Applications of neutrosophic complex numbers in triangles
Abstract
: It may be difficult for researchers to memorize or remember the trigonometric ratios of any
neutrosophic angle, and this is what prompted us to activate the role of the neutrosophic complex
numbers for that. In this paper we presented neutrosophic Euler’s formulas and neutrosophic De
Moivre's formula. Also, we benefited from that by finding the trigonometric ratios of the multiples
of neutrosophic angle in terms of the trigonometric ratios of the neutrosophic angle (ðœƒÌˆ+ ðœ‘̈ð¼) and
convert trigonometric ratios from formula ð‘ ð‘–ð‘›ð‘›(ðœƒÌˆ+ ðœ‘̈ð¼), or formula ð‘ð‘œð‘ ð‘š(ðœƒÌˆ+ ðœ‘̈ð¼), into a linear
expression for the multiples of the neutrosophic angle (ðœƒÌˆ+ ðœ‘̈ð¼), which made it easier for us to find
integrals of the neutrosophic trigonometric functions by other methods.
Downloads
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.