Predictive Modeling of Atrial Fibrillation Using a Hybrid Multinomial-Neutrosophic Approach for Biomarker Identification

Authors

  • Lorenzo Cevallos-Torres 1Centro de Estudios en Tecnologías Aplicadas, Universidad Bolivariana del Ecuador, Durán, Ecuador
  • Luis Pilacuan-Bonete Facultad de Ingeniería Industrial, Universidad de Guayaquil, Ecuador
  • Rosangela Caicedo-Quiroz Centro de Estudios en Tecnologías Aplicadas, Universidad Bolivariana del Ecuador, Durán, Ecuador
  • Franklin Parrales-Bravo Centro de Estudios en Tecnologías Aplicadas, Universidad Bolivariana del Ecuador, Durán, Ecuador
  • Eduardo Rubio-Bonito Facultad de Ingeniería Industrial, Universidad de Guayaquil, Ecuador

Keywords:

Atrial fibrillation, Electrocardiogram, Predictive models, Biomarkers, Artificial intelligence, Clinical data

Abstract

Atrial fibrillation, characterized by chaotic rhythms and electrical complexity, presents a diagnostic challenge that requires innovative approaches to uncover its underlying biomarkers. This study proposes a hybrid predictive model based on multinomial logistic regression and neutrosophic logic, aiming to identify clinically significant patterns associated with this condition. Using the Knowledge Discovery in Databases (KDD) methodology, large volumes of cardiovascular data are analyzed to distinguish meaningful signals from background noise, revealing hidden connections and validating medical hypotheses. The implementation of the model through a digital prototype reflects a convergence of advanced statistics, artificial intelligence, and cardiovascular medicine, promoting a multidisciplinary approach. The findings of this work not only enhance diagnostic accuracy but also open new avenues for personalized treatment, emphasizing the value of scientific integration in modern medical research.

DOI

Downloads

Download data is not yet available.

Downloads

Published

2025-10-01

How to Cite

Lorenzo Cevallos-Torres, Luis Pilacuan-Bonete, Rosangela Caicedo-Quiroz, Franklin Parrales-Bravo, & Eduardo Rubio-Bonito. (2025). Predictive Modeling of Atrial Fibrillation Using a Hybrid Multinomial-Neutrosophic Approach for Biomarker Identification. Neutrosophic Sets and Systems, 89, 477-491. https://fs.unm.edu/nss8/index.php/111/article/view/6921

Most read articles by the same author(s)

1 2 > >>