~ xF L
N =

12

2

-
-
cc
xc

,

)(
A

~ xF U
N =

34

3

-
-

cc
cx

 are the two sides of )(
A

~ xFN . 

Each of three membership degrees of TrFNN can be taken 
as the three independent components like fuzzy numbers. 
Thus similar to fuzzy set, the expected interval or expected 
value of each membership degree can be determined sepa-
rately. 

Definition 21 We define the expected interval and the 
expected value of truth membership function  

)(
A

~ xTN = (a1, a2, a3, a4 ) of TrFNN A

~
N  as follows: 

))((
A

~ xTEI N = 3 41 2 ( )( ) ,
2 2

a aa a ++⎡ ⎤
⎢ ⎥⎣ ⎦

 (19) 

))((
A

~ xTEV N =
( )

4
4321 aaaa +++

  (20) 

Similarly, we define the expected interval and the expected 
value of the indeterminacy membership function of TrFNN 
as follows: 

))((
A

~ xIEI N = ⎥⎦
⎤

⎢⎣
⎡ ++

2
)(

,
2

)( 4321 bbbb
 (21) 

))((
A

~ xIEV N =
( )

4
4321 bbbb +++

  (22) 

We define the expected interval and the expected value of 
the falsity membership function of TrFNN as follows: 

))((
A

~ xFEI N = ⎥⎦
⎤

⎢⎣
⎡ ++

2
)(

,
2

)( 4321 cccc
 (23) 

))((
A

~ xFEV N =
( )

4
4321 cccc +++

 (24) 

Definition 22 (Truth favorite relative expected value of 
TrFNN) 

Let A

~
N = ( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,a a a a b b b b c c c c be 

the TrFNN in the set of real numbers R. Suppose
))((

A
~ xTEV N , ))((

A
~ xIEI N  and ))((

A
~ xFEV N  are the 

expected values of truth membership, indeterminacy 
membership and falsity membership component of SVNN 

A .%N If  

A
A

A A A

3 ( ( ))
( )

( ( )) ( ( )) ( ( ))
T

EV T x
EV

EV T x EV I x EV F x
=

+ +

%

% % %

% N

N N N

N

    (25) 

then we define A( )EV %N as the truth favorite relative 

expected value (TFREV) of A .%N

Theorem 1(Expected value theorem) 

 Let A

~
N = ( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,a a a a b b b b c c c c be 

the TrFNN in the set of real numbers R, then the truth 
favorite relative expected value (TFREV) of A

~
N is defined 

by 

A( )TEV %N = 
( )

4
1

4 4 4
1 1 1

3 ii

i i ii i i

a

a b c
=

= = =
+ +

∑
∑ ∑ ∑

(26) 

Proof: Given that )(
A

~ xTN is the truth membership, 

)(
A

~ xIN  is the indeterminacy membership and )(
A

~ xFN is 

the falsity membership component of TrFNN A

~
N . 

Treating each component of A
%N as the trapezoidal fuzzy 

number, the combined expected value of the A

~
N can be 

obtained by considering the centroid of three expected 
values of )(

A
~ xTN , )(

A
~ xIN and )(

A
~ xFN . 

Then, the combined expected value of three membership 
components can be defined by 

)~( ANEV = ( )A A A

1 ( ( )) ( ( )) ( ( ))
3

EV T x EV I x EV F x+ +% % %N N N

    (27) 

Combining Eqs. (20), (22), (24), and (27) we obtain  

)~( ANEV =  

( ) ( )

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+++
+

+++
+

+++

4

44
3
1

4321

43214321

cccc

bbbbaaaa

   =
( )

12

4
1

4
1

4
1 ∑∑∑ === ++ i ii ii i cba

    (28) 

Now, the TFREV of A

~
N can be determined by 

A
A

A

( ( ))
( )

( )
T

EV T x
EV

EV
=

%%
%

NN
N

.   (29) 
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Using Eqs.(20) (28) and (29), we obtain the desired 
TFREV of A

~
N as follows: 

A( )TEV %N = 
( )

4
1

4 4 4
1 1 1

3 ii

i i ii i i

a

a b c
=

= = =
+ +

∑
∑ ∑ ∑

 (30) 

This completes the proof.       

Now, if the corresponding elements of three membership 
degrees of TrFNN A

~
N coincide with each other i.e., when 

(a1, a2, a3, a4 ) = (b1, b2, b3, b4 ) = (c1, c2, c3, c4) then 
combined expected value of A

~
N would be  

)~( ANEV = 
( )

4
4321 aaaa +++

   (31) 

and TFREV of A

~
N would be A( ) 1.TEV =%N

It is to be noted that if 2 3a a= , 2 3b b= and 2 3c c= of a 

TrFNN A

~
N = ( ) ( ) ( )432143214321 ,,,,,,,,,,, ccccbbbbaaaa

then A
%N reduces to triangular fuzzy neutrosophic number 

(TFNN) A
%N = ( ) ( ) ( )1 2 4 1 2 4 1 2 4, , , , , , , ,a a a b b b c c c . Then

according to Eq.(28), the expected value of TFNN
( ) ( ) ( )Tri 1 2 3 1 2 3 1 2 3, , , , , , , ,l l l m m m n n n=%N  can be 

defined as follows: 

Tri( )EV %N = 
( )1 2 3 1 2 3 1 2 32 2 2

12
l l l m m m n n n+ + + + + + + +

    (32) 

and TFREV of  Tri
%N  can be defined as follows: 

 
( )Tri

1 2 3

1 2 3 1 2 3 1 2 3

3( 2 )( )
2 2 2

T l l lEV
l l l m m m n n n

+ +
=

+ + + + + + + +
%N

 (33) 

4 Cosine Similarity Measure of Trapezoidal Fuzzy 
Neutrosophic Numbers 

Definition 23 

Let A

~
N = ( ) ( ) ( )432143214321 ,,,,,,,,,,, ccccbbbbaaaa and  

B

~
N = ( ) ( ) ( )432143214321 ,,,,,,,,,,, ggggffffeeee be two
TrFNNs in the set of real numbers R. The twelve 
parameters considered in A

~
N and B

~
N can be taken as two 

vector representations with twelve elements. Thus, a cosine 
similarity measure  between A

~
N and B

~
N can be determined 

in a similar manner to the cosine similarity measure 
between two trapezoidal fuzzy numbers. Then,  

( )BA

~~
,NNTrFNNCos =  

( ) ( ) ( )

( ) ( ) ( )

4 4 4
1 1 1

4 4 42 2 2
1 1 1

4 4 42 2 2
1 1 1

i i i i i ii i i

i i ii i i

i i ii i i

a e b f c g

a b c

e f g

= = =

= = =

= = =

+ +

⎡ ⎤⎛ ⎞+ + ×⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 .  (34) 

The cosine similarity measure ( )BA

~~
,NNTrFNNCos  of A

~
N and 

B

~
N  satisfies the following properties: 

P1. ( ) 1~~0 BA , ≤≤ NNTrFNNCos

P2 ( )BA

~~
,NNTrFNNCos = ( )AB

~~
,NNTrFNNCos

P3 ( )BA

~~
,NNTrFNNCos =1 for A

~
N = B

~
N

i.e., ai = ei, bi = fi and ci = gi for i = 1, 2, 3, 4. 

Proof: P1 is shown to be true from the basic definition of 
cosine value. 

P2: Symmetry of Eq. (34) validates the property P2. 

P3: By putting ai = ei, bi = fi and ci = gi for i = 1, 2, 3, 4 in 
Eq. (34), the denominator and numerator reduce to

( ) ( ) ( )( )2 2 24 4 4
1 1 1i i ii i ia b c= = =+ +∑ ∑ ∑  and therefore

( )BA

~~
,NNTrFNNCos =1. 

5 Cosine Similarity Based Multiple Attribute Decision-
Making Problems with Trapezoidal Fuzzy Neutroso-
phic Numbers 
Let A1, A2, ..., Am be a discrete set of m alternatives, and 
C1, C2,..., Cn be the set of n attributes for a multi-attribute 
decision-making problem. The rating ijd provided by the 
decision maker describes the performance of the alterna-
tive Ai against the attribute Cj. Then the assessment values 
of the alternatives can be presented in the following deci-
sion matrix form. 

Table 1. Decision matrix of attribute values 
 C1        C2 ...    Cn 

nmijdD
×

= =

m

2

1

A

.

.

A

A
11 12 1

21 22 2

1 2

...
...

... ... ... ...

... ... ... ...
...

n

n

m m mn

d d d
d d d

d d d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (35) 

Step 1. Determination of the most important attributes 

In a decision making process, a set of criteria or attributes 
are to be required to evaluate the best alternative. All 
attributes are not equal important in the decision making 
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situation. Therefore it is important to choose the set of 
proper attributes based on experts’ opinions. 

Step 2. Construction of the decision matrix with TrFNNs 

Let us assume that the ratings of alternative Ai (i = 1, 2,…, 
m) with respect to the attribute  Cj (j = 1, 2, …, n) are
expressed with TrFNNs. The TrFNN based rating values of 
the m-th alternative over the n-th attribute can be presented 
in the following decision matrix.  

Table 2. Decision matrix with TrFNNs 

, ,ij ij ij m n
D a b c

×
=% %% %

N =

11 11 11 12 12 12 1 1 1

21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, , , , ... , ,

, , , , ... , ,

... ... ... ...

... ... ... ...

, , , , ... , ,

n n n

n n n

m m m m m m mn mn mn

a b c a b c a b c

a b c a b c a b c

a b c a b c a b c

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

% % %% % % % % %

% % %% % % % % %

% % %% % % % % %

  (36) 
In the decision matrix , ,ij ij ij m n

D a b c
×

=% %% %
N , ija%  denotes 

the degree that the alternative  Ai (i = 1, 2, ..., m) satisfies 
the attribute Cj (j = 1, 2, ..., n), ijb% denotes the degree of 
indeterminacy of the alternative Ai over  the attribute Cj 
and ijc% denotes the degree that the alternative Ai does not 
satisfy the attribute Cj. These three membership 
components ija% , ijb% and ijc% are expressed by the trapezoidal 
fuzzy numbers with the following properties: 
1. a. ija% = ( )1 2 3 4, , ,ij ij ij ija a a a ∈ [0, 1];

b. ijb% = ( )1 2 3 4, , ,ij ij ij ijb b b b ∈ [0, 1];

c. ijc% = ( )1 2 3 4, , ,ij ij ij ijc c c c ∈ [0, 1];

2. 4 4 40 3ij ij ija b c≤ + + ≤  for i = 1, 2, .., m and j = 1, 2, ..., n.
Step 3. Determination of the weights of attributes 

 The importance of attributes may not be always same to 
decision maker in decision-making situation. The informa-
tion available of the attribute weights is often vague or in-
complete in the decision making situation. Let W = 

( )1 2, ,..., T
nw w w be the vaguely expressed weight vector 

assigned to the different attributes. In this case the weight 
of the attribute Cj for j = 1, 2, ..., n can be presented by the 
TrFNNs. Let us assume that jw =

( ) ( ) ( )1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , , , ,j j j j j j j j j j j ja a a a b b b b c c c c be 

the TrFNN based weight of attribute Cj. The expected 
value of jw (j = 1, 2, ..., n) is determined by using the 

Eq.(30). These values are to be normalized by the 
following formula to make dimensionless 

 ( )
( )1

T
iN

i n T
ii

EV w
w

EV w
=

=
∑

for i = 1, 2, ..., n.  (37) 

Step 4. Determination of  the positive ideal neutrosophic 
solution (PINS) and the relative positive ideal 
neutrosophic solution (RPINS) for TrFNNs based 
neutrosophic decision matrix 

Definition 24 Let H be the collection of two types of 
attributes namely benifit type attribute (P) and cost type 
attribute (L) in the MADM problems.  

The positive ideal neutrosophic solution (PINS) 
],...,,[= +

n
~+

2
~+

1
~+~

NNNN
qqqQ  is the solution of the decision 

matrix
nmijijij FITD

×
~ ,,=
N

where, every component of 

Q+
%N has the following form: 

Njq+ =%

( ) ( )
( )

1 2 3 4 1 2 3 4

1 2 3 4

, , , , , , , ,

, , ,

j j j j j j j j

j j j j

a a a a b b b b

c c c c

+ + + + + + + +

+ + + +

=

( )
( )
( )

1 2 3 4

1 2 3 4

1 2 3 4

max{ },max{ },max{ },max{ } ,

max{ },max{ },max{ },max{ } ,

max{ },max{ },max{ },max{ }

ij ij ij iji i i i

ij ij ij iji i i i

ij ij ij iji i i i

a a a a

b b b b

c c c c

(38) 

for the benefit type attribute and 

( )
( )
( )

1 2 3 4

1 2 3 4

1 2 3 4

min{ },min{ },min{ },min{ } ,

min{ },min{ },min{ },min{ } ,

min{ },min{ },min{ },min{ }

ij ij ij iji i i i

ij ij ij ijj i i i i

ij ij ij iji i i i

a a a a

q b b b b

c c c c

+ =%N (39) 

for the cost type attribute. 

Definition 25 The negative ideal neutrosophic solution 
(PINS) 

1 2 n
[ , ,..., ]Q q q q− − − −=% % % %N N N N  is the solution of the de-

cision matrix
nmijijij~ F,I,TD

×
=

N
where, every component 

of Q−
%N has the following form: 

Njq−
% = 

( ) ( )
( )

1 2 3 4 1 2 3 4

1 2 3 4

, , , , , , , ,

, , ,

j j j j j j j j

j j j j

a a a a b b b b

c c c c

− − − − − − − −

− − − −
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( )
( )
( )

1 2 3 4

1 2 3 4

1 2 3 4

min{ },min{ },min{ },min{ } ,

min{ },min{ },min{ },min{ } ,

min{c },min{ },min{ },min{ }

ij ij ij iji i i i

ij ij ij iji i i i

ij ij ij iji i i i

a a a a

b b b b

c c c

=  (40) 

for the benefit type attribute. 

( )
( )
( )

1 2 3 4

1 2 3 4

1 2 3 4

max{ },max{ },max{ },max{ } ,

max{ },max{ },max{ },max{ } ,

max{ },max{ },max{ },max{ }

ij ij ij iji i i i

ij ij ij ijj i i i i

ij ij ij iji i i i

a a a a

q b b b b

c c c c

− =%N (41) 

for the cost type attribute. 
Step 5. Determination of the weighted cosine similarity 
measure between each alternative and the ideal alternative 
Let jw be the weight of the attribute jC for j = 1, 2, ..., n. 
The weighted cosine similarity measure between the 
alternative iA for i = 1, 2, ..., m and the positive ideal 

alternative Q+
%N is 

( ),
TrFNN
W

iCos Q A+ +
%N

=  

( ) ( ) ( )

( ) ( ) ( )

4 4 4
1 1 1

2 2 24 4 41
1 1 1

2 2 24 4 4
1 1 1

s s s s s sn
j ij j ij j ijs s s

j
j s s s

j j js s s

s s s
ij ij ijs s s

a a b b c c
w

a b c

a b c

+ + +
= = =

= + + +
= = =

= = =

+ +

⎧ ⎫⎛ ⎞
+ + ×⎪ ⎪⎜ ⎟

⎪⎝ ⎠ ⎪
⎨ ⎬
⎛ ⎞⎪ ⎪+ +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑ ∑∑
∑ ∑ ∑

∑ ∑ ∑

  (42) 

Step 6. Ranking  the alternatives 
The ranking order of all alternatives can be determined by 
using the weighted cosine similarity measure  between the 
alternative and the positive ideal alternative  defined in Eq. 
(42). The highest value of ( ),

TrFNN
W

iCos Q A+ +
%N reflects the 

most desired alternative for i = 1, 2, ..., n. 

6. Illustrative Example

In this section, multi attribute decision making problem 
under a trapezoidal fuzzy neutrosophic environment is 
considered to demonstrate the applicability and the effec-
tiveness of the proposed approach. Let us consider the de-
cision-making problem in which a customer intends to buy 
a tablet from the set of primarily chosen five alternatives A 
= (A1, A2, A3, A4, A5). The customer takes into account the 
following four attributes: 
1. features (C1);
2. hardware(C2);

3. affordable price (C3);
4. customer care (C4).

Assume that the weight vector of the four attributes pro-
vided by the decision maker is expressed by the trapezoidal 
fuzzy neutrosophic numbers 
W = 1 2 3 4[ , , , ]w w w w = 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0.4,0.5,0.6,0.7 , 0.0,0.1,0.2,0.3 , 0.1,0.2,0.3,0.4 ,

0.2,0.3,0.4,0.5 , 0.1,0.2,0.2,0.2 , 0.2,0.2,0.3,0.4 ,

0.6,0.7,0.8,0.9 , 0.0,0.1,0.2,0.3 , 0.1,0.1,0.2,0.3 ,

0.4,0.5,0.6,0.7 , 0.0,0.1,0.2,0.3 , 0.1,0.2,0.3,0.4

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

⎫
⎪
⎪⎪
⎬
⎪
⎪
⎪⎭

(43) 

Given that the following trapezoidal fuzzy neutrosophic 
number based decision matrix according to the experts’ as-
sessment of the five alternatives with respect to the four at-
tributes: 
Table3. Decision matrix with SVNS 

5 4
, ,ij ij ijD a b c

×
=% %% %

N = 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0.5,0.6,0.7,0.8 , 0.1,0.1,0.2,0.3 , 0.1,0.2,0.2,0.3

0.3,0.4,0.5,0.5 , 0.1,0.2,0.2,0.4 , 0.1,0.1,0.2,0.3

0.3,0.3,0.3,0.3 , 0.2,0.3,0.4,0.4 , 0.6,0.7,0.8,0.9

0.7,0.8,0.8,0.9 , 0.1,0.2,0.3,0.3 , 0.2,0.2,0.2,0.2

0.1,0.2,0.2,( ) ( ) ( )0.3 , 0.2,0.2,0.3,0.4 , 0.6,0.6,0.7,0.8

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0.1,0.1,0.2,0.3 , 0.2,0.2,0.3,0.4 , 0.4,0.5,0.6,0.7

0.2,0.3,0.4,0.5 , 0.1,0.1,0.2,0.3 , 0.2,0.2,0.3,0.3

0.1,0.2,0.2,0.3 , 0.2,0.3,0.3,0.4 , 0.4,0.5,0.6,0.6

0.5,0.6,0.7,0.7 , 0.2,0.2,0.2,0.2 , 0.1,0.1,0.2,0.2

0.5,0.6,0.6,( ) ( ) ( )0.7 , 0.1,0.2,0.3,0.4 , 0.2,0.2,0.3,0.4
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0.3,0.4,0.4,0.5 , 0.1,0.2,0.2,0.3 , 0.2,0.2,0.3,0.4

0.2,0.2,0.2,0.2 , 0.1,0.1,0.1,0.1 , 0.6,0.7,0.8,0.8

0.2,0.3,0.4,0.5 , 0.2,0.3,0.3,0.4 , 0.3,0.4,0.4,0.5

0.3,0.4,0.4,0.5 , 0.1,0.2,0.2,0.3 , 0.1,0.2,0.3,0.4

0.6,0.7,0.8,( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

0.8 , 0.2,0.2,0.3,0.3 , 0.1,0.1,0.2,0.3

0.4,0.5,0.6,0.7 , 0.2,0.2,0.3,0.4 , 0.1,0.2,0.3,0.4

0.4,0.5,0.6,0.6 , 0.2,0.2,0.3,0.3 , 0.2,0.3,0.4,0.4

0.2,0.2,0.3,0.4 , 0.3,0.3,0.3,0.3 , 0.3,0.4,0.5,0.6

0.1,0.2,0.3,0.4 , 0.2,0.2,( ) ( )
( ) ( ) ( )

0.3,0.3 , 0.5,0.6,0.7,0.8

0.2,0.3,0.4,0.4 , 0.1,0.2,0.3,0.4 , 0.3,0.4,0.4,0.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

   (44) 
Step 1. Determination of the weight of attributes 

The truth favorite relative expected values (TFREVs) of 
the assessment of four attributes expressed with TrFNNs 
can be determined by the Eq. (30) as follows: 

( )1
TEV w = 1.737, ( )2

TEV w = 1.31, ( )3
TEV w = 2.093

and ( )4
TEV w = 1.737. The normalized expected value of

the assessment of four attributes is obtained by using the 

Eq. (37) as ( )1
TNEV w = 0.2525; ( )2

TNEV w = 0.1907;

( )3
TNEV w = 0.3042 and ( )4

TNEV w = 0.2525.
Step 2. Determination of  the relative positive ideal 
neutrosophic solution (PINS) for the TrFNNs based 
neutrosophic decision matrix 
The positive ideal solution of the decision matrix 

5 4
, ,ij ij ijD a b c

×
=% %% %

N is 
1 2 3 4

[ , , , ]Q q q q q+ + + + +=% % % % %N N N N N where,

1Nq+ =%

( ) ( )
( )
0.7,0.8,0.8,0.9 , 0.2,0.3,0.4,0.4 ,

0.6,0.7,0.8,0.9
  (45) 

2Nq+ =%

( ) ( )
( )
0.5,0.6,0.7,0.7 , 0.2,0.2,0.3,0.4 ,

0.4,0.5,0.6,0.7
    (46) 

3Nq+ =%

( ) ( )
( )
0.6,0.7,0.8,0.8 , 0.2,0.3,0.3,0.4 ,

0.6,0.7,0.8,0.8
 (47) 

4Nq+ =%

( ) ( )
( )
0.4,0.5,0.6,0.7 , 0.3,0.3,0.3,0.4 ,

0.5,0.6,0.7,0.8
    (48) 

Step 3. Calculation of the weighted cosine similarity measure 
between each alternative and the ideal alternative 
The weighted cosine similarity measures between positive 
ideal alternative and each alternative are determined by us-
ing the Eq. (42) and the results are shown in the table 4. 

Table 4. Decision results of weighted cosine similarity 
measures 
Alternative (Ai) Weighted cosine similarity measure
Alternative (A1) 0.910296 
Alternative (A2) 0.918177 
Alternative (A3) 0.928833 
Alternative (A4) 0.915722
Alternative (A5) 0.904869

Ranking Order 51423 AAAAA ffff  

Step 4. Ranking of the alternatives 
According to the values of weighted cosine similarity 
measure Table 4 shows that A3 is the best alternative. 

6 Conclusion 

In this paper, we have presented cosine similarity measure 
based multiple attribute decision-making with trapezoidal 
fuzzy neutrosophic numbers. Expected value theorem and 
cosine similarity measure of trapezoidal fuzzy neutroso-
phic numbers are developed. The assessments of alterna-
tives and attribute weights provided by the decision maker 
are considered with the trapezoidal fuzzy neutrosophic 
numbers. Ranking order of all alternatives is determined 
using the proposed cosine similarity measure between 
positive ideal alternative and each of alternatives. Finally, 
an illustrative example is provided to show the feasibility 
of the proposed approach and to demonstrate its practical-
ity and effectiveness. However, the authors hope that the 
proposed approach will be applicable in medical diagnosis, 
pattern recognition, and other neutrosophic decision mak-
ing problems. 
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Abstract. In this short paper we extend the dialectical 

triad thesis-antithesis-synthesis (dynamics of <A> and 

<antiA>, to get a synthesis) to the neutrosophic tetrad 

thesis-antithesis-neutrothesis-neutrosynthesis (dynamics 

of <A>, <antiA>, and <neutA>, in order to get a neutro-

synthesis). We do this for better reflecting our world, 

since the neutralities between opposites play an important 

role. The neutrosophic synthesis (neutrosynthesis) is 

more refined that the dialectical synthesis. It carries on 

the unification and synthesis regarding the opposites and 

their neutrals too. 

Keywords: Thesis, Antithesis, Synthesis, Thesis-Antithesis-Neutrothesis, and Neutrosynthesis.

1. Introduction.

In neutrosophy, <A>, <antiA>, and <neutA> combined 
two by two, and also all three of them together form the 
NeutroSynthesis. Neutrosophy establishes the universal 
relations between <A>, <antiA>, and <neutA>. 

<A> is the thesis, <antiA> the antithesis, and <neutA> the 

neutrothesis (neither <A> nor <antiA>, but the neutrality 

in between them). 

In the neutrosophic notation, <nonA> (not <A>, outside of 

<A>) is the union of <antiA> and <neutA>. 

<neutA> may be from no middle (excluded middle), to one 
middle (included middle), to many finite discrete middles 
(finite multiple included-middles), and to an infinitude of 
discrete or continuous middles (infinite multiple included-
middles) [for example, as in color for the last one, let’s say 
between black and white there is an infinite spectrum of 

middle/intermediate colors]. 

2. Thesis, Antithesis, Synthesis.

The classical reasoning development about evidences, 
popularly known as thesis-antithesis-synthesis from 
dialectics, was attributed to the renowned philosopher 

Georg Wilhelm Friedrich Hegel (1770-1831) and later it 
was used by Karl Marx (1818-1883) and Friedrich Engels 
(1820-1895). About thesis and antithesis have also written 
Immanuel Kant (1724-1804), Johann Gottlieb Fichte 
(1762-1814), and Thomas Schelling (born 1921). While in 
ancient Chinese philosophy the opposites yin [feminine, 

the moon] and yang [masculine, the sun] were considered 
complementary. 

Thesis, Antithesis, Neutrothesis, 
Neutrosynthesis. 

Neutrosophy is a generalization of dialectics (which is 
based on contradictions only, <A> and <antiA>), because 
neutrosophy is based on contradictions and on the 
neutralities between them (<A>, <antiA>, and <neutA>). 
Therefore, the dialectical triad thesis-antithesis-synthesis is 

extended to the neutrosophic tetrad thesis-antithesis-
neutrothesis-neutrosynthesis. We do this not for the sake of 
generalization, but for better reflecting our world. A 
neutrosophic synthesis (neutrosynthesis) is more refined 
that the dialectical synthesis. It carries on the unification 
and synthesis regarding the opposites and their neutrals too. 

Neutrosophic Dynamicity. 

We have extended in [1] the Principle of Dynamic 
Opposition [opposition between <A> and <antiA>] to the 
Principle of Dynamic Neutropposition [which means 
oppositions among <A>, <antiA>, and <neutA>]. 

Etymologically “neutropposition” means “neutrosophic 
opposition”. 
This reasoning style is not a neutrosophic scheme, but it is 
based on reality, because if an idea (or notion) <A> arises, 
then multiple versions of this idea are spread out, let’s 
denote them by <A>1, <A>2, …, <A>m. Afterwards, the 

opposites (in a smaller or higher degree) ideas are born, as 
reactions to <A> and its versions <A>i. Let’s denote these 
versions of opposites by <antiA>1, <antiA>2, …, <antiA>n. 
The neutrality <neutA> between these contradictories 
ideas may embrace various forms, let’s denote them by 
<neutA>1, <neutA>2, …, <neutA>p, where m, n, p are 

integers greater than or equal to 1. 
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In general, for each <A> there may be corresponding many 
<antiA>’s and many <neutA>’s. Also, each <A> may be 
interpreted in many different versions of <A>’s too. 
Neutrosophic Dynamicity means the interactions among all 
these multi-versions of <A>’s  
with their multi-<antiA>’s and their multi-<neutA>’s, 

which will result in a new thesis, let’s call it <A’> at a 
superior level. And a new cycle of <A’>, <antiA’>, and 
<neutA’> restarts its neutrosophic dynamicity. 

Practical Example 

Let’s say <A> is a country that goes to war with another 
country, which can be named <antiA> since it is 
antagonistic to the first country. But many neutral 
countries <neutA> can interfere, either supporting or 
aggressing one of them, in a smaller or bigger degree. 
Other neutral countries <neutA> can still remain neutral in 

this war. Yet, there is a continuous dynamicity between the 
three categories (<A>, <antiA>, <neutA.), for countries 
changing sides (moving from a coalition to another 
coalition), or simply retreating from any coalition.  
In our easy example, we only wanted to emphasize the fact 
that <neutA> plays a role in the conflict between the 

opposites <A> and <antiA>, role which was ignored by 
dialectics. 
So, the dialectical synthesis is extended to a neutrosophic 
synthesis, called neutrosynthesis,  which combines thesis, 
antithesis, and neutrothesis. 

Theoretical Example. 

Suppose <A> is a philosophical school, and its opposite 
philosophical school is <antiA>. In the dispute between 
<A> and <antiA>, philosophers from the two contradictory 
groups may bring arguments against the other 

philosophical school from various neutral philosophical 
schools’ ideas (<neutA>, which were neither for <A> nor 
<antiA>) as well.   
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1 Introduction 

The four color theorem states that, given any 
separation of a plane into contiguous regions, 
producing a figure called a map, no more than four 
colors are required to color the regions of the map so 
that no two adjacent regions have the same color. 
Two regions are called adjacent if they share a 
common boundary that is not a corner, where corners 
are the points shared by three or more regions. 

In 1976, Kenneth Appel and Wolfgang Haken 
published their proof of the four color theorem. It was 
the first major theorem to be proved using a computer. 

Accordingly, this paper starts with the 
assumption that, in the case without considering the 
color of the boundary, "the four color theorem" is 
correct. 

Figure 1 is an example of four-color map. 

Figure 1 An example of four-color map 

However, whether or not the color of the 
boundary should be considered? We believe that it 
should be taken into account. 

In this paper, with the help of Neutrosophy and 
Quad-stage Method, the proof for negation of “the 
four color theorem” is given. In which the key issue is 
to consider the color of the boundary. 

2 Basic Contents of Neutrosophy 

Neutrosophy is proposed by Prof. Florentin 
Smarandache in 1995. 

Neutrosophy is a new branch of philosophy that 
studies the origin, nature, and scope of neutralities, 
as well as their interactions with different ideational 
spectra. 

This theory considers every notion or idea <A> 
together with its opposite or negation <Anti-A> and 
the spectrum of "neutralities" <Neut-A> (i.e. notions 
or ideas located between the two extremes, 
supporting neither <A> nor <Anti-A>). The <Neut-A> 
and <Anti-A> ideas together are referred to as <Non-
A>. 

Neutrosophy is the base of neutrosophic logic, 
neutrosophic set, neutrosophic probability and 
statistics used in engineering applications (especially 
for software and information fusion), medicine, 
military, cybernetics, and physics. 

Neutrosophic Logic is a general framework for 
unification of many existing logics, such as fuzzy logic 
(especially intuitionistic fuzzy logic), paraconsistent 
logic, intuitionistic logic, etc. The main idea of NL is to 
characterize each logical statement in a 3D 
Neutrosophic Space, where each dimension of the 
space represents respectively the truth (T), the 
falsehood (F), and the indeterminacy (I) of the 
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statement under consideration, where T, I, F are 
standard or non-standard real subsets of ]-0, 
1+[ without necessarily connection between them. 

More information about Neutrosophy can be 
found in references [1，2]. 

3 Basic Contents of Quad-stage 

Quad-stage (Four stages) is presented in 
reference [3], it is the expansion of Hegel’s triad-
stage (triad thesis, antithesis, synthesis of 
development). The four stages are “general theses”, 
“general antitheses”, “the most important and the 
most complicated universal relations”, and “general 
syntheses”. They can be stated as follows. 

The first stage, for the beginning of development 
(thesis), the thesis should be widely, deeply, carefully 
and repeatedly contacted, explored, analyzed, 
perfected and so on; this is the stage of general 
theses. It should be noted that, here the thesis will be 
evolved into two or three, even more theses step by 
step. In addition, if in other stage we find that the first 
stage’s work is not yet completed, then we may come 
back to do some additional work for the first stage. 

The second stage, for the appearance of 
opposite (antithesis), the antithesis should be also 
widely, deeply, carefully and repeatedly contacted, 
explored, analyzed, perfected and so on; this is the 
stage of general antitheses. It should be also noted 
that, here the antithesis will be evolved into two or 
three, even more antitheses step by step. 

The third stage is the one that the most important 
and the most complicated universal relations, namely 
the seedtime inherited from the past and carried on 
for the future. Its purpose is to establish the universal 
relations in the widest scope. This widest scope 
contains all the regions related and non-related to the 
“general theses”, “general antitheses”, and the like. 
This stage's foundational works are to contact, grasp, 
discover, dig, and even create the opportunities, 
pieces of information, and so on as many as possible. 
The degree of the universal relations may be different, 
theoretically its upper limit is to connect all the 
existences, pieces of information and so on related to 
matters, spirits and so on in the universe; for the 
cases such as to create science fiction, even may 
connect all the existences, pieces of information and 
so on in the virtual world. Obviously, this stage 
provides all possibilities to fully use the complete 
achievements of nature and society, as well as all the 
humanity's wisdoms in the past, present and future. 
Therefore this stage is shortened as “universal 
relations” (for other stages, the universal relations are 
also existed, but their importance and complexity 
cannot be compared with the ones in this stage). 

The fourth stage, to carry on the unification and 
synthesis regarding various opposites and the 
suitable pieces of information, factors, and so on; and 
reach one or more results which are the best or 
agreed with some conditions; this is the stage of 
“general syntheses”. The results of this stage are 
called “synthesized second generation theses”, all or 
partial of them may become the beginning of the next 
quad-stage. 

4 Negating the Four Color Theorem 

The combination of Neutrosophy and Quad-
stage is very useful for innovations in areas of 
science, technology and the like. For example, in 
reference [4], we expand Newton mechanics with 

Neutrosophy and Quad-stage method, and present New 

Newton Mechanics taking law of conservation of energy as 

unique source law. 

The process of negating "the four color theorem" 
with Neutrosophy and Quad-stage method, and 
deriving “the two color theorem” and “the five color 
theorem” to replace "the four color theorem", can be 
divided into four stages. 

The first stage (stage of “general theses”), for the 
beginning of development, the thesis (namely "the 
four color theorem") should be widely, deeply, 
carefully and repeatedly contacted, explored, 
analyzed, perfected and so on. 

About these aspects, especially the brilliant 
accomplishments of proving "the four color theorem" 
with computer, many discussions could be found in 
related literatures, therefore we will not repeat them 
here, while the only topic we should discuss is finding 
the shortcomings in the existing proofs of "the four 
color theorem". In fact, many scholars believe that the 
existing proofs of "the four color theorem" with 
computer are not satisfactory. Therefore, many new 
proofs are still appeared unceasingly. For example, a 
very simple proof of this theorem was given in 
reference [5] recently.  

For the different proofs of "the four color 
theorem", we can name the results as "the Appel-
Haken’s four color theorem", "the Chen Jianguo’s 
four color theorem", and the like. 

In addition, some experts still ask the question 
that whether or not "the four color theorem" is correct. 

On other viewpoints about "the four color 
theorem", we will discuss them in detail below, in 
order to avoid duplication. 

The second stage (the stage of “general 
antitheses”), the opposites (antitheses) should be 
discussed carefully. 

For "the four color theorem", there are many 
opposites (antitheses). For example: "the two color 
theorem", "the three color theorem", "the five color 
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theorem", "the six color theorem", and so on. As "the 
four color theorem" is denied, we will select the 
suitable one from these theorems. 

The third stage is the one of the most important 
and the most complicated universal relations. The 
purpose of this provision stage is to establish the 
universal relations in the widest scope.  

To link and combine with Neutrosophy, we will 
take into account the intermediate part; on a map, 
what is the "intermediate part"? After careful analyses, 
we can identify two main types of "intermediate part". 
The first one is already considered in the existing 
proofs of "the four color theorem", such as the third 
region between two regions. The second one is not 
considered in the existing proofs of "the four color 
theorem", such as the boundary between two regions. 
Obviously, so far the color of boundary is not 
considered in any existing proof also. However, 
whether or not the boundary and its color should be 
considered” We believe that they should be taken into 
account, because the boundary is the objective reality 
on a map. 

The fourth stage (the stage of “general 
syntheses”), our purpose is to negate "the four color 
theorem", and reach the results that are the best or 
agreed with some conditions. 

Firstly, we suppose that, in the case without 
considering the color of the boundary, "the four color 
theorem" is correct. In other words, in this case, "the 
Appel-Haken’s four color theorem", "the Chen 
Jianguo’s four color theorem", and the like, are all 
correct. 

Secondly, we introduce the concept of "boundary 
part" (or “totality of boundary”). Because the 
boundary on a map has a certain width, the 
"boundary part" (or “totality of boundary”) can be 
defined as: a special connected region constituted by 
all the boundaries. 

After considering the boundary and its color, 
there are two situations should be considered. The 
first one is that, the original color distribution (namely 
the color distribution on a map that is agreed with the 
principle of "the four color theorem"；or the color 
distribution before considering the boundary) can be 
changed. The second one is that, the original color 
distribution cannot be changed. 

For the first situation, only two colors will be 
sufficient: one color could be used for all the 
boundaries; another color for all the regions. For 
example, on a country’s black and white map, the 
color of all the boundaries of states or provinces 
could be black; while the color of all the states or 
provinces could be white. Obviously, this is also the 
general drawing method for the black and white map. 
At this time, "the four color theorem" is replaced by 
"the two color theorem". 

Figure 2 is a black and white world map. 

Figure 2 A black and white world map 

For the second situation, because the original 
color distribution cannot be changed (four colors are 
required), the fifth color is required. Otherwise, 
supposing that the color of the boundaries is one of 
the four colors for regions, for the reason that the 
boundary has a certain width and can be considered 
as the special region, therefore the color of this 
special region will be the same color as at least one 
ordinary region, thereby the principle of color 
distribution will be violated (the colors of the adjacent 
two regions will be the same). Obviously, in this case 
five colors are required. For example, in Figure 1, the 
colors for different regions are red, yellow, green and 
blue respectively, while the color for boundaries is 
black. 

In Figure 1, the number of the required colors is 
as follows 

  4+1=5 
At this time, "the four color theorem" is replaced 

by "the five color theorem".. 
Thus, we already prove that, as considering the 

boundary and its color, "the four color theorem" is 
incorrect. 

Conclusion 

As considering the boundary and its color, if the 
original color distribution (namely the color 
distribution on a map that is agreed with the principle 
of "the four color theorem"；or the color distribution 
before considering the boundary) can be changed, 
"the four color theorem" is replaced by "the two color 
theorem"; if the original color distribution cannot be 
changed, "the four color theorem" is replaced by "the 
five color theorem". 
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Abstract. Smarandache in 1995 introduced the concept of neu-
trosophic set and in 2013 Maji introduced the notion of neutro-
sophic soft set, which is a hybridization of neutrosophic set and 
soft set. After its introduction neutrosophic soft sets become most 
efficient tools to deals with problems that contain uncertainty 
such as problem in social, economic system, medical diagnosis, 
pattern recognition,  game theory, coding theory and so on. In 
this work a new method of measuring similarity measure and 

weighted similarity measure between two neutrosophic soft sets 
(NSSs) are proposed. A comparative study with existing similari-
ty measures for neutrosophic soft sets also studied.  A decision 
making method is established for neutrosophic soft set setting us-
ing similarity measures. Lastly a numerical example is given to 
demonstrate the possible application of similarity measures in 
pattern recognition problems. 

Keywords: Fuzzy sets, soft sets, neutrosophic sets, neutrosophic soft sets, similarity measure, pattern recognition.

1 Introduction 

The concept of fuzzy set theory was initiated by Prof. L. A. 
Zadeh in1965[20]. After its introduction   several 
researchers have extended this concept in many directions. 

The traditional fuzzy set is characterized by the 
membership value or the grade of membership value. 
Sometimes it may be very difficult to assign the 
membership value for a fuzzy set. To overcome this 
difficulty the concept of interval valued fuzzy sets was 
proposed by L.A. Zadeh in1975[21]. In some real life 

problems in expert system, belief system, information 
fusion and so on, we must consider the truth-membership 
as well as the falsity-membership for proper description of 
an object in uncertain, ambiguous environment. Neither the 
fuzzy sets nor the interval valued fuzzy sets is appropriate 
for such a situation. Intuitionistic fuzzy setsintroduced by 

K. Atanassov[1] in 1986 and interval valued intuitionistic 
fuzzy setsintroduced by K. Atanassov and G. Gargov in 
1989[2] are appropriate for such a situation.But these do 
not handle the indeterminate and inconsistent information 
which exists in belief system. F. Smarandache in 
1995[16,17], introduced the concept of 

neutrosophicset,which is a mathematical tool for handling 
problems involving imprecise, indeterminacy and 
inconsistent data. Soft set theory[7, 11] has enriched its 
potentiality since its introduction by Molodtsov in 1999. 
Using the concept of soft set theory P. K. Maji in 2013[12] 

introduced neutrosophic soft set. Neutrosophic sets and 
neutrosophic soft sets now become the most useful 

mathematical tools to deal with the problems which 
involve the indeterminate and inconsistent information. 

      Similarity measure is an important topic in the fuzzy 

set theory. The similarity measure indicates the degree of 

similarity between two fuzzy sets. P. Z. Wang[18] first 

introduced the concept of similarity measure of fuzzy sets 

and gave a computational formula. Science then, similarity 

measure of fuzzy sets has attracted several researchers’ 

interest and has been investigated more. Domain of 

application of similarity measure of fuzzy sets are fuzzy 

clustering, image processing, fuzzy reasoning, fuzzy neural 

network, pattern recognition, medical diagnosis, game 

theory, coding theory and several problems that contain 

uncertainties. S. M. Chen[5, 6] proposedsimilarity between 

vague sets, similarity measure of soft sets was studied by P. 

Majumderet al.[8, 9, 10] and W.K. Min[13], NaimCagman 

and Irfan Deli[4] introduced similarity measure for 

intuitionistic fuzzy soft sets, severalsimilarity measures for 

interval-valued fuzzy soft  sets were studied by A. 

Mukherjee and S. Sarkar[14]. Said Broumi and 

FlorentinSmarandache[3] introduced the concept of several 

similarity measures of neutrosophic sets and Jun Ye[19] 

introduced the concept of similarity measures between 

interval neutrosophic sets. Recently A. Mukherjee and S. 

Sarkar[15] introduced several methods of similarity 

measure for neutrosophic soft sets 

     Pattern recognition problem has been one of the fastest 

growing areas during the last two decades because of its 

usefulness and fascination. The main objective of pattern 

recognition problems is supervised or unsupervised 
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classification of unknown patterns. Among the various 

frameworks in which pattern recognition problem has been 

traditionally formulated the statistical approach has been 

most intensively studied and used in practice.  

      In this paper a new method of measuring degree of 

similarity and weighted similarity measure between two 

neutrosophic soft set is proposed and some basic properties 

of similarity measure also are studied. A decision making 

method is established based on the proposed similarity 

measure. An illustrative numerical example is given to 

demonstrate the application of proposed decision making 

method in a supervised pattern recognition problem that is 

on the basis of the knowledge of the known pattern our aim 

is to classify the unknown pattern.  

      The rest of the paper is organized as --- section 2: some 
preliminary basic definitions are given in this section. In 
section 3 similarity measures, weighted similarity measure 
between two NSSs is defined with examples and some 
basic properties are studied. In section 4 a decision making 
method is established with an example in a pattern 

recognition problem. In Section 5 a comparative study of 
similarity measures between existing and proposed method 
is given. Finally in section 6 some remarks of the proposed 
similarity measure between NSSs and the proposed 
decision making method are given.  

2 Preliminaries and related works 

In this section we briefly review some basic definitions 

related to neutrosophic soft sets which will be used in the 

rest of the paper. 

2.1 Definition[20] Let X  be a non empty collection of 
objects denoted by x. Then a fuzzy set (FS for short)   in X 
is a set of ordered pairs having the form 

   , :x x x X    , 

  where the function  : 0,1X   is called the 

membership function or grade of membership (also degree of 

compatibility or degree of truth) of x in  .The interval M = 

 0,1
 
is called membership space.

2.2 Definition[21]  Let D[0, 1] be the set of closed sub-

intervals of the interval [0, 1]. An interval-valued fuzzy set 

in X, X   and Card(X) = n, is an expression A given

by 

 ( , ( )) :AA x M x x X  , where  : 0,1AM X D . 

2.3 Definition[1] Let X be a non empty set. Then an 
intuitionistic fuzzy set (IFS for short) A is a set having the 
form  A={(x, A(x), A(x)): xX}  where the functions A: 

X[0,1] and A: X[0,1] represents the degree 
ofmembership and the degree of non-membership 

respectively of each element xX and 0A(x)+A(x)1 
for each xX. 

2.4 Definition[7,11] Let U be an initial universe and E be 
a set of parameters. Let P(U) denotes the power set of U and 
A⊆ 𝐸. Then the pair (F,A) is called a soft set over U, where 

F is a mapping given byF:A→P(U). 

2.5 Definition[16,17] A neutrosophic set A on the 

universe of discourse X is defined as 

{( , ( ), ( ), ( )), }A A AA x T x I x F x x X  where T, I, F : 

] 0,1 [X    and 

0 ( ) ( ) ( ) 3A A AT x I x F x      . 

From philosophical point of view, the neutrosophic set 

takes the value from real standard or non-standard subsets 

of ] 0,1 [ 
. But in real life application in scientific and 

engineering problems it is difficult to use neutrosophic set 

with value from real standard or non-standard subset of

] 0,1 [ 
. Hence we consider the neutrosophic set which 

takes the value from the subset of [0,1] that is  

0 ( ) ( ) ( ) 3A A AT x I x F x    . 

2.6 Definition[12] Let U be the universe set and E be the 

set of parameters.  Also let A ⊆ E and P(U) be the set of

all neutrosophic sets of U. Then the collection (F, A) is 

called neutrosophic soft set over U, where F is a mapping 

given by F: A P(U). 

2.7 Definition[12] Let (F,E1) and (G,E2) be two 
neutrosophic soft sets over the common universe U , where 
E1, E2 are two sets of parameters. Then (F,E1) is said to be 
neutrosophic soft subset of (G,E2) if 1 2E E  and 

( ) ( )( ) ( )F e G eT x T x , 
( ) ( )( ) ( )F e G eI x I x , 

( ) ( )( ) ( )F e G eF x F x , 1,e E x U   . If (F,E1) be 
neutrosophic soft subset of (G,E2) then it is denoted by 

   1 2, ,F E G E . 

2.8 Definition[12] 
 Let E = {e1, e2, e3, ..... ,em} be the set of parameters, 

then the set denoted by ˥E and defined by ˥E = {┐e1, ┐e2, 
┐e3, ..... , ┐em}, where ┐ei = not ei , i is called NOT set 
of the set of parameters E. Where ˥ and ┐different 

operators. 

2.9 Definition[12] The complement of a neutrosophic 

soft set (F,E) denoted by ( , )cF E  is defined as ( , )cF E =

(
c

F ,˥E), where 
c

F : ˥E ( )P U is amapping given by 

( )
c

F   neutrosophic soft complement with 
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( )( )c F xF x
T F , 

( )( )c F xF x
I I and 

( )( )c F xF x
F T . 

3 Similarity measure for neutrosophic soft 
sets(NSSs) 

In this section we have proposed a new method for 
measuring similarity measure and weighted similarity 
measure for NSSs and some basic properties are also 
studied. 

3.1 Similarity measure 

U = {x1, x2, x3, ......,xn} be the universe of discourse and E = 

{e1, e2, e3, ..... ,em} be the set of parameters and (N1,E), (N2,E) 

be two neutrosophic soft sets over U(E). Then the similarity 

measure between NSSs (N1,E) and (N2,E) is denoted by 

1 2
( , )Sim N N and is defined as follows : 


1 2

1 1

1 1

1
( , )

3
3 ( )( ) ( )( )

n m

N i j N i j

i j

Sim N N
mn

T x e T x e
 

   


1 2 1 2

( )( ) ( )( ) ( )( ) ( )( )
N i j N i j N i j N i j

I x e I x e F x e F x e  

 ……………………………… (1) 

3.2 Theorem If
1 2

( , )Sim N N be the similarity measure 

between two NSSs (N1,E) and (N2,E) then 

(i) 
1 2

0 ( , ) 1Sim N N   

(ii) 
1 2 2 1

( , ) ( , )Sim N N Sim N N

(iii) 
1 1

( , ) 1Sim N N   

(iv) 
1 2 3

1 3 2 3

( , ) ( , ) ( , )

( , ) ( , )

If N E N E N E then

Sim N N Sim N N

 



Proof: 

(i) Obvious from definition 3.1 .    

(ii)  Obvious from definition 3.1 . 

(iii) Obvious from definition 3.1 

(iv)  Let U = {x1, x2, x3, ......, xn} be the universe of discourse 

and E = {e1, e2, e3, ..... ,em} be the set of parameters and (N1,E), 

(N2,E), (N3,E) be three neutrosophic soft sets over U(E), such 

that
1 2 3

( , ) ( , ) ( , )N E N E N E  .Now by definition of 

neutrosophic soft sub sets (Maji, 2013) we have 

1 2 3

1 2 3

1 2 3

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

N i j N i j N i j

N i j N i j N i j

N i j N i j N i j

T x e T x e T x e

I x e I x e I x e

F x e F x e F x e

 

 

 

1 3 2 3

1 3 2 3

1 3 2 3

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

,

,

N i j N i j N i j N i j

N i j N i j N i j N i j

N i j N i j N i j N i j

T x e T x e T x e T x e

I x e I x e I x e I x e

F x e F x e F x e F x e

   

  

  



 



1 3 1 3

1 3 2 3

2 3 2 3

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

N i j N i j N i j N i j

N i j N i j N i j N i j

N i j N i j N i j N i j

T x e T x e I x e I x e

F x e F x e T x e T x e

I x e I x e F x e F x e

    

   

  



 



1 3 1 3

1 3 2 3

2 3 2 3

3 ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) 3 ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

N i j N i j N i j N i j

N i j N i j N i j N i j

N i j N i j N i j N i j

T x e T x e I x e I x e

F x e F x e T x e T x e

I x e I x e F x e F x e

    

    

   



 



1 3 1 3

1 3 2 3

2 3 2 3

1 1

1 1

1
3 ( )( ) ( )( ) ( )( ) ( )( )

3

1
( )( ) ( )( ) 3 ( )( ) ( )( )

3

( )( ) ( )( ) ( )( ) ( )( )

n m

N i j N i j N i j N i j

i j

n m

N i j N i j N i j N i j

i j

N i j N i j N i j N i j

T x e T x e I x e I x e
mn

F x e F x e T x e T x e
mn

I x e I x e F x e F x e

 

 

    

    

   





1 3 2 3
( , ) ( , )Sim N N Sim N N   [ By equation (1) ]

3.3 Weighted similarity measure 

Let U = {x1, x2, x3, ......,xn} be the universe of discourse 

and E = {e1, e2, e3, ..... ,em} be the set of parameters and 

(N1,E), (N2,E) be two neutrosophic soft sets over U(E). 

Now if we consider weights wi of xi (i = 1,2,3,.....,n) then 

the weighted similarity measure between NSSs (N1,E) and 

(N2,E) is denoted by 
1 2

( , )WSim N N  is proposed as 

follows : 





1 2

1 2 1 2

1 2

1 1

1
( , ) 3 ( )( ) ( )( )

3

( )( ) ( )( ) ( )( ) ( )( )

n m

i N i j N i j

i j

N i j N i j N i j N i j

WSim N N w T x e T x e
m

I x e I x e F x e F x e

 

   

  



     .................................................... (2) 

Where  0,1iw  , i = 1,2,3,.......,n and 
1

1

n

i

i

w


 . In

particular if we take
1

i
w

n
 , i = 1,2,3,... ....,n then 

1 2 1 2
( , ) ( , )WSim N N Sim N N . 

3.4 Theorem Let If 
1 2

( , )WSim N N be the similarity 

measure between  two NSSs (N1,E) and (N2,E) then   
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(i) 
1 2

0 ( , ) 1WSim N N   

(ii) 
1 2 2 1

( , ) ( , )WSim N N WSim N N  

(iii) 
1 1

( , ) 1WSim N N   

(iv) 
1 2 3

1 3 2 3

( , ) ( , ) ( , )

( , ) ( , )

If N E N E N E then

WSim N N WSim N N

 



Proof: 

    (i)  Obvious from definition 3.3 . 

    (ii)  Obvious from definition 3.3 . 

   (iii) Obvious from definition 3.3 . 

   (iv) Similar to proof of  (iv) of theorem 3.2. 

3.5  Example Here we consider example 3.3 of [15]. Let

 U={x1,x2,x3} be the universal set and E={e1,e2, e3} be the 

set of parameters. Let (N1,E) and (N2,E) be two 

neutrosophic soft sets over U such that their tabular 

representations are as follows:

 

Table 1: tabular representation of (N1,E) 

(N1,E) 
e1 e2 e3 

x1 (0.2,0.4,0.7) (0.5,0.1,0.3) (0.4,0.2,0.3) 

x2 (0.7,0.0,0.4) (0.0,0.4,0.8) (0.5,0.7,0.3) 

x3 (0.3,0.4,0.3) (0.6,0.5,0.2) (0.5,0.7,0.1) 

Table 2: tabular representation of (N2,E) 

(N2,E) 
e1 e2 e3 

x1 (0.3,0.5,0.4) (0.4,0.3,0.4) (0.5,0.1,0.2) 

x2 (0.7,0.1,0.5) (0.2,0.4,0.7) (0.5,0.6,0.3) 

x3 (0.3,0.3,0.4) (0.7,0.5,0.2) (0.6,0.6,0.2) 

Now by definition 3.1 similarity measure between (N1,E) and 

(N2,E) is given by Sim(N1,N2) = 0.91 

3.6 Example 

Let U={x1,x2,x3} be the universal set and E={e1,e2, e3} be 

the set of parameters. Let (A1,E) and (A2,E) be two 

neutrosophic soft sets over U such that their tabular 

representations are as follows: 

Table 3: tabular representation of (A1,E) 

(A1,E) 
e1 e2 e3 

x1 (0.1,0.2,0.1) (0.2,0.1,0.1) (0.1,0.1,0.2) 

x2 (0.3,0.1,0.2) (0.2,0.2,0.3) (0.7,0.2,0.2) 

x3 (0.9,0.3,0.1) (0.1,0.1,0.2) (0.2,0.3,0.8) 

Table 4: tabular representation of (A2,E) 

(A2,E) 
e1 e2 e3 

x1 (0.9,0.9,0.8) (0.8,0.7,0.9) (0.9,0.8,0.9) 

x2 (0.9,0.8,0.8) (0.8,0.8,0.9) (0.1,0.9,0.9) 

x3 (0.1,0.9,0.9) (0.8,0.8,0.9) (0.8,0.9,0.2) 

Now by definition 3.1 similarity measure between (A1,E) 

and (A2,E) is given by Sim(A1,A2) = 0.32 . 

3.7 Definition Let (N1,E) and (N2,E) be twoNSSsover the 
universe U. Then (N1,E) and (N2,E) are said be α - similar , 

denoted by 1 2( , ) ( , )N E N E


  if and only if Sim(N1,N2) 

> α for α ∈ (0,1). We call the two NSSs significantly 

similar if Sim(N1,N2) > 0.5 . 

3.8 Definition Let (N1,E) and (N2,E) be twoNSSs over 

the universe U. Then (N1,E) and (N2,E) are said be

substantially-similar if Sim(N1,N2) > 0.95 and is denoted 

by (N1,E) ≡ (N2,E)  .

3.9 Definition In example 3.5 Sim(N1,N2) = 0.91> 0.5 , 
therefore  (N1,E) and (N2,E) are significantly similar. 
Again in example 3.6 Sim(A1,A2) = 0.32 < 0.5 , therefore 
(A1,E) and (A2, E) are not significantly similar. 

3.10 Theorem   
Let (N1,E) and (N2,E) be two neutrosophic soft sets over 

the universe U and  1
,

c
N E  and  2

,
c

N E  be their  

complements respectively. Then 

i. if 1 2( , )Sim N N  then 
1 2( , )c cSim N N   , (

0 1  ) . 

ii. if 1 2( , )WSim N N  then 
1 2( , )c cWSim N N  , 

0 1   .

 Proof : Straight forward from definition 2.7, 3.1 and 3.3 . 
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4 Application of similarity measure of NSSs in 
pattern recognition problem 

In this section we developed an algorithm for pattern 

recognition problem in neutrosophic soft set setting using 

similarity measure. A numerical example is given to 

demonstrate the effectiveness of the proposed method. 
Steps of algorithm are as follows: 

Step1: construct NSS(s) ˆ
iN (i = 1,2,3........,n)as ideal 

pattern(s). 

Step2: construct NSS(s) ˆ
jM (j = 1,2,3........,m)for sample 

pattern(s) which is/are to be recognized.  

Step3: calculate similarity measure between NSS(s) for 

ideal pattern(s) and sample pattern(s). 

Step4: recognize sample pattern(s) under certain 

predefined conditions. 

4.1 Example In order to demonstrate the application of 
the proposed method of measuring similarity between 
NSSs, we consider the medical diagnosis problem 
discussed in example 5.1 [15] as a supervised pattern 

recognition problem . In this example our proposed method 
is applied to determine whether an ill person having some 
visible symptoms is suffering from cancer or not suffering 
from cancer. We first construct an ideal NSS (known 
pattern) for cancer disease and  NSS(sample pattern) for 
the ill person(s) and we also assume that if the similarity 

measure between these two NSSs is greater than or equal 
to 0.75 then the ill person is possibly suffering from the 
diseases. 

      Let U be the universal set, which contains only two 

elements x1 = severe and x2 = mild i.e. U={x1,x2}. Here the 

set of parameters E is a set of certain visible symptoms. 

Let E = {e1,e2,e3,e4,e5}, where e1 = headache, e2 = fatigue, 

e3 = nausea and vomiting , e4 = skin changes, e5 = weakness. 

Step 1: construct an ideal NSS ( N̂ ,E) for illness (cancer) 
which can be done with the help of  medical expert. 

Table 5: tabular representation of NSS ( N̂ ,E) for cancer. 

( N̂ ,E) 

 e1 e2 e3 

x1 (0.6,0.2,0.3) (0.7,0.3,0.4) (0.4,0.3,0.6) 

x2 (0.4,0.1,0.2) (0.3,0.1,0.2) (0.2,0.2,0.4) 

e4 e5 

(0.8,0.2,0.3) (0.5,0.3,0.2) 

(0.3,0.1,0.4) (0.2,0.1,0.3) 

Step 2: construct NSSs for ill persons (patients) X and Y. 

Table 6: tabular representation of NSS (
1

M̂ ,E) for patient X. 

(
1

M̂ ,E) 

e1 e2 e3 

x1 (0.7,0.3,0.4) (0.8,0.2,0.5) (0.4,0.2,0.5) 

x2 (0.3,0.2,0.3) (0.2,0.2,0.3) (0.3,0.1,0.3) 

e4 e5 

(0.8,0.1,0.2) (0.5,0.3,0.2) 

(0.3,0.2,0.3) (0.1,0.2,0.2) 

Table 7: tabular representation of NSS (
2

M̂ , E) for patient Y. 

(
2

M̂ ,E) 
e1 e2 e3 

x1 (0.2,0.5,0.8) (0.1,0.0,0.8) (0.8,0.6,0.1) 

x2 (0.9,0.6,0.7) (0.7,0.5,0.6) (0.7,0.6,0.1) 

e4 e5 

(0.1,0.5,0.8) (0.9,0.6,0.8) 

(0.8,0.7,0.9) (0.8,0.7,0.7) 

Step 3: By definition 3.1 similarity measure between ( N̂ ,E) 

and (
1

M̂ ,E) is given by 
1

ˆ ˆ( , ) 0.91Sim N M   and similarity

measure between ( N̂ ,E) and (
2

M̂ ,E) is given by 

2

ˆ ˆ( , ) 0.54Sim N M  .

Step 4: Since 
1

ˆ ˆ( , ) 0.91Sim N M  > 0.75 therefore patient X

is possibly suffering from cancer. Again since 

2

ˆ ˆ( , ) 0.54Sim N M  < 0.75 therefore patient Y is possibly not

suffering from cancer. 

The result obtained here is same as the result obtained in [15]. 

5  Comparison of different similarity measures for 
NSSs  

In this section effectiveness of the proposed method is 

demonstrated by the comparison between the proposed 

similarity measure and existing similarity measures in NSS 

setting. Here we consider NSSs of examples 3.5, 3.6 and 

4.1 for comparison of similarity measures as given in table 

8.
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Table 8:  comparison of different similarity measures 

NSSs→ 

(N1,N2) (A1,A2) 
1

ˆ ˆ( , )N M
2

ˆ ˆ( , )N MSimilarity 

measure based 

on  ↓ 

Hamming 

distance 

0.71 0.24 0.69 0.31 

Set theoretic 

approach 0.80 0.20 0.75 0.33 

Proposed 

method 

0.91 0.32 0.92 0.54 

Table 8 shows that each  method has its own measuring 
but the results of similarity measures by proposed method 
are emphatic over the other. 

Conclusions 

    In this paper we proposed a new method of measuring 
degree of similarity and weighted similarity between two 

neutrosophic soft sets and studied some properties of 
similarity measure. Based on the comparison between the 
proposed method and existing methods introduced by 
Mukherjee and Sarkar[15], proposed method has been 
found to give strong similarity measure. A decision making 

method is developed based on similarity measure. Finally a 
fictitious numerical example is given to demonstrate the 
application of similarity measure of NSSs in a supervised 
pattern recognition problem. Next research work is to 
develop the application in other fields. 
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