A Neutrosophic Random Forest Framework for Uncertainty-Aware Classification of Nursery School Applications

Authors

  • Franklin Parrales-Bravo Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador
  • Roberto Tolozano-Benites Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador.
  • Manuel Reyes-Wagnio 1Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador.
  • Dayron Rumbaut-Rangel Maestría en Gestión y Analítica de Datos, Universidad Bolivariana del Ecuador, Guayaquil, Ecuador
  • Leonel Vasquez-Cevallos SIMUEES Simulation Clinic, Universidad Espíritu Santo, Samborondón , Ecuador

Keywords:

Random Forest, Neutrosophic Logic, Uncertainty Quantification, Nursery School Applications, Decision Support, Machine Learning Interpretability

Abstract

This paper presents a novel framework that integrates Random Forest classification with neutrosophic logic to address the challenge of uncertainty-aware decision-making in nursery school application processes. Using the publicly available Nursery dataset—which includes socio-familial attributes such as parental occupation, financial standing, and health conditions—the proposed model not only achieves high predictive accuracy (approximately 95%) but also quantifies uncertainty explicitly through neutrosophic sets defined by truth (T), indeterminacy (I), and falsity (F) membership degrees. This approach allows for a nuanced interpretation of classification confidence, distinguishing between clear-cut cases that can be automated and borderline instances requiring human expert review. By enabling a transparent, tiered decision-making strategy, the framework enhances the fairness, explainability, and operational efficiency of admission systems, offering a practical tool for administrative use in high-stakes educational settings.

DOI

Downloads

Download data is not yet available.

Downloads

Published

2025-12-12

How to Cite

Franklin Parrales-Bravo, Roberto Tolozano-Benites, Manuel Reyes-Wagnio, Dayron Rumbaut-Rangel, & Leonel Vasquez-Cevallos. (2025). A Neutrosophic Random Forest Framework for Uncertainty-Aware Classification of Nursery School Applications. Neutrosophic Sets and Systems, 92, 621-630. https://fs.unm.edu/nss8/index.php/111/article/view/7360

Most read articles by the same author(s)