Soil Fertility Forecasting with Neutrosophic-Based Uncertainty Management

Authors

  • Franklin Parrales-Bravo Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador
  • Roberto Tolozano-Benites Grupo de Investigación en Inteligencia Artificial, Universidad de Guayaquil, Guayaquil, Ecuador
  • Dayron Rumbaut-Rangel Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador

Keywords:

Random Forest, Soil Fertility Prediction, Neutrosophic logic, Uncertainty Quantification, Precision Agriculture

Abstract

This study presents a machine learning framework that combines Random Forest classification with neutrosophic logic to predict soil fertility from 16 physicochemical properties. The model achieves robust classification accuracy (95%) while introducing a novel uncertainty quantification mechanism through neutrosophic truth (T ), indeterminacy (I) and falsity (F ) values derived from prediction probabilities, assigning high-confidence (T = 0.9) to probabilities ≥0.9, indeterminacy (I = 0.3) to borderline cases (0.5≤p<0.9), and falsity (F=0.5) to low-confidence predictions (<0.5), enabling tiered decision support where 60% of cases receive automated recommendations, 25% require expert review, and 15% are flagged for rejection. Feature importance analysis reveals Clay (24.1%) and CEC (18.7%) as dominant predictors, aligning with agronomic principles while providing interpretable results. This approach advances precision agriculture by supplementing binary classifications with actionable confidence metrics, particularly valuable for managing uncertain soil conditions.

DOI

Downloads

Download data is not yet available.

Downloads

Published

2025-12-15

How to Cite

Franklin Parrales-Bravo, Roberto Tolozano-Benites, & Dayron Rumbaut-Rangel. (2025). Soil Fertility Forecasting with Neutrosophic-Based Uncertainty Management. Neutrosophic Sets and Systems, 92, 62-78. https://fs.unm.edu/nss8/index.php/111/article/view/7316

Most read articles by the same author(s)