| |
Smarandache Geometries
An axiom is said smarandachely denied if in the same space the
axiom behaves differently (i.e., validated and invalided; or only invalidated
but in at least two distinct ways). Therefore, we say that an axiom is partially
negated, or there is a degree of negation of an axiom.
A Smarandache Geometry is a geometry which has at least one
smarandachely denied axiom (1969).
Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss,
and Riemannian geometries may be united altogether, in the same space, by some
Smarandache geometries. These last geometries can be partially Euclidean and
partially Non-Euclidean.
(i) For the first case, when the axiom is partially
validated (true) and partially invalidated (false), the Smarandache Geometries
are particular cases of the NeutroGeometry.
(ii) For the second case, when the axiom is only invalidated
(100% false), then the Smarandache Geometry are particular cases of the
AntiGeometry.
The most important contribution of Smarandache
Geometries was
the introduction of the degree of negation of an axiom (and
more general the degree of negation of a theorem, lemma,
property, algorithm, scientific or
humanistic proposition , etc.) which works somehow like the negation in fuzzy logic
(with a degree of truth, and a degree of falsehood) or more general like the
negation in neutrosophic logic (with a degree of truth, a degree of falsehood,
and a degree of neutrality (neither true nor false, but unknown, ambiguous,
indeterminate) [not only Euclid geometrical axioms, but any scientific or
humanistic proposition in any field] or partial negation of an axiom (and, in
general, partial negation of a scientific or humanistic proposition in any
field).
These geometries connect many geometrical spaces with different
structures into a heterogeneous multispace
with multistructure.
In general, a rule R ∈ R
in a system (Σ; R) is said to be Smarandachely denied if it behaves in at
least two different ways within the same set Σ, i.e. validated and invalided, or
only invalided but in multiple distinct ways.
A Smarandache system (Σ;
R) is a system which has at
least one Smarandachely denied rule in R.
In particular, a Smarandache geometry is such a geometry in
which there is at least one Smarandachely denied rule, and a Smarandache
manifold (M;A) is an n-dimensional manifold M that supports a Smarandache
geometry.
In a Smarandache geometry, the points, lines, planes, spaces,
triangles, ... are
respectively called s-points, s-lines, s-planes, s-spaces, s-triangles,
... in
order to distinguish them from those in classical geometry.
Howard Iseri constructed the Smarandache 2-manifolds by using
equilateral triangular disks on Euclidean plane R2. Such manifold
came true by paper models in R3 for elliptic, Euclidean and
hyperbolic cases. It should be noted that a more general Smarandache n-manifold,
i.e. combinatorial manifold and a differential theory on such manifold
were constructed by Linfan Mao.
A curve
and a surface
in a Smarandache Geometry
are
called a Smarandache Curve
and Smarandache Surface respectively.
They actually are curves and surfaces of hybrid geometrical structures.
Nearly all geometries, such as pseudo-manifold geometries,
Finsler geometry, combinatorial Finsler geometries, Riemann geometry,
combinatorial Riemannian geometries, Weyl geometry, Kahler geometry are
particular cases of Smarandache geometries.
[Prof.
Dr. Linfan Mao, Chinese Academy of
Sciences, Beijing, P. R. China, 2005-2023]
Particular cases of Smarandache Geometries:
paradoxist, non-geometry, counter-projective, anti-geometry
Books:
Linfan Mao (2017).
Let’s Flying by Wing - Mathematical Combinatorics &
Smarandache Multi-Spaces (让我们插上翅膀飞翔
--
数学组合与Smarandache重叠空间).
Chinese
Branch Xiquan House,
352 p.
Hu Chang-Wei (2012).
Vacuum, Space-Time, Matter and the Models of Smarandache Geometry (真空、时空、物质和).
Educational Publishers,
112 p.
Linfan Mao
(2011).
Combinatorial Geometry with Applications to Field Theory.
Education Publisher, 484 p.
Yanpei Liu (2010).
Introductory Map Theory. Kapa & Omega,
502 p.
Yuhua Fu, Linfan Mao, Mihaly
Bencze (ed) (2007).
Scientific Elements - Applications to Mathematics, Physics, and Other Sciences.
International book series, Vol. 1.
ProQuest Information & Learning, 200 p.
Linfan Mao
(2006).
Smarandache Geometries & Map Theory with Applications (I).
Chinese Branch Xiquan
House,
200 p.
Linfan Mao (2006).
Smarandache Multi-Space Theory.
Hexis,
274 p.
Linfan Mao
(2005).
Automorphism Groups of Maps, Surfaces and Smarandache Geometries.
American Research
Press,
114 p.
Howard Iseri
(2002).
Smarandache Manifolds.
American Research Press, 96 p.
Articles:
Ion
Patrascu (2023): Smarandache
Geometries (or Hybrids). Octogon
Mathematical Journal 31(2), 966-969.
F. Smarandache (2011).
Degree of Negation of Euclid's Fifth Postulate. University of New Mexico,
6 p.
Linfan Mao (2007).
A generalization of Stokes theorem on combinatorial manifolds. 16 p.;
http://lanl.arxiv.org/abs/math/0703400v1;
http://xxx.lanl.gov/pdf/math/0703400v1.
Linfan Mao (2006).
Combinatorial Speculations and the Combinatorial Conjecture for Mathematics.
19 p.;
http://lanl.arxiv.org/abs/math/0606702v2;
http://xxx.lanl.gov/pdf/math/0606702v2.
Linfan Mao (2006).
Pseudo-Manifold Geometries with Applications. 15 p.;
http://lanl.arxiv.org/abs/math/0610307v1;
http://xxx.lanl.gov/pdf/math/0610307v1.
Linfan Mao (2006).
Geometrical Theory on Combinatorial Manifolds. 37 p.;
http://lanl.arxiv.org/abs/math/0612760v1;
http://xxx.lanl.gov/pdf/math/0612760v1.
Linfan Mao (2005).
A new view of combinatorial maps by Smarandache's notion. 19 p.;
http://lanl.arxiv.org/abs/math/0506232v1;
http://xxx.lanl.gov/pdf/math/0506232v1
Linfan Mao (2005).
Parallel bundles in planar map geometries. 16 p.;
http://lanl.arxiv.org/abs/math/0506386v1;
http://xxx.lanl.gov/pdf/math/0506386v1.
L. Kuciuk, M. Antholy (2005).
An Introduction to the Smarandache Geometries. JP Journal of Geometry &
Topology, 5(1), 77-81.
S. Bhattacharya (2005).
A Model to a Smarandache Geometry. Alaska Pacific University,
presentation.
Ovidiu Sandru (2004).
Un model simplu de geometrie Smarandache construit exclusiv cu elemente de
geometrie euclidiana. Universitatea Politehnica Bucharest, Romania, 3
p.
Howard Iseri (2003).
A Classification of s-Lines in a Closed s-Manifold. Mansfield University,
3 p.
Howard Iseri (2003).
Partially Paradoxist Smarandache Geometries. Mansfield University, 8
p.
Roberto Torretti (2002).
An Economics Model for the Smarandache Anti-Geometry. Universidad de
Chile, 12 p.
Clifford Singer (2001).
Engineering A Visual Field. New York, presentation.
Smarandache Curves and Surfaces
Articles
|
|
Stuti
Tamta, Ram Shankar Gupta (2023): Pointwise
1-Type Gauss Map os Developable Smarandache Rules Surfaces in E^3*. Facta
Universitatis, Ser. Math. Inform. 38(4), 741-759
Emad Solouma, Ibrahim Al-Dayel, Meraj Ali Khan, Mohamed Abdelkawy (2023): Investigation
of Special Type-Π Smarandache Ruled Surfaces Due to Rotation Minimizing Darboux
Frame in E^3. Symmetry 15,
2207, 19 p.; https://doi.org/10.3390/sym15122207
Talat Korpinar (2015): New
Types Surfaces in Terms of B-Smarandache Curves in Sol3. Acta
Scientiarum. Technology 37(3), 389-393
Emad Solouma (2023): On
Geometry of Equiform Smarandache Ruled Surfaces via Equiform Frame in Minkowski
3-Space. Applications
and Applied Mathematics 18(1), 7, 14 p.; https://digitalcommons.pvamu.edu/aam/vol18/iss1/7
Zuhal Kucukarslan Yuzbasi, Sevinc Taze (2022): On
Parametric Surfaces with Constant Mean Curvature Along Given Smarandache Curves
in Lie Group. Journal
of New Theory 40, 82-89; https://dergipark.org.tr/en/pub/jnt
Suleyman Senyurt, Davut Canli (2023): On
The Tangent Indicatrix Of Special Viviani’s Curve And Its Corresponding
Smarandache Curves According To Sabban Frame.
10th International Baskent Congress on Physical, Engineering, and Applied
Sciences, 125-136
Suleyman Senyurt, Kebire Hilal Ayvaci, Davut Canli (2023). Special
Smarandache Ruled Surfaces According to Flc Frame in E^3. Applications
and Applied Mathematics 18(1), 16, 18 p.; https://digitalcommons.pvamu.edu/aam/vol18/iss1/16
Süleyman Şenyurt, Kebire Hilal Ayvacı,
Davut Canli, (R2026) Special
Smarandache Ruled Surfaces According to Flc Frame in E^3,
Applications and Applied Mathematics: An International Journal (AAM), Vol.
18, Iss. 1, Article 16, 2023.
Emad Solouma, Ibrahim Al-Dayel, Meraj Ali Khan and Mohamed
Abdelkawy,
Investigation of Special Type-Π Smarandache Ruled Surfaces Due to Rotation
Minimizing Darboux Frame in E3,
Symmetry 2023, 15(12),
2207.
Stuti Tamta and Ram Shankar
Gupta,
Pointwise 1-Type Gauss Map of Developable
Smarandache Ruled Surfaces in E^3, Facta Universitatis (NIS),
Ser. Math. Inform. Vol. 38, No. 1, 741-759, 2023.
Süleyman ŞENYURT and Davut CANLI,
ON THE
TANGENT INDICATRIX OF SPECIAL VIVIANI’S
CURVE AND ITS CORRESPONDING SMARANDACHE CURVES ACCORDING TO SABBAN FRAME,
10th International Baskent Congress on Physical, Engineering, and Applied
Sciences, ONLINE & IN-PERSON
PARTICIPATION ZOOM & ANKARA, TURKIYE, pp.125-136, OCTOBER 28-30, 2023.
Soukaina Ouarab: NC-Smarandache
Ruled Surface and NW-Smarandache Ruled Surface according to Alternative
Moving Frame in E3. Hindawi: Journal of Mathematics, Volume
2021, Article ID 9951434, 6 p.; DOI: 10.1155/2021/9951434
Zuhal Kucukarslan Yuzbasi: On
Characterizations of Curves in The Galilean Plane. Palestine
Journal of Mathematics, Vol. 10(1) (2021), 308–311, 4 p.
Emad Solouma: Equiform
Spacelike Smarandache Curves of Anti-Eqiform Salkowski Curve According to
Equiform Frame. International Journal of Mathematical
Analysis, Vol. 15, 2021, no. 1, 43-59, 17 p.; DOI:
10.12988/ijma.2021.912141
Shankar Lal: Parallel
Transport Frame of Smarandache Curves in Euclidean Space. J.
Mountain Res., Vol. 16(1), (2021), 225-233, 9 p.; DOI:
10.51220/jmr.v16i1.23
Mustafa Altin, Ahmet Kazan, H.Bayram Karadag: Ruled
and Rotational Surfaces Generated by Non-Null Curves with Zero Weighted
Curvature. International Electronic Journal of Geometry,
Volume 13, no. 2 11–29 (2020), 19 p.; DOI: 10.36890/IEJG.599817
Emad Solouma, (R1977)
On Geometry of Equiform Smarandache Ruled Surfaces
via Equiform Frame in Minkowski 3-Space, Applications and
Applied Mathematics: An International Journal (AAM), Vol. 18, Iss. 1,
article 7, pp.1-14, 2023,
Tanju Kahraman, Hasan Huseyin Ugurlu: Smarandache
Curves of a Spacelike Curve lying on Unit dual Lorentzian Sphere. CBU
J. of Sci., Volume 11, Issue 2, p 93-105, 13 p.
Kahraman Esen Ozen, Murat Tosun: Trajectories
Generated by Special Smarandache Curves According to Positional Adapted
Frame. 12 p.; www.researchgate.net/publication/348759696
F. Almaz, & M.A. Kulahci. (2019). A
Note on Special Smarandache Curves in The Null Cone Q3.
Acta Universitatis Apulensis, No. 56/2018, pp. 111-124, http://doi.org/10.5281/zenodo.2987357
M. Khalifa Saad and
R. A. Abdel-Baky, On
Ruled Surfaces According to Quasi-Frame in Euclidean 3-Space [on
Smarandache curves], Aust. J. Math. Anal. Appl. Vol. 17 (2020), No. 1,
Art. 11, 16 pp.
H.S. Abdel-Aziz, & M. Khalifa Saad. (2017). Computation
of Smarandache curves according to Darboux frame in Minkowski 3-space. Journal
of the Egyptian Mathematical Society 25 (2017) 382–390. http://doi.org/10.5281/zenodo.2987485
Tanju Kahraman, Mehmet Onder, & H. Huseyin Ugurlu. (2019). Dual
Smarandache Curves and Smarandache Ruled Surfaces. http://doi.org/10.5281/zenodo.2987568
Süleyman Senyurt, Yasin Altun, Ceyda Cevahir, & Huseyin Kocayigit.
(2019). On
The Sabban Frame Belonging To Involute-Evolute Curves. http://doi.org/10.5281/zenodo.2989788
Mervat Elzawy. (2017). Smarandache
curves in Euclidean 4- space E4. Journal of the Egyptian
Mathematical Society 25 / 2017, 268–271. http://doi.org/10.5281/zenodo.2989884
Suleyman Senyurt, & Abdussamet Calskan. (2015). Smarandache
Curves in Terms of Sabban Frame of Spherical Indicatrix Curves. Gen.
Math. Notes, Vol. 31, No. 2, December 2015, pp.1-15, http://doi.org/10.5281/zenodo.2990072
M. Elzawy, & S. Mosa. (2017). Smarandache
curves in the Galilean 4-space G4. Journal of the Egyptian
Mathematical Society 25 / 2017, 53–56 http://doi.org/10.5281/zenodo.2990158
Suleyman Senyurt, Yasin Altun, Ceyda Cevahir, & Huseyin Kocayigit.
(2019). Some
Special Curves Belonging to Mannheim Curves Pair. http://doi.org/10.5281/zenodo.2990510
M. Khalifa Saad. (2016). Spacelike
and timelike admissible Smarandache curves in pseudo-Galilean space.
Journal of the Egyptian Mathematical Society 24 , 416–423. http://doi.org/10.5281/zenodo.2990574
E.M. Solouma. (2019). Special
equiform Smarandache curves in Minkowski space-time. Journal of the
Egyptian Mathematical Society 25 (2017) 319–325, http://doi.org/10.5281/zenodo.2990660
Elham Mehdi-Nezhad, & Amir M. Rahimi. (2010). The
Smarandache Vertices of The Comaximal Graph of A Commutative Ring. http://doi.org/10.5281/zenodo.2990970
Elham Mehdi-Nezhad, Amir M. Rahimi:
The Smarandache Vertices of the Comaximal Graph of
a Commutative Ring. 12 p. DOI:
https://doi.org/10.5281/zenodo.1419756
Mihriban Kulahci, Fatma Almaz:
Assesment of Smarandache Curves in the Null Cone Q2.
12 p.
http://doi.org/10.5281/zenodo.1412498
Esra Betul Koc Ozturk, Ufuk Ozturk, Kazim Elarslan, Emilija Nesovic:
On Pseudohyperbolical Smarandache Curves in
Minkowski 3-Space. In International Journal of Mathematics and
Mathematical Sciences, 2013, 8 pages.
http://doi.org/10.5281/zenodo.1413399
H. S. Abdel-Aziz, & M. Khalifa Saad:
On Special Curves According to Darboux Frame in
the Three Dimensional Lorentz Space. CMC, vol.54, no.3,
pp.229-249, 2018.
http://doi.org/10.5281/zenodo.1413401
Tanju Kahraman:
Smarandache Curves of Null Quaternionic Curves in
Minkowski 3-space. In MANAS Journal of Engineering (MJEN),
Volume 6, Issue 1, 2018, pp. 1-6.
http://doi.org/10.5281/zenodo.1413905
H. S. Abdel-Aziz, & M. Khalifa Saad:
On Special Curves According to Darboux Frame in
the Three Dimensional Lorentz Space. CMC, vol.54, no.3,
pp.229-249, 2018.
http://doi.org/10.5281/zenodo.1413401
Tevk Sahin, Merve Okur:
Special Smarandache Curves with Respect to Darboux
Frame in Galilean 3-Space. 2018, 15 pages.
http://doi.org/10.5281/zenodo.1413956
Roberto Torretti:
A model for the Smarandache anti-geometry.
In Int. Journal of Social Economics, vol. 29, nr. 11, 2002, 886-896.
http://doi.org/10.5281/zenodo.1412417
Gulnur Saffak Atalay:
Surfaces family with a common Mannheim geodesic
curve. In Journal of Applied Mathematics and Computation (JAMC),
2018, 2(4), pp. 155-165.
http://doi.org/10.5281/zenodo.1413970
V. Ramachandran:
(1,N)-Arithmetic Labelling
of Ladder and Subdivision of Ladder, International J. Math.
Combin. Vol. 2 (2018), pp. 114-121. DOI:
http://doi.org/10.5281/zenodo.1418773
R. Ponraj and M. Maria Adaickalam:
3-Difference Cordial
Labeling of Corona Related Graphs, International J. Math. Combin.
Vol. 2 (2018), pp. 122-128. DOI:
http://doi.org/10.5281/zenodo.1418782
R. Ponraj, K. Annathurai, R. Kala:
4-Remainder
Cordial Labeling of Some Graphs, International J. Math. Combin.
Vol. 1 (2018), pp. 138-145. DOI:
http://doi.org/10.5281/zenodo.1418786
B. Basavanagoud, Sujata Timmanaikar:
Accurate
Independent Domination in Graphs, International J. Math. Combin.
Vol. 2 (2018), pp. 87-96. DOI:
http://doi.org/10.5281/zenodo.1418792
Rajesh Kumar T.J., Mathew Varkey T.K.:
Adjacency Matrices of
Some Directional Paths and Stars, International J. Math. Combin.
Vol. 1 (2018), pp. 90-96. DOI:
http://doi.org/10.5281/zenodo.1418808
M. Subramanian, T. Subramanian:
A Study on Equitable
Triple Connected Domination Number of a Graph, International J.
Math. Combin. Vol. 3 (2017), pp. 116-118. DOI:
http://doi.org/10.5281/zenodo.1418828
U M Prajapati, R M Gajjar:
Cordiality in
the Context of Duplication in Web and Armed Helm, International
J. Math. Combin. Vol. 3 (2017), pp. 90-115. DOI:
http://doi.org/10.5281/zenodo.1418910
T. Chalapathi, R.V M S S Kiran Kumar:
Equal Degree Graphs of
Simple Graphs, International J. Math. Combin. Vol. 1 (2018), pp.
127-137. DOI:
http://doi.org/10.5281/zenodo.1418906
K. Praveena, M. Venkatachalam:
Equitable Coloring on
Triple Star Graph Families, International J. Math. Combin. Vol. 2
(2018), pp. 24-32. DOI:
http://doi.org/10.5281/zenodo.1418902
K. Muthugurupackiam, S. Ramya:
Even Modular Edge
Irregularity Strength of Graphs, International J. Math. Combin.
Vol. 1 (2018), pp. 75-82. DOI:
http://doi.org/10.5281/zenodo.1418898
Linfan Mao:
Hilbert Flow Spaces with
Operators over Topological Graphs, International J. Math. Combin.
Vol. 4 (2017), pp. 19-45. DOI:
http://doi.org/10.5281/zenodo.1418874
A. Lourdusamy, Sherry George:
Linear Cyclic Snakes as
Super Vertex Mean Graphs, International J. Math. Combin. Vol. 1
(2018), pp. 109-126. DOI:
http://doi.org/10.5281/zenodo.1418960
P.S.K. Reddy, K.N. Prakasha,
Gavirangaiah K.:
Minimum Dominating
Color Energy of a Graph, International J. Math. Combin. Vol. 3
(2017), pp. 22-31. DOI:
http://doi.org/10.5281/zenodo.1418990
Rajendra P., R. Rangarajan:
Minimum Equitable
Dominating Randic Energy of a Graph, International J. Math.
Combin. Vol. 1 (2018), pp. 97-108. DOI:
http://doi.org/10.5281/zenodo.1419017
P. S. K. Reddy, K. N. Prakasha, Gavirangaiah K.:
Minimum Equitable
Dominating Randic Energy of a Graph, International J. Math.
Combin. Vol. 3 (2017), pp. 81-89. DOI:
http://doi.org/10.5281/zenodo.1419027
T. Deepa, M. Venkatachalam:
On r-Dynamic
Coloring of the Triple Star Graph Families, International J.
Math. Combin. Vol. 2 (2018), pp. 97-113. DOI:
http://doi.org/10.5281/zenodo.1419043
Akram Alqesmah, Anwar Alwardi, R. Rangarajan:
On the Distance
Eccentricity Zagreb Indeices of Graphs, International J. Math.
Combin. Vol. 4 (2017), pp. 110-120. DOI:
http://doi.org/10.5281/zenodo.1418934
A. Nellai Murugan, P. Iyadurai
Selvaraj:
Path Related n-Cap Cordial
Graphs, International J. Math. Combin. Vol. 3 (2017), pp.
119-124. DOI:
http://doi.org/10.5281/zenodo.1419057
Ujwala Deshmukh, Smita A. Bhatavadeka:
Primeness of
Supersubdivision of Some Graphs, International J. Math. Combin.
Vol. 4 (2017), pp. 151-156. DOI:
http://doi.org/10.5281/zenodo.1418938
V. Lokesha, P. S. Hemavathi, S. Vijay:
Semifull Line (Block)
Signed Graphs, International J. Math. Combin. Vol. 2 (2018), pp.
80-86. DOI:
http://doi.org/10.5281/zenodo.1419004
Tanju Kahraman, Hasan Huseyin Ugurlu:
Smarandache Curves of
Curves lying on Lightlike Cone…, International J. Math. Combin.
Vol. 3 (2017), pp. 1-9. DOI:
http://doi.org/10.5281/zenodo.1419069
R. Ponraj, Rajpal Singh, R. Kala:
Some New Families of
4-Prime Cordial Graphs, International J. Math. Combin. Vol. 3
(2017), pp. 125-135. DOI:
http://doi.org/10.5281/zenodo.1419037
M. H. Akhbari, F. Movahedi, S. V. R. Kulli:
Some Parameters of Domination on the Neighborhood Graph,
International J. Math. Combin. Vol. 4 (2017), pp. 138-150. DOI:
http://doi.org/10.5281/zenodo.1418998
Samir K. Vaidya, Raksha N. Mehta:
Strong Domination
Number of Some Cycle Related Graphs, International J. Math.
Combin. Vol. 3 (2017), pp. 72-80. DOI:
http://doi.org/10.5281/zenodo.1419079
Ahmed M. Naji and Soner Nandappa D.:
The k-Distance
Degree Index of Corona, Neighborhood Corona Products and Join of Graphs,
International J. Math. Combin. Vol. 4 (2017), pp. 91-102. DOI:
http://doi.org/10.5281/zenodo.1419023
Suleyman
Senyurt, Selin Sivas: An
Application of Smarandache Curve. In Ordu Univ. Bil. Tek. Derg.,
Cilt: 3, Sayi:1, 2013,46-60/Ordu Univ. J. Sci. Tech., Vol. 3, No. 1
(2013), 15 pages.
H.S.
Abdel-Aziz, M. Khalifa Saad: Computation
of Smarandache curves according to Darboux frame in Minkowski 3-space.
In Journal of the Egyptian Mathematical Society, 25 (2017), pp.
382-390, 9 pages.
Mervat
Elzawy: Smarandache
curves in Euclidean 4-space E4. In Journal of the Egyptian
Mathematical Society, 25 (2017), pp. 268-271, 4 pages.
M. Elzawy,
S. Mosa: Smarandache
curves in the Galilean 4-space G4. In Journal of the
Egyptian Mathematical Society, 25 (2017), pp. 53-56, 4 pages.
M. Khalifa
Saad: Spacelike
and timelike admissible Smarandache curves in pseudo-Galilean space. In Journal
of the Egyptian Mathematical Society, 24 (2016), pp. 416-423, 8 pages.
E.M.
Solouma: Special
equiform Smarandache curves in Minkowski space-time. In Journal of
the Egyptian Mathematical Society, 25 (2017), pp. 319-325, 7 pages.
E.M.
Solouma: Special
timelike Smarandache curves in Minkowski 3-space. Al Imam Mohammad Ibn
Saud Islamic University, College of Science, Department of Mathematics and
Statistics, KSA, Riyadh, 16 pages.
b−Smarandache m1m2
Curves of Biharmontic New Type b−Slant Helices According to Bishop Frame in
the Sol Space Sol3,
by Talat Korpinar, Essin Turhan. In International J.Math. Combin.
Vol. 4 (2012), pp. 33-39.
DOI:10.5281/zenodo.825679,
https://doi.org/10.5281/zenodo.825678
Isotropic Smarandache
Curves in Complex Space C3,
by Suha Yilmaz. In International J.Math. Combin. Vol. 4 (2016), 7
pages.
DOI:10.5281/zenodo.826790,
https://doi.org/10.5281/zenodo.826789
Dual Smarandache Curves
and Smarandache Ruled Surfaces,
by Tanju Kahraman, Mehmet Onder, H. Huseyin Ugurlu, In Mathematical
Sciences and Applications E-Notes, Volume 2 No. 1, pp. 83/98 (2014), 16
pages. DOI:10.5281/zenodo.835438,
https://doi.org/10.5281/zenodo.835437
Mannheim Partner Curve
a Different View,
Suleyman Senyurt, Yasin Altun, Ceyda Cevahir. In International J.Math.
Combin. Vol. 2 (2017), pp. 84-91.
DOI:10.5281/zenodo.831975,
https://doi.org/10.5281/zenodo.831974
Ruled surfaces
generated by some special curves in Euclidean 3-Space,
by Ahmad T. Ali, Hossam S. Abdel Aziz, Adel H. Sorour. In Journal of the
Egyptian Mathematical Society (2013) 21, pp. 285–294.
DOI:10.5281/zenodo.835445,
https://doi.org/10.5281/zenodo.835444
N*C*-Smarandache Curve
of Bertrand Curves Pair According to Frenet Frame,
by Suleyman Senyurt, Abdussamet Caliskan, Unzile Celik. In International
J.Math. Combin. Vol. 1 (2016), 7 pages.
DOI:10.5281/zenodo.815716,
https://doi.org/10.5281/zenodo.815715
N*C*-Smarandache Curves
of Mannheim Curve Couple According to Frenet Frame,
by Suleyman Senyurt, Abdussamet Caliskan. In International J.Math. Combin.
Vol. 1 (2015), 13 pages.
DOI:10.5281/zenodo.815112,
https://doi.org/10.5281/zenodo.815111
New type surfaces in
terms of B-Smarandache Curves in Sol3,
by Talat Korpinar. In Acta Scientiarum. Technology, Maringá, v. 37,
n. 3, July-Sept. 2015, pp. 389-393. DOI:10.5281/zenodo.835440,
https://doi.org/10.5281/zenodo.835439
On Pseudospherical
Smarandache Curves in Minkowski 3-Space,
by Esra Betul Koc Ozturk, Ufuk Ozturk, Kazim Ilarslan, Emilija Nesovic. In
Journal of Applied Mathematics, Volume 2014, Article ID 404521, 14
pages. DOI:10.5281/zenodo.835443,
https://doi.org/10.5281/zenodo.835442
Smarandache Curves
According to Bishop Frame in Euclidean 3-Space,
by Muhammed Cetin, Yilmaz Tuncer, Murat Kemal Karacan. arXiv:1106.3202v1
[math.GM] 16 Jun 2011, 19 pages. DOI:10.5281/zenodo.835447,
https://doi.org/10.5281/zenodo.835446
Smarandache Curves
According to Sabban Frame on S2,
by Kemal Taskopru, Murat Tosun. arXiv:1206.6229v3 [math.DG] 20 Jul
2012, 8 pages. DOI:10.5281/zenodo.835452,
https://doi.org/10.5281/zenodo.835451
Smarandache Curves and
Applications According to Type-2 Bishop Frame in Euclidean 3-Space,
by Suha Yilmaz, Umit Ziya Savcı. In International J.Math. Combin.
Vol. 2 (2016), 15 pages.
DOI:10.5281/zenodo.822231,
https://doi.org/10.5281/zenodo.822230
Smarandache Curves and
Spherical Indicatrices in the Galilean 3-Space,
by H.S. Abdel-Aziz, M. Khalifa Saad. arXiv:1501.05245v1 [math.DG] 21
Jan 2015, 15 pages. DOI:10.5281/zenodo.835456,
https://doi.org/10.5281/zenodo.835455
Smarandache Curves in
Euclidean 4- space E4,
by Mervat Elzawy. In Journal of the Egyptian Mathematical Society
(2017), 4 pages. DOI:10.5281/zenodo.835458,
https://doi.org/10.5281/zenodo.835457
Smarandache Curves in
Minkowski Space-time,
by Melih Turgut, Suha Yilmaz. In International J.Math. Combin. Vol.3
(2008), pp. 51-55.
DOI:10.5281/zenodo.823501,
https://doi.org/10.5281/zenodo.823500
Smarandache Curves in
Terms of Sabban Frame of Fixed Pole Curve,
by Suleyman Senyurt, Abdussamet Caliskan. In Bol. Soc. Paran. Mat.
(3s.) v. 34 2 (2016), pp. 53–62. DOI:10.5281/zenodo.835460,
https://doi.org/10.5281/zenodo.835459
Smarandache curves in
the Galilean 4-space G4,
by M. Elzawy, S. Mosa. In Journal of the Egyptian Mathematical Society
(2016), 4 pages. DOI:10.5281/zenodo.835462,
https://doi.org/10.5281/zenodo.835459
Smarandache Curves of a
Spacelike Curve According to the Bishop Frame of Type-2,
by Yasin Unluturk, Suha Yilmaz. In International J.Math. Combin. Vol.
4 (2016), pp. 29-43.
DOI:10.5281/zenodo.826804,
https://doi.org/10.5281/zenodo.826803
Smarandache curves of
some special curves in the Galilean 3-space,
by H. S. Abdel-Aziz, M. Khalifa Saad. arXiv:1501.05245v2 [math.DG] 19
Feb 2015, 11 pages. DOI: 10.5281/zenodo.835464,
https://doi.org/10.5281/zenodo.835463
Spacelike Smarandache
Curves of Timelike Curves in Anti de Sitter 3-Space,
by Mahmut Mak, Hasan Altinbas. In International J.Math. Combin. Vol.
3 (2016), 16 pages.
DOI:10.5281/zenodo.825056,
https://doi.org/10.5281/zenodo.825055
Special Smarandache
Curves in R31,
by Nurten (Bayrak) Gurses, Ozcan Bektas, Salim Yuce. In Commun. Fac. Sci.
Univ. Ank. Ser. A1 Math. Stat. Volume 65, Number 2, 2016, pp. 143-160.
DOI:10.5281/zenodo.835466,
https://doi.org/10.5281/zenodo.835465
Special Smarandache
Curves According to Bishop Frame in Euclidean Spacetime,
by E. M. Solouma, M. M. Wageeda. In International J.Math. Combin.
Vol. 1 (2017), 9 pages.
DOI:10.5281/zenodo.815770,
https://doi.org/10.5281/zenodo.815769
Special Smarandache
Curves in the Euclidean Space,
by Ahmad T. Ali. In International J.Math. Combin. Vol. 2 (2010), pp.
30-36.
DOI:10.5281/zenodo.821048,
https://doi.org/10.5281/zenodo.821047
Spherical Images of
Special Smarandache Curves in E3,
by Vahide Bulut, Ali Caliskan. In International J.Math. Combin. Vol.
3 (2015), pp. 43-54.
DOI:10.5281/zenodo.825027,
https://doi.org/10.5281/zenodo.825026
The Smarandache Curves
on H02,,
by Murat Savas, Atakan Tugkan Yakut, Tugba Tamirci. In Gazi University
Journal of Science GU J Sci. 29(1) (2016), pp. 69-77.
DOI:10.5281/zenodo.835469,
https://doi.org/10.5281/zenodo.835468
The Smarandache Curves
on S21
and Its Duality on H20,
by Atakan Tulkan Yakut, Murat Savas, Tugba Tamirci.
In Journal of Applied Mathematics, Volume 2014, Article ID 193586, 12
pages. DOI:10.5281/zenodo.835471,
https://doi.org/10.5281/zenodo.835470 |
|
|
M. Khalifa Saad, R. A.
Abdel-Baky (2020).
On Ruled Surfaces According to Quasi-Frame in
Euclidean 3-Space. Aust. J. Math. Anal. Appl. 17(1), Art. 11,
16 p.
Suleyman Senyurt, Yasin
Altun, Ceyda Cevahir, Huseyin Kocayigit (2019).
On The Sabban Frame Belonging To Involute-Evolute
Curves. Ordu University, 11 p. DOI:10.5281/zenodo.2989788.
Suleyman Senyurt, Yasin
Altun, Ceyda Cevahir, Huseyin Kocayigit (2019).
Some Special Curves Belonging to Mannheim Curves Pair.
Ordu University, 10 p. DOI:
10.5281/zenodo.2990510.
F. Almaz, M.A. Kulahci
(2018).
A Note on Special Smarandache Curves in The Null Cone
Q3. Acta Universitatis Apulensis 56, 111-124. DOI:
10.5281/zenodo.2987357.
A. Lourdusamy, Sherry George (2018).
Linear Cyclic Snakes as Super Vertex
Mean Graphs. International J.
Math. Combin. (IJMC) 1, 109-126. DOI:
10.5281/zenodo.1418960.
H. S. Abdel-Aziz, M. Khalifa
Saad (2018).
On Special Curves According to Darboux Frame in the
Three Dimensional Lorentz Space. CMC 54(3), 229-249.
Tanju Kahraman
(2018).
Smarandache Curves of Null Quaternionic Curves in
Minkowski 3-space. MANAS Journal of Engineering (MJEN) 6(1), 6
p. DOI:
10.5281/zenodo.1413905.
Tevk Sahin, Merve Okur
(2018).
Special Smarandache Curves with Respect to Darboux
Frame in Galilean 3-Space.
Int. J. Adv. Appl. Math. and Mech.
5(3), 15-26.
Gulnur Saffak Atalay
(2018).
Surfaces family with a common Mannheim geodesic curve.
J. Appl. Math. Comp. (JAMC) 2(4), 155-165.
V. Ramachandran (2018).
(1,N)-Arithmetic Labelling of Ladder and
Subdivision of Ladder.
International J. Math. Combin. (IJMC) 2, 114-121.
R. Ponraj, M. Maria Adaickalam (2018).
3-Difference Cordial Labeling of Corona
Related Graphs. International J.
Math. Combin. (IJMC) 2, 122-128.
R. Ponraj, K. Annathurai, R. Kala
(2018).
4-Remainder Cordial Labeling of Some
Graphs. International J. Math.
Combin. (IJMC) 1, 138-145. DOI: 10.5281/zenodo.1418786.
B. Basavanagoud, Sujata Timmanaikar
(2018).
Accurate Independent Domination in
Graphs. International J. Math.
Combin. (IJMC) 2, 87-96.
Rajesh Kumar T.J., Mathew Varkey T.K.
(2018).
Adjacency Matrices of Some Directional
Paths and Stars. International
J. Math. Combin. (IJMC) 1, 90-96. DOI:
10.5281/zenodo.1418808.
T. Chalapathi, R.V M S S Kiran Kumar
(2018).
Equal Degree Graphs of Simple Graphs.
International J. Math. Combin. (IJMC) 1, 127-137.
K. Praveena, M. Venkatachalam (2018).
Equitable Coloring on Triple Star Graph
Families. International J. Math.
Combin. (IJMC) 2, 24-32. DOI:
10.5281/zenodo.1418902.
K. Muthugurupackiam, S. Ramya (2018).
Even Modular Edge Irregularity Strength
of Graphs. International J.
Math. Combin. (IJMC) 1, 75-82.
V. Lokesha, P. S. Hemavathi, S. Vijay
(2018).
Semifull Line (Block) Signed Graphs.
International J. Math. Combin. (IJMC) 2, 80-86.
Rajendra P., R. Rangarajan (2018).
Minimum Equitable Dominating Randic
Energy of a Graph. International
J. Math. Combin. (IJMC) 1, 97-108.
T. Deepa, M. Venkatachalam (2018).
On r-Dynamic Coloring of the
Triple Star Graph Families.
International J. Math. Combin. (IJMC) 2, 97-113.
Tanju Kahraman, Hasan Huseyin Ugurlu
(2017).
Smarandache Curves of Curves lying on
Lightlike Cone. International J.
Math. Combin. (IJMC) 3, 1-9.
R. Ponraj, Rajpal Singh, R. Kala
(2017).
Some New Families of 4-Prime Cordial
Graphs. International J. Math.
Combin. (IJMC) 3, 125-135.
M. H. Akhbari, F. Movahedi, S. V. R.
Kulli (2017).
Some Parameters of Domination on the
Neighborhood Graph.
International J. Math. Combin. (IJMC) 4, 138-150.
Samir K. Vaidya, Raksha N. Mehta
(2017).
Strong Domination Number of Some Cycle
Related Graphs. International J.
Math. Combin. (IJMC) 3, 72-80.
Ahmed M. Naji, Soner Nandappa D.
(2017).
The k-Distance Degree Index of Corona,
Neighborhood Corona Products and Join of Graphs.
International J. Math. Combin. (IJMC) 4, 91-102.
Suleyman Senyurt, Yasin Altun, Ceyda
Cevahir (2017).
Mannheim Partner Curve a Different View.
International J.Math. Combin. (IJMC) 2, 84-91.
H.S. Abdel-Aziz, M. Khalifa
Saad (2017).
Computation of Smarandache curves according to
Darboux frame in Minkowski 3-space. Journal of the Egyptian
Mathematical Society 25, 382-390. DOI:
10.5281/zenodo.2987485.
Mervat Elzawy (2017).
Smarandache curves in Euclidean 4-space E4.
Journal of the Egyptian Mathematical
Society 25,
268-271. , DOI:
10.5281/zenodo.2989884.
M. Elzawy, S. Mosa (2017).
Smarandache curves in the Galilean 4-space G4.
Journal of the Egyptian Mathematical
Society 25, 53-56,
DOI:
10.5281/zenodo.2990158.
E.M. Solouma (2017). Special
equiform Smarandache curves in Minkowski space-time.
Journal of the Egyptian Mathematical Society
25, 319-325.
DOI: 10.5281/zenodo.2990660.
Akram Alqesmah, Anwar Alwardi, R.
Rangarajan (2017).
On the Distance Eccentricity Zagreb
Indeices of Graphs.
International J. Math. Combin. (IJMC) 4, 110-120. DOI:
10.5281/zenodo.1418934.
A. Nellai Murugan, P. Iyadurai Selvaraj
(2017).
Path Related n-Cap Cordial Graphs.
International J. Math. Combin. (IJMC) 3, 119-124.
Ujwala Deshmukh, Smita A. Bhatavadeka
(2017).
Primeness of Supersubdivision of Some
Graphs. International J. Math.
Combin. (IJMC) 4, 151-156.
E. M. Solouma, M. M. Wageeda
(2017).
Special Smarandache Curves According to
Bishop Frame in Euclidean Spacetime.
International J.Math. Combin. (IJMC) 1, 1-9.
M. Subramanian, T. Subramanian
(2017).
A Study on Equitable Triple Connected
Domination Number of a Graph.
International J. Math. Combin. (IJMC) 3, 116-118.
U. M. Prajapati, R. M. Gajjar
(2017).
Cordiality in the Context of Duplication
in Web and Armed Helm.
International J. Math. Combin. (IJMC) 3, 90-115.
Linfan Mao
(2017).
Hilbert Flow Spaces with Operators over
Topological Graphs.
International J. Math. Combin. (IJMC) 4, 19-45.
P.S.K. Reddy, K.N. Prakasha,
Gavirangaiah K. (2017).
Minimum Dominating Color Energy of a
Graph. International J. Math.
Combin. (IJMC) 3, 22-31.
P. S. K. Reddy, K. N.
Prakasha, Gavirangaiah K. (2017).
Minimum Equitable Dominating Randic Energy of a Graph.
International J. Math. Combin.
(IJMC) 3, 81-89.
M. Khalifa Saad (2016).
Spacelike and timelike admissible Smarandache curves
in pseudo-Galilean space.
Journal of the Egyptian Mathematical Society
24, 416-423. DOI:
10.5281/zenodo.2990574.
Suleyman Senyurt, Abdussamet Caliskan
(2016).
Smarandache Curves in Terms of Sabban
Frame of Fixed Pole Curve. Bol.
Soc. Paran. Mat. 34(2), 53–62. DOI:
10.5281/zenodo.835460.
Yasin Unluturk, Suha Yilmaz
(2016).
Smarandache Curves of a Spacelike Curve
According to the Bishop Frame of Type-2.
International J.Math. Combin. (IJMC) 4, 29-43.
Murat Savas, Atakan Tugkan Yakut, Tugba
Tamirci (2016).
The Smarandache Curves on H20.
Gazi University Journal of Science 29(1), 69-77.
Nurten (Bayrak) Gurses, Ozcan Bektas,
Salim Yuce (2016).
Special Smarandache Curves in R31.
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 65(2), 143-160. DOI:10.5281/zenodo.835466.
Suleyman Senyurt, Abdussamet Caliskan,
Unzile Celik (2016).
N*C*-Smarandache Curve of Bertrand
Curves Pair According to Frenet Frame.
International J.Math. Combin. (IJMC) 1, 1-7.
Suha Yilmaz, Umit Ziya Savci
(2016).
Smarandache Curves and Applications
According to Type-2 Bishop Frame in Euclidean 3-Space.
International J.Math. Combin. (IJMC) 2, 1-15. DOI:
10.5281/zenodo.822230.
Mahmut Mak, Hasan Altinbas
(2016).
Spacelike Smarandache Curves of Timelike
Curves in Anti de Sitter 3-Space.
International J.Math. Combin. (IJMC) 3, 1-16. DOI:
10.5281/zenodo.825056.
Suha Yilmaz
(2016).
Isotropic Smarandache Curves in Complex
Space C3.
International J.Math. Combin. (IJMC) 4, 1-7.
Suleyman Senyurt, Abdussamet
Calskan (2015).
Smarandache Curves in Terms of Sabban Frame of
Spherical Indicatrix Curves. Gen. Math. Notes 31(2), 1-15.
DOI:
10.5281/zenodo.2990072.
H. S. Abdel-Aziz, M. Khalifa Saad
(2015).
Smarandache curves of some special
curves in the Galilean 3-space.
arXiv:1501.05245v2 [math.DG] 19 Feb 2015, 11 p. DOI:
10.5281/zenodo.835464.
Vahide Bulut, Ali Caliskan
(2015).
Spherical Images of Special Smarandache
Curves in E3.
International J.Math. Combin. (IJMC) 3, 43-54.
Suleyman Senyurt, Abdussamet Caliskan
(2015).
N*C*-Smarandache Curves of Mannheim
Curve Couple According to Frenet Frame.
International J.Math. Combin. (IJMC) 1, 1-13.
Talat Korpinar
(2015).
New type surfaces in terms of B-Smarandache
Curves in Sol3. Acta
Scientiarum. Technology 37(3), 389-393. DOI:
10.5281/zenodo.835440.
H.S. Abdel-Aziz, M. Khalifa Saad
(2015).
Smarandache Curves and Spherical
Indicatrices in the Galilean 3-Space.
arXiv:1501.05245v1 [math.DG] 21 Jan 2015, 15 p.
Tanju Kahraman, Mehmet Onder,
H. Huseyin Ugurlu (2014).
Dual Smarandache Curves and Smarandache Ruled
Surfaces. Mathematical Sciences
and Applications E-Notes 2(1), 83-98. DOI:
10.5281/zenodo.2987568.
Atakan Tulkan Yakut, Murat Savas, Tugba
Tamirci (2014).
The Smarandache Curves on S21
and Its Duality on H20.
Journal of Applied Mathematics, Article ID 193586, 12 p.
Esra Betul Koc Ozturk, Ufuk Ozturk,
Kazim Ilarslan, Emilija Nesovic
(2014).
On Pseudospherical Smarandache Curves in
Minkowski 3-Space. Journal of
Applied Mathematics, Article ID 404521, 14 p. DOI:
10.5281/zenodo.835443.
Esra Betul Koc Ozturk, Ufuk
Ozturk, Kazim Ilarslan,
Emilija Nesovic (2013).
On Pseudohyperbolical Smarandache Curves in Minkowski
3-Space. International Journal of Mathematics and Mathematical
Sciences, 8 p.
DOI: 10.5281/zenodo.1413399.
Suleyman Senyurt, Selin Sivas
(2013).
An Application of Smarandache Curve.
Ordu Univ. J. Sci. Tech. 3(1), 46-60.
Ahmad T. Ali, Hossam S. Abdel Aziz,
Adel H. Sorour (2013).
Ruled surfaces generated by some special
curves in Euclidean 3-Space.
Journal of the Egyptian Mathematical Society 21, 285–294. DOI:
10.5281/zenodo.835445.
Kemal Taskopru, Murat Tosun
(2012).
Smarandache Curves According to Sabban
Frame on S2. arXiv:1206.6229v3
[math.DG] 20 Jul 2012, 8 p.
Talat Korpinar, Essin Turhan
(2012).
b-Smarandache m1m2 Curves
of Biharmontic New Type b-Slant Helices According to Bishop Frame in the Sol
Space Sol3.
International J.Math. Combin. (IJMC) 4, 33-39.
Muhammed Cetin, Yilmaz Tuncer, Murat
Kemal Karacan (2011).
Smarandache Curves According to Bishop
Frame in Euclidean 3-Space. arXiv:1106.3202v1
[math.GM] 16 Jun 2011, 19 p.
Elham Mehdi-Nezhad, Amir M.
Rahimi (2010).
The Smarandache Vertices of The Comaximal Graph of A
Commutative Ring. Stellenbosch University, 12 p.
DOI: 10.5281/zenodo.2990970.
Ahmad T. Ali
(2010).
Special Smarandache Curves in the
Euclidean Space. International
J.Math. Combin. (IJMC) 2, 30-36.
Melih Turgut, Suha Yilmaz
(2008).
Smarandache Curves in Minkowski
Space-time. International J.Math.
Combin. (IJMC) 3, 51-55. DOI:
10.5281/zenodo.823501.
Roberto Torretti (2002).
A model for the Smarandache anti-geometry.
Int. Journal of Social Economics 29(11), 886-896.
DOI: 10.5281/zenodo.1412417.
E.M. Solouma
(2002).
Special timelike Smarandache curves in
Minkowski 3-space. Al Imam Mohammad
Ibn Saud Islamic University, 16 p.
All articles, books, photos,
videos, and other materials from this website are licensed under a
Creative Common
Attribute 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
| |
|