A Neutrosophic Random Forest Approach for Preeclamptic Risk Prediction with Uncertainty Quantification

Authors

  • Franklin Parrales-Bravo Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador
  • Rosangela Caicedo-Quiroz Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador
  • Lorenzo Cevallos-Torres Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador
  • Leonel Vasquez-Cevallos SIMUEES Simulation Clinic, Universidad Espíritu Santo, Samborondón , Ecuador
  • Dayron Rumbaut-Rangel Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador

Keywords:

Preeclampsia, Neutrosophic Logic, Random Forest, Uncertainty Quantification, Maternal Health, Risk Prediction

Abstract

This study presents a novel integration of Random Forest with neutrosophic logic to improve preeclampsia risk prediction while quantifying prediction uncertainty. Using clinical data from 352 patients, the model achieved 72.73% accuracy with high sensitivity (0.898) in identifying control cases, though with lower specificity (0.235) for preeclampsia detection. Key predictors identified were birthweight and hypertension his- tory, aligning with clinical knowledge. The neutrosophic framework successfully categorized predictions into truth (T), indeterminacy (I), and falsity (F) components, revealing that 90% confidence predictions showed T = 0.9 while uncertain cases (0.5 ≤ p < 0.9) demonstrated elevated indeterminacy (I = 0.3). The main contributions include: 1) an interpretable uncertainty quantification method for clinical predictions, 2) validation of key risk factors through feature importance analysis, and 3) a practical framework for identifying cases requiring additional clinical evaluation. This approach demonstrates significant potential for enhancing decision-making in maternal healthcare.

DOI

Downloads

Download data is not yet available.

Downloads

Published

2025-12-15

How to Cite

Franklin Parrales-Bravo, Rosangela Caicedo-Quiroz, Lorenzo Cevallos-Torres, Leonel Vasquez-Cevallos, & Dayron Rumbaut-Rangel. (2025). A Neutrosophic Random Forest Approach for Preeclamptic Risk Prediction with Uncertainty Quantification. Neutrosophic Sets and Systems, 92, 134-144. https://fs.unm.edu/nss8/index.php/111/article/view/7077

Most read articles by the same author(s)

1 2 > >>