Multi-Valued Multi-Polar Neutrosophic Sets with an application in Multi-Criteria Decision-Making
Keywords:
Multi valued neutrosophic set; Multi polar neutrosophic set; Bonferroni mean; Fuzzy soft differential equationsAbstract
This research directs to obtain optimum fuzzy soft constants through Bonferroni mean and TOPSIS
with the initial data represented in terms of multi-valued m-polar neutrosophic soft set. Multi-valued m-polar
neutrosophic soft set is defined in this paper, which is the generalization of m-polar neutrosophic soft set,
obtained by combining it with multi-valued neutrosophic soft set. Optimum fuzzy soft constants play a fundamental role for the construction of the system of differential equations which helps to observe the experts,
future
attitudes. Sometimes experts feel a requirement to rethink their choices or decisions due to the observation of
others,
choice especially when others choose different alternatives. After the individual decisions of experts, an
analysis of experts,
attitudes is produced by using phase portraits and line graphs of the system of differential
equations. This analysis can also be provided by using system of differential equations with fuzzy initial conditions. To find the multi-valued m-polar neutrosophic Bonferroni mean, some basic operations on the elements
of the defined set are introduced. An illustrative example is given where a system of two differential equations
is developed for attitude analysis of two persons with independent variable t
Downloads
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.